Final Report for CS224N Default Project

Zhihan Jiang Wensi Yin
Stanford University Stanford University
Stanford, CA 94305 Stanford, CA 94305

zhihanj@stanford.edu wsyin@stanford.edu
Abstract

Machine comprehension is gaining popularity over recent years and is fueled by the
creation of many large-scale datasets. The Stanford Question Answering Dataset
(SQuAD) 2.0 dataset [1], which contains both answerable and unanswerable ques-
tions, is especially challenging and high-quality. In this milestone, we present
our neural network model which incorporates ideas from some high-performing
SQuAD or machine reading comprehension models such as BiDAF [2], QANet
[3], DrQA [4] and R-Net [5]. Our model achieves F1 score of 63.66% and EM
score of 60.42% on the test set. The ensemble model achieves F1 score of 64.70%
and EM score of 61.83% on the test set.

1 Introduction

Machine comprehension, or the ability to read the context and answer questions about it, has been a
challenging task, since it requires both understanding about natural language and knowledge about the
world. SQuAD 2.0 [1]] is one of the datasets that leads to a huge advancement in the area of machine
comprehension. It consists of 150,000 questions posted by crowd-workers, each of which is relevant
to a certain passage on Wikipedia. Different from SQuAD 1.0 [6], nearly half of the questions are
unanswerable using the given context. This further enhances the difficulty, since the model must
not only answer questions when possible, but also determine when no answer is supported by the
paragraph and abstain from answering.

In this project, on top of the given baseline, we propose an end-to-end deep learning model which
combines ideas from some of the best performing SQuUAD models. It consists of a multi-level
embedding layer which includes word embedding, character embedding and linguistic feature
embedding, a transformer-like encoder block for embedding encoder layer, a bi-directional attention
layer between the query and context representations and a self-matching-attention layer to refine the
BiDAF attention. We report our results in section 4, and we also provide a thorough error analysis
towards the model performance and suggest several directions for further research.

2 Related work

In this section, we discuss several architectures and attention mechanisms that have been found to
perform well on the question answering task, and have inspired our work.

BiDAF Bi-Directional Attention Flow (BiDAF) [2]] network is a hierarchical multi-stage architecture
for modeling the representations of the context paragraph at different levels of granularity. In
particular, The bi-directional attention layer combines the context-to-question attention and the
question-to-context attention, which boosts the performance on SQuAD dataset. We use the BiDAF
model as our baseline.

QANet QANet [3] proposes a non-recurrent network to speedup the training process but achieve
same level of performance as other recurrent models.



DrQA In the work [4]], extra linguistic features are added to the embedding vector to help converge
and achieve better performance.

R-Net Self-matching attention layer is proposed in [5] to concatenate the representation with the
scaled dot-product attention of context against itself, so that the model can effectively encodes
information from the whole passage.

3 Approach

The baseline model is the provided model in the starter code which is built based on BiDAF [2]. The
baseline model differs from the original BiDAF in that it does not use a character-level embedding
layer. The architecture of our model is shown in Figure[T} and we will cover the details of each layer
in the following sections.
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Figure 1: Model architecture of our model.

3.1 Embedding layer

Our embedding vectors of both the context and the question tokens consist of several parts as
illustrated below:

e Pretrained GloVe vectors: we map each individual word token using the pre-trained GloVE
word vector. The word embedding will not change during the training process.

e Character-based embedding: we also compute the character-level embedding [7] by first
mapping each character of a word token using a character embedding vector, then going
through a convolutional network to form word representation.

e Token symbolic features: following the idea in [4], we construct 2 additional embeddings
using the part-of-speech (POS) and name-entity recognization (NER) of each word. We use
the NLTK package [8] to extract and pre-compute these properties on the original context
and questions.

e Exact match (EM) features: we also use the exact-match feature adopted from [4]], which
simply adds three binary features to the context embedding vector, indicating whether a
token in the context can be exactly matched to one token in the question, either in its original,
lowercase or lemma form. The corresponding position in the question embedding vector is
padded with 0. This feature turns out to be very helpful.



We concatenate all the embedding and features mentioned above, and run them through a highway
layer [9] to generate the final embedding output.

3.2 Embedding encoder layer

For the encoder layer, we adopt the design from QANet [3]. which replaces traditional recurrent
encoder with transformer-like encoder block. As shown in figure[I] one encoder block contains the
following parts:

e One position encoding layer [10]: Given the input, the positional encoding is added which
allows the model to easily learn to attend by relative positions.

PEpos,2i = Sin(pos/loooozi/hidfdim)

PEpos.2i11 = cos(pos/10000%/hid—dim)

o Four depthwise-separable convolution layers [11]: depthwise-separable convolution is
used in consideration of memory efficiency. We use 7 for kernel size and 200 for output
channel.

e One self-attention layer [10]: we use the standard multihead-attention as described in [[10].
The number of heads we use is 8.

e One feed-forward layer: this is simply a fully-connected layer to generate the output of
the encoder layer.

Each of these layer is also accompanied with a layer-normalization layer [12] before it and a stochastic
depth dropout layer [13] after it. The total number of blocks is 1. To make later similarity-based
attention layers more effecitve, we share the weights of embedding encoder between context and
question.

3.3 Attention layer

For the attention layer, we adopt the Bi-directional Attention Flow layer introduced in [2] to combine
the context representation with the question representation. Given context hidden states cy, ..., cny
and question hidden states ¢1, ..., N, we can compute the similarity between context token ¢ and
question token 7, S;;, C2Q attention for context token 4, a; and Q2C attention for question token 4, b;
based on following formula:
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Finally, we concatenate the context hidden state c;, the C2Q attention a; and the Q2C attention b; to
output g; = [¢;; a5 ¢; © ay; ¢; 0 by

3.4 Self-matching attention layer

Inspired by R-Net[5]], we use a self-matching attention layer to match the question-aware context
representation G against itself, so that each context word is aware of the information from the entire
context.

In order to compute the self-matching attention vectors, we first project attention vector G to query
vector Q € RV*? and key vector K € RV %9 gated by ReLU.

Q = ReLU(WoG) K = ReLU(WkG)

Then we compute scaled dot-product attention scores s using query () and key K, and compute self-
attention vector v; based on the score S. While original R-Net implementation use additive attention



here, we find that scaled dot-product attention can avoid heavy computation and also maintain good
performance.
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Finally, we concatenate the original question-aware context representation g; along with new self-
attention vector, and let them go through a bi-directional LSTM layer to form our final self-attended
context representation g;.

S

a; = softmax(St.)

3.5 Modeling layer

Following the BiDAF paper [2], we use two layers of bi-directional LSTM for the modeling layer in
order to refine the sequence of vectors after the self-matching attention layers.

3.6 Output layer

The output layer generates a vector of probabilities with a length equal to the context sentence. We
adopt the same technique as in [2]], which takes as input the attention layer outputs and modeling
layer outputs, then produce ps;qr+ and pepq using following formula

Pstart = 50ftmaz(Wiart[G; M) Pena = softmaz(WenalG; M)

where W;qr+ and W, 4 are trainable parameters and M "is the output of a bidirectional LSTM to
the modeling layer outputs.

3.7 Loss function and prediction methods

The loss function is the sum of negative log-likelihood (NLL) loss for the start and end locations.
At test time, we choose the pair (4, j) of indices that maximizes pstqrt(4) - Pend(j) subjectto i < j
and j — ¢+ 1 < Lyqz, Where Ly, is a hyperparameter which specifies the maximum length of a
predicted answer.

To predict no-answer questions, we follow [14]], in which a OOV token is prepended to the beginning
of each sequence. At prediction time, if pstart(0) - Pena(0) is greater than any predicted answer span,
the model predicts no-answer.

4 Experiments

4.1 Data & evaluation metrics

We use 224n-customized version of SQuAD 2.0 dataset [1]], which is a machine learning comprehen-
sion on Wikipedia articles with more than 100000 both answerable and unanswerable questions. We
split the dataset roughly by 90%, 5% and 5% for train, validation and test set.

To better understand our dataset, we examine the data by plotting the distribution of the context
length, question length, answer length and question types of training dataset (see Figure 2). The
figure shows that the majority number of questions have context length less than 400 and question
length less than 30. Therefore we set maximum length limit for context to be 400 and for question
to be 30, which leads to faster training speed but minimal performance loss. It is also shown in the
figure that "what" question type accounts for the largest proportion in the training dataset and "why"
question type accounts for the smallest proportion.

Our evaluation metrics are F1 score and exact match score. The human performance on this dataset is
89.452 (F1) and 86.381 (EM).
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Figure 2: Statistics of the SQuAD 2.0 training set

4.2 [Experiment details

For our embedding vetor, we use 300-dimensional GloVe pre-trained vectors for word embeddings,
300-dimensional character embedding, 16-dimensional POS embedding, 8-dimensional NER em-
bedding and 3-dimensional EM features. For our charCNN, we use a convolution kernel size of
5. Hidden size in our model is set to 100. We train our model in a batch size of 64 on a single
NVIDIA GPU (P100) for 15 epochs using the following parameters: learning rate: 0.5, dropout
layer probability: 0.2. We use Adadelta [15] optimizer, and we also maintain moving averages of
all the trainable parameters with an exponential decay rate of 0.999. To avoid gradient exploding
problems in our LSTM layers, we employ gradient clipping with a maximum gradient norm of 5. We
early-stop the model and save the checkpoint for the model that achieves the best results, and the
training process takes around 6 hours to complete 15 epochs.

To further improve the model performance, we build an ensemble model using 6 models of the same
architecture but different random seeds for initialization. We calculate the average of the probabilities
Dstart and penq associated with each position from the 6 models, and compute the start and end
positions accordingly. This boosts our F1 score by 1.04 and EM by 1.39 on the test set. We also try
majority vote, but the performance is not as good.

4.3 Results and effects of components

We submit our result on the test non-PCE leaderboard. A single model of our implementation achieves
F1 score of 63.66 and EM score of 60.42 on the test set. An ensemble of six models with different
initialization achieves F1 score of 64.70 and EM score of 61.83 on the test set.

The cumulative results of our model on dev set can be found in Table 1. We can see that the char
embedding, QANet encoder blocks, exact match feature and self-matching attention are very helpful
to our model, while POS/NER features alone are of little help. Intuitively, character embedding is
helpful because it will let our model learn those tokens without pretrained word embeddings. Exact
match feature is also very helpful because it "directs" our model to the positions in the context where
question tokens are shown, thus highly likely to be the answer span. POS/NER features + exact
match work while POS/NER by themselves don’t work might be because POS/NER will help the



model figure out which exact match will be helpful (the fact that words like "is", "the", etc. in context
might not be very useful). For the QANet encoder block part, we capture both local interaction and
global interaction between pair of words within context and question while the gradient flows more
smoothly. The self-macthing attention layer also helps the model fuse relevant information from the
entire context into each context word thus gaining deeper understanding and generating better answer.

| Model | F1 | EM |
Baseline BiDAF (w/o char emb) | 60.61 | 57.52
Add char-emb 62.66 | 59.35
Add POS/NER features 62.78 | 59.10
Add QANet Encoder block 63.90 | 60.28
Add exact match (EM) feature 65.44 | 62.31
Add self-matching attention 66.88 | 63.75
Ensemble 68.18 | 65.35

Table 1: Cumulative model results on dev set

Also, it’s worth mentioning that after adding exact match feature into our model, the training process
is significantly accelerated. Before adding it, it approximately took 20 epochs to achieve the best
performing model, while it only took around 13 epochs to achieve the best performing model with
the EM feature. This means small but proper feature engineering will help the training process of our
model. After we add self-matching attention layer, the training process is further accelerated and now
it takes around 10 epochs to achieve the best performing model.

5 Analysis

5.1 CQuantitative error analysis

We perform error analysis for our model on dev set based on the question type and answer length. Fig-
ure 3 shows the F1/EM/AvNA scores for different question types and Figure 4 shows the FI/EM/AvNA
scores for different context/question/answer lengths.

For the question type breakdown, it can be seen from Figure 3 that AvNA scores of different question
types are similar, which means question type doesn’t affect much the model performance of this
pseudo binary classification task. For the EM/F1 score, we notice that our model is better at answering
"who", "when" and "where" questions, even though questions with these question types only make
up 20% of training set. That’s probably because these kind of questions are straightforward. On the
contrary, our model performs poorly on "why" question type. This could be explained by the fact that
"why" question type requires a deeper level of understanding, as the relationship between context and
question is complicated and requires logical reasoning. Also, there is only 1.5% "why" questions in
the training set, which makes it even harder for our model to learn from experience.

For the context/question/answer length breakdown, we find that context length and question length
do not have significant influence on our model performance. However, the model performance drops
as the answer length becomes longer. This might be due to queries with long answers are often more
complicated and require the model to characterize a longer term of dependency.

5.2 Qualitative error analysis

We also provide some concrete examples about how our model performs. In Figure[5] we see that
the model is allured to pay attention to the content before "prize", but fails to link "the problem" (in
the question) to "The P versus NP problem" (in the context), thus giving the wrong answer. This
error might be due to the exact match (EM) feature, which focuses on the word that both occurs in
the context and the question. In this case, the model could easily step in a trap that is deliberately
designed by the human, where some of the question words match a certain part of the context, while
the rest is irrelevant which makes the question unanswerable.
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Figure 3: F1, EM and AvNA score of different question types
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Figure 4: F1, EM and AvNA score w.r.t. context(left)/question(middle)/answer(right) length

Context: The question of whether P equals NP is one of the most important open questions in theoretical computer
science because of the wide implications of a solution. If the answer is yes, many important problems can be shown to
have more efficient solutions ... The P versus NP problem is one of the Millennium Prize Problems proposed by the Clay
Mathematics Institute. There is a US $1,000,000 prize for resolving the problem.

Question: What was the prize for finding a solution to P=NP at the Alpha Prize Problems?

Answer:

Predict: US $1,000,000

Figure 5: Wrong prediction due to insufficient understanding of connections between words.

In Figure[6] the prediction result "Bannow Bay" is a place instead of a "country" as asked in the
question. Since the the word "country" never appears in the context, the model has to infer that 1)
"Bannow Bay" is not a country name, 2) "Irish culture" is a part of "Ireland", 3) "Bannow Bay" is a
part of "Ireland". This could seem easy to the human, but the machine struggles at understanding the
logical reasoning behind it, and chooses to predict the "Bannow Bay" without "thinking too much".

Context: The Normans had a profound effect on Irish culture and history after their invasion at Bannow Bay in 1169.
Initially the Normans maintained a distinct culture and ethnicity. Yet, with time, they came to be subsumed into Irish
culture to the point that it has been said that they became "more Irish than the Irish themselves.” The Normans settled
mostly in an area in the east of Ireland, later known as the Pale, and also built many fine castles and settlements,
including Trim Castle and Dublin Castle. Both cultures intermixed, borrowing from each other's language, culture...
Question: What country did the Normans invade in 11697

Answer: Ireland

Prediction: Bannow Bay

Figure 6: Wrong prediction due to lack of word interpretation and logic reasoning



5.3 Attention error analysis

We also plot the attention similarity matrix of the BiDAF layer for example showed in Figure 5. It
can be seen that the model tries hard to find the connection of word "prize" in question to each word
in context, but fails to link "the problem" (in the question) to "The P versus NP problem" (in the
context), thus giving the wrong answer.
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Figure 7: The BiDAF attention heatmap of example in figure 5.

5.4 Potential improvement

Since both quantitative error analysis and qualitative error analysis point to the problem - lacking
the ability to understand sophisticated logic, a potential improvement for our model would be to use
multi-turn reasoning model [[16] to revisit the context, refine the answer and reason beyond the basic
semantics meanings of the sentence.

6 Conclusion

In this project, we propose a model architecture to perform machine reading comprehension on
SQuAD 2.0 dataset. Our approach combines ideas from some of the state-of-the-art models such
as multiple-level embeddings, transformer-like encoder block, bi-directional attention flow and self-
matching attention. Our ensemble model achieves results of 64.70% F1 score and 61.83% EM score
on hidden test set.

Based on the error analysis results, we propose several directions for improvement. Building a more
complicated attention layer might help our model pay attention to the correct answer span. Using
multi-turn iterative reasoning method should also help our model improve the ability of logical
reasoning as human. Due to non-PCE division constraint we are not allowed to use pre-trained
embeddings, but pre-trained embeddings like BERT would definitely boost the performance of our
model.
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