SQuAD: Integrating PCE and Non-PCE
approaches

Oghenetegiri Sido
Department of Computer Science
Stanford University
osido@stanford.edu

March 20, 2019

Abstract

Question Answering (QA) is an increasingly important NLP problem
with the proliferation of chatbots and virtual assistants. In October 2018,
Bidirectional Encoder Representations from Transformers (BERT) was
released and achieved state-of-the-art results on a variety of NLP tasks,
including QA, Token Classification, and Next Sentence Prediction. We seek
to extend BERT with other performant QA architectures for SQuADv2.0.
We utilize traditional pre-trained word vectors and Pre-trained Contextual
Embeddings (PCE). Specifically, we experiment with a variety of non-
PCE approaches, including Bidirectional Attention Flow (BiDAF) [3],
Dynamic Coattention Network (DCN) [4], and Answer-Pointer. We find
that using BERT embeddings in conjuction with non-PCE approaches
is more performant for training than relying solely on PCE or non-PCE
techniques. Our best model, BERT-CASED achieves an F1 of 75.3 and

El%/[of 71.9 on the dev set and an F1 of 77.1 and EM of 73.6 on the test
set.

1 Introduction:

Machine Comprehension - the ability for a system to understand text at a deep
level - is a well-researched yet challenging task. As applied to the Stanford
Question Answering Dataset (SQuAD)[1], we are tasked with building a system
that is not only adept at finding the answer to a question in the a context
paragraph but also determining whether the question can even be answered.
Traditionally, previous state-of-the-art QA systems relied on pre-trained word
vectors and a variety of high-performing networks, including Bidirectional
Attention Flow (BiDAF) [3] and Dynamic Coattention Network (DCN) [4].
These systems all performed extremely well on SQuAD1.1 but far worse on
SQuAD2.0, which contains over 50,000 adversarial questions that could be
answered. Then, in October 2018, BERT [2| was released and achieved state-
of-the-art results for several different NLP tasks, including QA. This is due
to the fact that, among other additions, BERT uses Pre-trained Contextual
Embeddings (PCE), where embeddings for every token are learned specifically
within the context of their surrounding words. This encodes much more locale-
specific information than traditional pre-trained vectors that are more general
and not tied to a particular context.

Our paper is focused on exploring how high-performing non-PCE techniques can

be applied to BERT and vice-versa for increased performance in both paradigms,
PCE and non-PCE.

1. We apply non-fine-tuned BERT embeddings to standard BiDAF and DCN
implementations, using the hadamard product of BERT and GLoVE
before feeding these embeddings to the networks. We find that using
BERT embeddings in conjuction with GLoVE speeds up training time and
convergence but results in similar performance on the dev and test sets.

2. We then seek to apply a time-tested non-PCE approach, Answer-Pointer,
to the BERT implementation, which currently uses a simple linear layer.
We ran Answer-Pointer experiments using both an RNN and GRU in place
of BERT’s linear output layer. Additionally, we combined the outputs of
our Answer Pointer layer and their linear layer. We find that our Answer
Pointer implementation performs far worse than their simple linear layer.
We will analyze why this is the case below.

Related Work:

e Rajpurkar et. al [1], creator of the SQuAD dataset, published a paper
describing the dataset’s characteristics and the results of a simple logistic
regression baseline, which achieved and F1 and EM score of 51.0.

e Early summarization - the consequence of a lacking a comprehensive
summary of the context in relation to the question - has hampered the per-
formance of earlier systems that only employed Context-to-Question (C2Q)
attention [3]. Accordingly, Seo et. al [3] and his associates introduced
Bi-Directional Attention Flow (BiDAF), which not only utilizes combined
Context-to-Question (C2Q) attention but also Question-to-Context (Q2C)
attention with stellar results. BiDAF, alongside its attention layer, im-
plements character embedding, word embedding, encoder, modeling, and
output layers. Our BiDAF and BERT-BiDAF experiments rely upon this
existing implementation, with the exception of the character embedding
layer.

e Xiong’s et. al [4] Dynamic Coattention Networks (DCN) differentiates
itself from BiDAF with the addition of learnable hidden states that are
concatenated to the context and question hidden states. They faciliate the
correction from local maxima during training. Additionally, DCN employs

a biLSTM encoder - LSTM decoder duo to estimate the start and end
indices of the span. Our model implements the DCN attention layer in

place of BiDAF attention in the larger BIDAF model.

e Wang’s et. al [5] Answer Pointer addresses the issue of independent start
and end index prediction. Answer Pointer feeds modeling layer outputs
to the RNN, whose outputs are then used to compute the start logits via
attention. Next, it feeds the final hidden state from the prior RNN to the
same RNN with the inital modeling layer outputs, repeating the process
to derive the end logits. This encodes a dependence between the start and
end indices. We integrate Answer Pointer into BERT, using both an RNN
and a GRU.

e Finally, with respect to the landmark BERT paper [2], it is designed to
pre-train bidirectional representations by conditioning on both left and
right context in all layers. Additionally, these representations can be
fine-tuned with additional output layers that can be used to build state-of-
the-art models for a variety of NLP tasks like QA. Unlike other models,
BERT can outperform humans on SQuADv1.1. Its model architecture
includes a multi-layer bidrectional transformer encoder, transformer blocks,

3

hidden states, self-attention heads, and a feed-forward filter. The BERT
transformer performs birectional self-attention. We modify the output
layer of BERT with Answer Pointer and experiment with its non fine-tuned
embeddings in BiDAF and DCN.

Approach:

3.1 BiDAF Baseline
BiDAF relies on the following layers:

1. Embedding Layer:

After looking up a pre-trained GLoVE for a particular token, h;, we run it
through two highway networks.

. Encoder Layer:

We use a bi-LSTM to encode temporality into the embedding sequence,
honing in on importance and meaning based on the position of the word
in the context or question. This produces hidden states that are twice
the dimension of the embeddings due to concatenating the forward and
backward states at a particular timestep.

. Attention Layer:

Hidden states are fed to this attention layer that performs both context-to-
query and query-to-context attention. To facilitate this, it uses a similarity

matrix, S, where S;; = wl,.[¢i;q;3¢; ® gj] . This encodes the strength
between a particular context token (¢;) and question token (g;).

(a) Context-to-Question (C2Q)
Our context-to-question attention is derived by taking the softmax

OvVer every row as S. Our attention outputs a; are a weighted sum of
the question states, where the weights are S;;.

(b) Question-to-Context (Q2C)
Our question-to-context attention is computed by taking the softmax

over every column as S. We then get S’ = SS. Our attention outputs
b; are the weighted sum of the context states, where the weights are
Si..

J

Finally, we concatenate c;, b;, and a; and their hadamard products as our
final output.

. Modeling Layer:

Uses a bi-LSTM to encode temporality into the attention outputs.

. Output Layer:

Takes the output of the modeling layer (M) and the attention outputs (G),
applying a bi-LSTM to produce M’. Using trainable weight matrices and
a softmax layer, M is transformed into start logits and M’ is transformed
into end logits.

3.2 BERT-BiDAF Model

Utilizing the HuggingFace E| implementation of BERT, we extract the embeddings
for every token in the context and question.

Star/End Span
BERT

Lell=]- [adlsmll=]- (]

@

Question Paragraph

Since BiDAF and other non-PCE methods are proven to work effectively
with pre-trained word vectors, we use an original approach to retain the GLoVE
embedding information for a given token while adding the hadamard product of
that GLoVE embedding and its corresponding BERT embedding. This retains
the information from the GLoVE embedding but adds useful BERT information,
which is derived from the particular context in which the token was taken. Note
that we project the BERT Embedding (bert) down to match the dimensions of
corresponding GLoVE embedding.

bertProj = Wbert € R3%
combined Embedding = glove + glove ® bertProj € R3%°

We put these combined Embedding(s), through our BiDAF [3]| network.

3.3 Dynamic Coattention Network Model

We implement the attention layer from the Dynamic Coattention Network paper
[4]. Unlike BiDAF, it includes secondary-level attention output. Taking our
hidden states for both question and context, c1,...,cn € R* and ¢, ..., qur € R,
we project and use tanh to get our new question hidden states: q;- = tanh(Wgq; +

b) € R!. Next, we add trainable sentinel vectors to both context and question
matrices:

c={cco} e RN
d ={qd qo} € RMHTD!

Then, akin to the similarity matrix in BiDAF, we build an affinity matrix, L,
where L;; = ciqu;» € R. Afterwards, we perform C2Q attention by taking the
row-wise softmax over L to yield a. We then compute the attention output
a; € R! by taking weighted sums of the new question states, where the weight is
04;. Then, we perform Q2C attention by taking the column-wise softmax over L
yielding 8 € RM#=(N+1) We derive our attention output b; € R! by taking the
weighted sum of the context hidden states, where the weight is 8/ € R!. Then,
we compute our second level outputs, s; € R! as the weighted sum of the Q2C

Thttps://github.com/huggingface/pytorch-pretrained-BERT

https://github.com/huggingface/pytorch-pretrained-BERT

attention outputs where the weight is aé. Finally, we use a bi-LSTM to encode
our stacked outputs:

{u1, ... ,un} =biLSTM({{s1;a1},....,{sn;an}}) € RN@4

3.4 BERT-Answer-Pointer

As mentioned previously, BERT’s current implementation uses a linear layer to
compute the start and end logits independently from the sequence outputs which
come after BERT’s encoder and pooler layers. Our Answer Pointer implementa-
tion enforces dependence between the start and end logits by conditioning our
end prediction on our start prediction. To facilitate this, we use an RNN (also a
GRU in a separate experiment) to run our sequence outputs through producing
a probability distribution for each of the start indices and a final hidden state.
We compute attention on the distribution where the hidden state attends to the
initial sequence outputs, producing our start logits. To compute our end logits,
we repeat the same process, but also use the final hidden state from the first
pass of the RNN as an additional input alongside the initial sequence outputs
to the RNN. We again, compute our logits in the same way, but now, the end
logits have a dependence on the start logits via the passed through hidden state.

3.4.1 BERT-Linear-Answer-Pointer

Here, we use a GRU instead of an RNN, due to its increased flexibility with its
update gate. We add the logits outputted by the Answer Pointer layer with the
logits created with the linear layer.

4 Experiments

4.1 Data

SQuAD [1] is comprised of paragraphs, questions, and their corresponding
answers from Wikipedia. Our data split has 129,941 training examples, 6078
dev examples, and 5915 test examples.

Question Length

Context Length

0 00 200 00 400 500 600 0 5 v 1B 20 35 B B 4
Number of words Number of words

Answer Location

Answer Length

4.1.1 Data Exploration

The histogram for context length, reveals that the vast majority of context
paragraphs are fewer than 300 words in length. Additionally, we see from our
question length histogram that the majority of questions are less than 20 words
in length. The starter BIDAF implementation allows for contexts of up to 400
words in training and 1000 words in evaluation. For question length, it allows
up to 50 words in training and 100 words in evaluation. Shrinking this max
based on the histogram will likely drop a few examples but keep most, drastically
reducing computational cost. However, our BERT implementation has a max
sequence length of 384 for both the question and context lengths combined,
which is appropriate given that our exploration revealed that an appropriate
max would be around 320 for both combined. Then, an examination of answer
location reveals that while answer location appears uniformly distributed, many
answers are in beginning of the context with noticeable drop-off as we near the
end of the context.

4.2 FEvaluation Method

Quantitatively, we use FM, the expectation-maximization metric based on
matching the number of correct words for a particular answer as well as F'I, which
is the harmonic mean of precision and recall. Qualitatively, we conduct error-
analysis of 25 randomly selected examples, comparing our model’s predictions to
the true answers. This helps in identifying persistent shortcomings and strengths
of the models.

4.3 Experimental Details
4.3.1 BERT embeddings

For BERT-BiDAF and BERT-DCN, to integrate the non fine-tuned BERT
embeddings into our implementation, we instantiate a bert-based-cased model
to generate embeddings for each example. We write these embeddings to disk
and read them when needed in place of the embedding layer in the standard
implementation.

4.3.2 Hyperparameter Search

More hyperparameter searching will be conducted in future work, but here, we
start with most of the default values:

e Starter Implementation:
Settled on the defaults for learning rate: 0.5; dropout: .2; max paragraph
length: 400; maz question length: 50; batch size: 16, we reduced it from 64
to 16 due to memory constraints.

e BERT Implementation

Settled on the defaults for learning rate: 5e-5 (we experimented with faster
learning rates but dealt with too much divergence that affected increased
loss in different periods of training); maz sequence length: 384 (as seen
from the histograms, we could have lowered to 320; however, this likely
would only lower computational cost, not improve performance); dropout:
.1 (lower than what we used in the standard implementation); batch size:
6 (due to memory constraints since each embedding is 768 dimensions);
gradient accumulation steps: 4 (produces noisy error but is better than
stochastic in a appropriate gradient update).

4.3.3 Training Time

e Starter Implementation:
We train over 30 epochs. Our BERT-BASIC model only has two linear lay-
ers and requires approximately 50 minutes per epoch; BERT-BiDAF uses a
linear projection, and the complex BiDAF architecture takes approximately
1 hour; BERT-DCN performs complex attention and has an additional
biLSTM encoder, taking approximately 1.3 hours per epoch. DCN takes
approximately 30 minutes per epoch, which is similar to standalone BiDAF.

e BERT Implementation:
Here, we train over 3 epochs. For BERT-cased and BERT-uncased, each
epoch takes approximately 4 hours; however, BERT-Answer-Pointer and
BERT-Linear-Answer-Pointer both rely upon either a RNN our GRU and
require 5.5 hours per epoch.

4.4 Results And Analysis

We submitted our best model, BERT-CASED, to the test leaderboard: EM:
73.609 ; F1: 77.065. To understand the relative strengths and weaknesses of
our models, we’ve selected 25 random examples and analyzed their responses.

Table 1: Dev Set Perfomance

Model EM F1
BERT-Cased 71.9 753
BERT-Uncased TL6 o T4T
BERT-BiDal! 56.4 594
BERT-DCN 52,75 96.14
BERT-Answer-Pointer-RNN 434 497
BERT-Linear-Answer-Pointer-GRU - 67.7 711
DCN 541 56.8

BiDAF Baseline 55 58

Table 2: Random Examples (25)
Question Type Frequency

Model Accuracy (%)* AvVNA (%)

et
What? 4 BERT-Cased 7.0 53.8
Which? 1 BERT-Uncased 6.0 385
Where? 1 BERT-BiDaF 68.0 385
How? 2 BERT-DCN 520 385
Wha? 3 BERT-Answer-Pointer-RNN 54.0 615
Whose? 1 BERT-Linear-Answer-Pointer-GRU 62.0 307

¢ HOSe !
DCN 48.0 7.7

Unanswerable 13

ID: 00d60faa383c8abbeffbc2bff

CONTEXT: Several commemorative events take place every year. Gatherings of thousands of
people on the banks of the Vistula on Midsummer’s Night for a festival called Wianki (Polish for
Wreaths) have become a tradition and a yearly event in the programme of cultural events in
Warsaw. The festival traces its roots to a peaceful pagan ritual where maidens would float their
wreaths of herbs on the water to predict when they would be married, and to whom. By the 19th
century this tradition had become a festive event, and it continues today. The city council
organize concerts and other events. Each Midsummer'’s Eve, apart from the official floating of
wreaths, jumping over fires, looking for the fern flower, there are musical performances,
dignitaries' speeches, fairs and fireworks by the river bank.

QUESTION: What will maidens be able to predict by floating their programmes down the
Vistula

TRUE ANSWER:

is_impossible: True

4.4.1 Discoveries:

Each discovery is motivated by its performance on the randomly selected examples
and experimental results.

e Specific Example above:

In this example about maidens, all models — with the exception of BERT-
DCN and BERT-BiDAF - fail to determine that this question is unaswer-
able and answer something about "marriage". The key here is in "will"
inside the question. The models are not understanding past versus future
here, demonstrating a lack of deep understanding.

e BERT-CASED vs BERT-Answer-Pointer

The only difference between BERT-CASED and BERT-Answer-Pointer
is the insertion of the Answer-Pointer layer in place of the linear layer to
generate the logits. Answer-Pointer has proven to be highly successful in
non-PCE implementations due to its ability to encode dependence between
start and end logits, so one would expect better results from Answer-
Pointer. However, BERT-Cased’s simple linear layer performs much better.
We attribute the difference in performance to a couple of factors: a linear
layer trains much faster than an RNN and clearly picks out important
information needed for logits. Additionally, RNN’s have been proven to be
plagued by early-summarization, as they don’t have the additional gate
memory that LSTMs and GRUs have. This suspicion was confirmed by
the randomly selected examples, where BERT-Answer-Pointer suffered
from generating logits that resulted in a shorter parts of a complete answer
approximately 20% of the time.

e BERT-CASED vs BERT-UNCASED

We find that case matters in QA, as BEST-CASED surpasses its un-
cased counterpart in both EM and F1. Our error analysis finds that
BERT-UNCASED suffers from predicting that a question is unanswerable
when it, in fact, does have an answer. Therefore, we hypothesize that
converting everything to lower case lowers the effectiveness of the attention
and output layers.

e BERT-BiDAF/DCN vs BiDAF/DCN

By examining our training metrics, we see that the hadamard of BERT
and GLoVE aids in allowing the models to converge faster to their maxi-
mum EM and F1. In most cases, the end performance is the same as the

non-BERT models. This is due to the fact that the BERT embeddings
we are using are not fine-tuned. They are frozen, but they add value in
contextual information due to BERT’s underlying FastText approach [2].
This valuable information is learned later on in training by the non-BERT
models, which is why BERT helps in converging faster.

BERT-CASED vs BERT-Linear-Answer-Pointer (GRU)

While both of these implementations are based on the bert-base-cased
pretrained models, BERT-Linear-Answer-Pointer uses both the linear layer
as well as Answer-Pointer, adding the logits from the different sources.
We find that it performs worse. We had hpped that a linear layer and
Answer-Pointer could learn different components of the logits but that
did not occur. This time, our Answer-Pointer used a GRU instead of
an RNN, to capture more long-range dependencies which in turn could
produce better probability distributions; however, this was not the case.
Our error analysis revealed that BERT-Linear-Answer-Pointer suffers from
attempting to answer unanswerable questions. This makes sense because
we add the logits without any normalization. Accordingly, the probabilities
for every index is magnified, so the system attempts to answer more than
appropriate.

Conclusion:

Non fine-tuned BERT embeddings can help speed up training in non-PCE
implementations.

BERT-CASED is the most performant model; however, it’s main issue
is attempting to answer unanswerable questions. We need to investigate
on more advanced mechanisms to determine answerability to improve
performance.

True understanding of text is still a significant challenge, as evidenced by
our error analysis.

References

[1] Rajpurkar, P. & Zhang, J. (2016) Squad: 100,000+ Questions for Machine Com-
prehension of Text, abs/1606.05250

[2] Devlin, J. & Chang, M.W. (2018) BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding, arXiv:1810.04805

[3] Seo, M. & Kembhavi, A.F. (2016) Bidirectional Attention Flow for Machine
Comprehension, arXiv:1611.01603

[4] Xiong, C. & Zhong, V. (2016) Dynamic Coattention Networks for Question
Answering., arXiv:1611.01604

[4] Wang, S. & Jiang, J. (2016) Machine Comprehension Using Match-LSTM and
Answer Pointer, arXiv:1608.07905

10

	Introduction:
	Related Work:
	Approach:
	BiDAF Baseline
	BERT-BiDAF Model
	Dynamic Coattention Network Model
	BERT-Answer-Pointer
	BERT-Linear-Answer-Pointer

	Experiments
	Data
	Data Exploration

	Evaluation Method
	Experimental Details
	BERT embeddings
	Hyperparameter Search
	Training Time

	Results And Analysis
	Discoveries:

	Conclusion:

