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Abstract

The recent purposed QANet, which constructs stacks of transformer, consisting
of mainly self-attention layer and convoultional layer, to replace RNN, has drawn
increasing attentions in the area of machine reading and question answering (Q&A).
QANet results in significant speed-up of machine comprehension tasks without
much loss in correctness. In this project, we first implement a QANet framework,
then modify the framework with fewer stacking layers, also replace the 1D ConvNet
with GRU. With the full implementation of QANet model, we achieved EM and F1
score of 63.15 and 66.72 on the dev set of SQuAD 2.0, respectively. An ensemble
of 3 models achieved F1 of 67.60 and EM of 64.26 on the dev set and F1 of 65.41
and EM of 62.10 on the test set.

1 Introduction

The growing interest in the task of machine reading comprehension after the release of SQuAD
dataset [6] has facilitated significant progresses in this research area. The current leading models
often advance on two key ingredients: (1) a pre-trained contextual embedding model, or, (2) an
advanced encoding model. The pre-trained contextual embedding (PCE) such as ELMo [4] and
BERT [2] is currently the best performing solution on the SQuAD 2.0 leaderboard.

However, due to the sophistication of the BERT framework, achieving original improvements on
BERT given the time constraint seems infeasible. Therefore, in this project, we focus on the
improvement of encoding model with advanced attention components. Our basic model combines
a number of tending frameworks such as Bi-directional Attention Flow [7] and QANet [11], and is
tested on SQuAD 2.0 dataset.

To further understand and improve the model, several modifications have been applied to the basic
model. We first add a RNN based contextual embedding layer in addition to the word-level and
character-level embeddings. We then simplify the encoder blocks for both encoding and modeling
layers with less stacks of ConvNet. In the end, we replace the 1D ConvNet with GRU in the encoder
block.

This paper proceeds as follows: Section 2 offers the overview of the research landscape this project is
in, Section 3 introduces the layout of the model architecture, Section 4 describes the implementation
details and shows the results of the model, Section 5 gives thorough analysis of the model, both
quantitatively and qualitatively, and Section 6 concludes the paper.

2 Related work

Comparing with improving PCE models, improvements made on encoder layers with advanced
attention model allows quick perturbations of the model framework within a short period of time.
Therefore, our team decides to adapt and develop upon one of such models. Our baseline model is
the direct implementation of Bi-directional Attention Flow model [7], which utilizes character-level,
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word-level, and contextual embeddings, and builds a query-aware context representation without
early summarization.

Models that are directly relevant with this project include R-Net, QANet, and Transformer-XL. R-
Net [9] combines gated attention-based recurrent networks and self-matching attention mechanism to
obtain the and refine the question-aware passage representation. QANet [11] replaces the RNN-based
encoder in both embedding encoder and model encoder with a Transformer [8]-based encoder built
upon convolutoinal neural-networks (CNN) and self-attention, which significantly improves the
speed of the model without accuracy loss. Transformer-XL [1] improves based on Transformer by
introducing the concept of recurrence by reusing the representations from the history, which improves
the accuracy of the model with long term dependency.

Other models intending to improve the attention mechanism are also of interest, which includes
DCN and Fusion-net. Dynamic Coattention Network (DCN) [10] attends over attention outputs in
addition to the two-way attention between the context and question, which enables the model to
recovery from initial local maxima with incorrect solutions. Fusion-net [3] identifies an efficient
attention mechanism corresponding to the new concept of “history of word”, and improves the overall
prediction accuracy.

3 Approach

3.1 Model overview

The baseline model we used in this project is built upon the starter code with BiDAF [7], and follows
the framework of QANet proposed by Yu et al. [11], which is a convolution and self-attention based
question answering (Q&A) model. The structure of QANet is composed of five layers, including
an embedding layer, an embedding encoder layer, an attention layer, a model encoder layer and an
output layer. The architecture is shown in Fig. 1. The over fitting problem happens when we train the
standard QANet method. The possible reason is the complexity of the QANet, so we make a series of
modifications to simplify the QANet method. And we also want to add some RNN layers to keep the
correlation of long term.

Figure 1: Baseline model architecture (closely resemble QANet).
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3.2 Embedding layer

Word embedding and character embedding are used for the input embedding layer. The dimension
of the word and character embedding vectors are denoted by eword and echar, respectively. In our
case, eword equals to 300 and echar equals to 64. Note that in the original QANet paper, the character
embedding vector dimension is echar = 200. This is the main difference of our implementation to the
original paper. The word embedding and character embedding vectors are denoted by Cw and Cc

respectively for one context word, and Qw and Qc respectively for one query word. Then the word
embedding vectors and character embedding vectors are concatenated and fed into an embedding
layer, a two-layer highway network, which outputs the final embedding vector, denote by C ∈ Reembed

for context word and Q ∈ Reembed for query word. Note that the embedding layer for context and
query words share the same weights. In the original QANet paper, the dimension of the embedding
vector is eembed = 128. We evaluated two QANet configurations, one with eembed = 128 and the other
with eembed = 96, as will be described more in the Results section.

3.3 Embedding encoder layer

The embedding vectors are then fed into an encoding layer. In our current implementation, the
encoding layer uses one encoder block, a stack of convolution layer, self-attention layer and feed
forward layer, each of these layers is proceeded by a layer-normalization layer. For the self-attention-
layer, the multi-head attention mechanism defined in [8] is adopted. In the original QANet paper, the
number of attention heads is 8. Besides this setting, we also considered another setting with single
head attention. More details of the encoder block is described in [11]. The output from the encoding
layer is denoted by Ce ∈ Reembed for one context word and Qe ∈ Reembed for one query word. Again,
the encoding layer for context words and query words share the same weights.

And in our methods, we have also tried to add RNN (LSTM) layer after word and character embedding
to take account of the long-term dependencies. Further discussion will be shown in the result part.

3.4 Attention layer

The context-query attention layer of QANet uses standard attention treatments, which is referred to
as dynamic coattention networks (DCN) and is described with more detail in [10]. In our project, We
replace the attentions layer by the BiDAF attention.

3.5 Model encoder layer

We apply three stacked encoder blocks for modeling layer. They share the same weights. Compared
with the encoder block in embedding layer, the stacked encoder block has one more convolution layer.
In our methods, we simplify the encoder blocks with less stacks of convolutional layer. We also tried
to replace 1D convolutional layer with GRU. The results and discussion will be shown later.

3.6 Output layer

In output layer, we predict the probabilities of the starting position and ending position. The detail of
probability calculations are provided in [11].

4 Experiments

4.1 Data

The dataset being used is the Stanford Question Answering Dataset 2.0 (SQuAD 2.0). Comparing to
the SQuAD 1.1 dataset, the SQuAD 2.0 dataset adds unanswerable questions that are purposely made
similar to answerable ones [5]. Therefore, the SQuAD 2.0 dataset is expected to be more challenging
than the SQuAD 1.1 dataset.
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4.2 Evaluation method

We use two scores, F1 score and Exact Match (EM) to evaluate the performance of our models on the
SQuAD 2.0 dataset.

4.3 Experimental details

The first step of our project is to implement the QANet model as specified in [11]. QANet was
originally developed by replacing the recurrent layers in models such as Bidirectional Attention Flow
(BiDAF) with one-dimensional convolutional layers and self-attention layers. The building blocks
of the QANet is the so-called encoder block consisting of mutiple one-dimensional depth-separable
convolutional layers followed by a self-attention layer and then two fully connected layers. Layer
normalization and residual connection are used for each of these layers. In addition, there are
several detail treatments such as the extensive use of dropout and stochastic depth (layer dropout)
to regularize the model and mitigate overfitting. In our implementation, we tried to respect all the
aforementioned specifications in the original QANet model. As for the specific implementation, the
three key-components, multi-head attention, context-query attention and postional encoding are based
on the implementation from the baseline BiDAF code, the original Transformer-XL implementation
for NMT and the original Transformer implementation for NMT. In addition, we applied Xavier
initialization for all the convolutional and fully connected layers which helps to prevent training
divergence especially in the early steps.

For the standard QANet, we tested two set of model configurations. The first set of model configura-
tion, referred to as ‘Standard QANet 8 head’ is the same as in the original QANet paper [11], except
for the dimension of the character embedding vector echar that is 64 comparing to 200 in the original
paper. The second set of model configuration, ‘Standard QANet 1 head’, is relatively light-weighted
that uses a smaller embedding dimension (eembed = 96) and single head attention.

Figure 2: Evolution of the evaluation set NLL loss for the two standard QANet configurations.

Figure 2 shows the evolution of the evaluation set NLL (negative log-likelihood) loss. We observe
that the loss increases slightly towards the end of training, especially for the single head configuration,
which indicates slight overfitting. In addition, despite that the QANet contains no recurrent layers,
the training process still takes significantly longer time than the baseline BiDAF model. This is likely
due to the relatively large number of encoder blocks and relatively large number of convolutional
layers within each block. Based on these two observation, in the next step we tested a light-weighted
QANet by reducing the number of encoder blocks and the number convolutional layer within each
encoder block to accelerate the training process and investigate if reducing the model complexity
would mitigate overfitting.

For the light-weighted QANet, we reduce the number of convolutional layers from 4 to 2 for the
embedding encoder layer. In addition, we reduce to number of encoder blocks from 7 to 3 for the
model encoder layer. This model is referred to ’QANet Light’.

We also experimented with another direction of simplifying the model architecture, that is reducing
the number of encoder blocks from 7 to 1 for the model encoder layer, and replacing the multiple
convolutional layers in all encoder blocks with one single gated recurrent unit (GRU). The model is
referred as ’QANet GRU’.
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All models are trained for 30 epochs with a learning rate of lr = 0.5. Due to the limit on time and
computing resources, different models are trained on different numbers of different GPUs and with
varying batch size, therefore the training time comparison is not fair and we will present results for
the training time.

4.4 Results

Figure 3 displays the training process for models implemented. The GRU model has an increasing
NLL loss after 2 million iteration, which is an indication of overfitting and explains the under-
performance on EM/F1 score.

(a) NLL (b) EM (c) F1

Figure 3: Training process for different models.

Table 1 summarizes the results for both dev-set and test-set of the models implemented. Our lighted
version of QANet (e.g. Light, GRU) slightly under performs the basic implementation of QANet, but
the EM/F1 scores are still quite close.

We take the best three models, the Standard QANet 8 head model, the Standard QANet 1head model
and QANet Light model to create an ensemble model. The ensemble model achieved an EM score of
64.258 and F1 score of 67.598 on the dev set and an EM score of 62.096 and F1 score of 65.413 on
the test set.

Model Dev EM Dev F1 Test EM Test F1
Standard QANet 8 heads 63.07 66.60 - -
Standard QANet 1 head 63.15 66.72 - -

QANet Light 60.56 64.30 - -
QANet GRU 59.57 62.99 - -

Ensemble model 64.258 67.598 62.096 65.413
Table 1: Dev & test set results for models implemented

5 Analysis

5.1 Ablation analysis

In the ablation analysis, we focus on the stochastic depth (layer dropout) mechanism. We take the
QANet Light model as the reference model, which contains layer dropout as described in the original
QANet paper [11]. We remove the layer dropout from the QANet Light model, the resulting model is
referred as the ‘QANet Light Fixed Depth’ model. The dev-set scores of the two models is shown in
Table 2. The results from the two models are comparable. However, if we look at the training process
in Fig. 4, it is clear that the QANet Light Fixed Depth model converges faster in the early steps but
experiences significantly more overfitting in the later steps. This indiciates that the layer dropout
layer does help mitigate overfitting.

5.2 Attention visualization and analysis

The context-to-query attention and query-to-context attention give us more intuition on the middle
process of how the model finds the correct answer. In this section, we show a example where the
model correctly predicts the answer.
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(a) NLL (b) EM (c) F1

Figure 4: Training process for the two models in the dilation study.

Model Dev EM Dev F1
QANet Light 60.56 64.30

QANet Light Fix Depth 60.75 64.27
Table 2: Dev & test set results for ablation study

Context: The English name "Normans" comes from the French words Normans/Normanz, plural of
Normant, modern French normand, which is itself borrowed from Old Low Franconian Nortmann
"Northman" or directly from Old Norse Norðmaðr, Latinized variously as Nortmannus, Normannus,
or Nordmannus (recorded in Medieval Latin, 9th century) to mean "Norseman, Viking".

Query: What is the original meaning of the word Norman?

Answer: Norseman, Viking

Prediction: Norseman, Viking

The Query-to-context (Q2C) attention shows which context words have the closest similarity to the
query words. We show the Q2C attention in Figure 5. Excluding the punctuation, the words that have
highest attention with respect to the query are ‘comes’ and ‘itself’, which, in some sense, reasonably
represent the key meaning of the query.
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Figure 5: Query-to-context attention (max-pooled over query)

The Context-to-query (C2Q) attention is shown in Figure 6. Table 3 lists the three most relevant
context words for each of the query word in this example. For the query word ‘What’, the most
relevant words are ‘Normans’, ‘Norðmaðr’, and ‘Normant’, which are clearly closely correlates
to what the word ‘What’ is referring to. The relevant context words for query word ‘original’ are:
‘Normans’, ‘English’, ‘Old’, which, are not necessarily exact, but offers some reference to the
meaning of the query word.

5.3 Error analysis

In addition to compare the EM and F1 score for model evaluation, we also conduct the experiments
on the relationship between the performance and the answer length, and question types. Figure 7
shows the average score regarding to answers of different length and questions of different types for
our QANet light and Standard QANet 1 head method.

The left figure shows that the average F1 score decreases as the increase of the length of correct
answer. The results for both methods are almost the same. Since the answers for most questions
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Figure 6: Context-to-query attention

Word in query Most relevant words in context
What Normans, Norðmaðr, Normant
is is, name, plural
the the, The, Normans
original Normans, English, Old
meaning ", mean, "
of of, Normans, Nortmann
the the, The, Normans
word ", ", plural
Norman Normant, Normans, Nortmann
? Normant, Normanz, Nortmann

Table 3: Three most relevant context word for each query word

are short, the influence of answer length on the F1/EM score is not obvious. It indicated that both
methods are not good at generating long-length answers.

The F1 score for different question types are shown on the right figure in Fig. 7. We divided all of
the questions into 10 types, including ‘on’, ‘to’, ‘why’, ‘where’, ‘in’, ‘which’, ‘when’, ‘how’, ‘who’,
’what’. The number of data are shown on the corresponding y labels. Both methods get a high F1
score on ‘to’, ‘how’, ‘where’ problem. And The Standard QANet 1 head result has a higher F1 score
for most question types. But for question type of ‘when’, both methods perform bad.

Based on the observations of relationship between performance and questions or answer, both of our
methods perform well on find the relevant words and answering most of questions. But if the length
of correct answer is long or the question is specified in some types, these models provide a low F1
score.
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QANet Light
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(a) F1 score for answers of different lengths
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(b) F1 score for different question types

Figure 7: Average F1 score for answers of different length and questions of different types.
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6 Conclusion

In this project, We implemented QANet architecture to perform machine comprehension task on
SQuAD 2.0 dataset. For the basic implementation (single model), we achieved EM and F1 score of
63.15 and 66.72, respectively. An ensemble of 3 models achieved EM of 64.26 and F1 of 67.60, which
is near SoTA accuracy. An ablation study was conducted to analyze the functionality of important
layers. We also drew some interesting insights form visualization of Q2C and C2Q attentions.In
addition, an accuracy study was conducted over question types and length of answer. We noticed that
the accuracy drops as the length of correct answer increases. We want to look further into the issue in
the future work, and adapt frameworks suitable for processing long text words (e.g. Transformer-XL)
to handle the problem.

Additional information
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The experiments are conducted on the cluster of Stanford Center for Computational Earth & Environ-
mental Siciences (CEES). The provided computational resources are greatly appreciated.

Honor code clarification

In the milestone report, we noted that for the implementation of the baseline model, we referred
to the publicly available code https://github.com/andy840314/QANet-pytorch-. As we
realized it was a violation of honor code from the feedback of the grader, we discarded the entire
code immediately and re-implemented the QANet code based on a Transformer NMT repo https:
//github.com/jadore801120/attention-is-all-you-need-pytorch, which was explictly
approved by the TA on Piazza and a Transformer-XL repo https://github.com/kimiyoung/
transformer-xl. Please refer to our submitted code and our Piazza post for more information.
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