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Abstract

Question answering, like many other prominent tasks of NLP, has recently expe-
rienced a significant progress on established performance measures through the
introduction of pre-trained language representation models. At the same time, the
concept of multitask learning which tries to integrate different fields of NLP has
gained considerable momentum. In this paper we combine both lines of research
and show that adding an auxiliary tasks to a BERT-based question answering system
can improve the performance for a single given task. We discuss the implications
of our findings for this specific task as well as for multitask learning approaches in
general.

1 Introduction

Question answering is one of the most relevant NLP tasks for assessing the reading comprehension
ability of an algorithm, and the Stanford Question Answering Dataset (SQuAD) has become the
standard benchmark for this assessment: Given a paragraph and a question concerning that paragraph,
the request is to predict the correct answer to this question, which is a span of text directly from the
paragraph. Since its launch in June 2016 (Rajpurkar et al. (2016)[1]) the perfomance on the SQuAD
1.1 leaderboard has seen steady improvements in the F1 score up to the human performance level of
91.221 and this level was finally surpassed in October 2018 by the pretrained language model BERT
(Devlin et al. (2018)[2]). However, no variant of BERT has yet managed to do so for SQuAD 2.0
which also contains questions that can not be answered (F1 human level performance of 89.452).
This suggests that these models have not yet learned sufficiently well to distinguish between certain
question types and that a "one task fits it all"-approach might not be optimal. In the following we
show that the addition of a classification task for the answer type (answerable or not) indeed enhances
the performance of a BERT-based model with a single downstream task of answer prediction.

2 Related Work

As pointed out in Ruder (2017)[3], charging a model with multiple related tasks boosts performance
under certain circumstances. This effect may be attributed to the fact that multitasking forces the
internal representations to focus attention on parts of the input that might otherwise be ignored;
alternatively, the multiple tasks can be viewed as a regularization mechanism (quite obviously so if
the tasks are reflected in a combined loss function) which prevents the model from overfitting and
increases its generalization capabilities. Recent multitask learning approaches to NLP have been
proposed e.g. by Hashimoto et al. (2017)[4]and McCann et al. (2018)[5]. However, while these
papers present models that try to simultaneously solve several NLP tasks sufficiently well at the same
time, our approach considers the addition of tasks that are of auxiliary nature only with regard to the
main task. Examples where such an introduction of auxiliary tasks is beneficial can be found in Yu
et al. (2016)[6] for sentiment classification or Cheng et al. (2015)[7] for name error detection. In
the context of question answering the prime candidate for an auxiliary task, as mentioned above, is
question type classification (answerable / not answerable).



Figure 1: Model architecture for BERT with a question answering downstream task

Previous work in that direction includes e.g. Liu et al. (2018)[8] who add the output of a one-layer
binary classifier with equal weight to the loss function and Hu et al. (2018)[9] who train a classifier to
verify plausible answers to impossible questions. In both cases the performance on SQuAD 2.0 could
be increased (by F1 score points of 0.5 and 1.5 respectively). However, as pointed out by Hu et al.
(2018)[9] even with the addition of the classifier to their model more than 20 percent of impossible
answers still get misclassified leading them to conclude that the main performance bottleneck lies in
no-answer detection instead of answer extraction.

3 Approach

3.1 Baseline

For a considerable time recurrent neural networks have been the most widely used and most succesful
model class for question answering and other NLP tasks. However, a structural limitation of these
models in an encoder-decoder setting is that the encoder compresses the whole input sequence into
one fixed length vector which serves as the context for the decoder while generating its output.
This potential problem was overcome with the introduction of attention mechanisms (Bahdanau et
al. (2015)[10], Luong et al. (2015)[11]) which allow to adaptively capture the information from
all hidden states of the encoder for the calculation of the context vector. In particular the BiDAF-
attention model (Seo et al. (2017)[12]), where attention flows bidirectionally (from query to context
and from context to query) and the resulting vectors for each sequence step are passed as query-aware
representations of context words to a LSTM modelling layer, had been able to achieve state-of-the-art
performance at the time of submission (with F1 score of 77,3 (single model) and 81,1 (ensemble) as
of 6 Dec 2016 on SQuAD 1.1).

We use the BiDAF model, as provided to us with the starter code, for the baseline.

3.2 BERT

With the introduction of the transformer by Vaswani et al. (2017)[13] the attention mechanism
changed its role from being a layer within a RNN-based architecture to replacing the RNN altogether
in both the encoder and decoder. While this step was initially motivated by the goal to achieve a
similar performance as RNNs with much greater computational efficiency, the transformer recently
became the building block for a new way of modelling representations that enables significant gains
in performance on a broad range of tasks. Pre-trained models like ELMo (Peters et al., 2017)[14],
OpenAI GPT (Radford et al., 2018)[15] and BERT (Devlin et al. 2018)[2] which make the embedding
of a word sensitive to the context in which the word is used, can serve as powerful entry points for
different down-stream purposes.

As illustrated in Figure 1, BERT provides a relatively straight-forward platform for fine-tuning to a
given downstream-task like question answering. In their original paper, Devlin et al. (2018)[2]
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Figure 2: Model architectures from left to right for a) BERT for question answering with question
type classifier b) Model a) with additional classification feature c) BERT for question answering with
plausible answer prediction

demonstrate this by leveraging on their threefold embedding of the input sequences: each token of a
question and its paragraph is represented as the sum of its word embedding, its positional embedding
and its segment embedding where the latter indicates whether a token belongs to the question or to the
paragraph. This way both the question and the paragraph can be fed into the system as one combined
sequence. These representations are then encoded by several subsequent transformer blocks that yield
a final representation for every token of the combined input sequence. Fine-tuning this "standard"
use of BERT to the task of predicting an answer span within the paragraph is realized by learning
two additional vectors: a start vector S and an end vector E with S,E ∈ IRH and H denoting the
hidden size. These additional learned parameters are then used to compute the probability for any
token, represented by it’s final hidden state Ti, to be the start or the end word of the answer span.
Concretely, these probability distributions over all tokens in the paragraph are obtained by applying
the softmax function to the dot product of STi and ETi:

Pi,X =
eXTi∑
j e

XTj
, X ∈ {S,E}, ∀ Ti ∈ paragraph (1)

With these relatively small adjustments, BERT can be charged with the task of question answering
and achieve excellent results. For the large version of their model trained on an augmented dataset
Devlin et al. (2018)[2] report scores on the SQuAD 2.0 of 85.1 and 91.8 for EM and F1 respectively.

Like currently all top ranking entries on the SQuAD leaderboard we incorporate BERT and its
pre-trained weights as a central building block for our model and a first step to improve on
the baseline. To this aim we use an op-for-op reimplementation in PyTorch from huggingface
(https://github.com/huggingface/pytorch-pretrained-BERT).

3.3 Multitask setting

As mentioned above, our multitask approach focuses on question type classification as an auxiliary
task. To this aim we augment the training data for the BERT model with labels (0 / 1) for all questions
(possible / impossible). As illustrated in Figure 2 a) these labels are then used to train a binary
classifier which takes as input the same representations from BERT as the answer span predictor. For
this purpose the second and third dimension of the BERT output sequences are concatenated and
subsequently fed into a two layer Feed Forward network with ReLU activation. The layers have
hidden sizes of (maximum sequence length * hidden size BERT × 64) and (64 × 1) respectively.
The output of the network is passed through the sigmoid function and the resulting logits are used to
compute the binary cross entropy. This individual loss for the classification task is finally summed up
with the respective cross entropy losses for start / end prediction respectively. We choose a scaling
factor of 7 for the classification loss to ensure that all three losses have about the similar size at the
start of training.
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We use this BERT multitask model to asses the effect of the auxiliary task as well as to explore
alternative designs or variants of it. Among those variants we consider two in our following discussion:
BERT with additional feature classification and BERT with additional plausible answer prediction.
In the first one (Figure 2 b)) we try to make use of the high accuracy of the question type predictor
and feed it’s output as an additional feature to the answer span predictor. In the second model (Figure
2 c)) we introduce a second answer span predictor which is trained to return start / end positions of
"plausible" answers given in the training data. In this way, we hope the model will have a deeper
understanding of the difference between answerable and unanswerable questions.

4 Experiments

4.1 Data

The dataset we used is the SQuAD 2.0 dataset tailored for CS224N. The train, dev and test splits
are pre-defined. More specifically, the train dataset has 129914 examples; the dev dataset has 6078
examples; and the test dataset has 5921 examples.

4.2 Evaluation method and experimental details

All models in our project are evaluated via F1 and EM scores that are averaged across the whole
dataset. In addition, we also record the intermediate losses for every training step as a way to monitor
training progress. This help us better understand whether the model performs properly. Confusion
matrix on unanswerable classification is computed for each experiment to further benchmark the
mutitask classification performance.

Table 1: Experiment Configuration Parameters

Models Details
BiDAF Default

BERT_base batch_size=6, epoch=2, learning_rate=3e−5, max_seq_len=384, max_query_len=64

BERT_base + binary_classifier batch_size=6, epoch=2, learning_rate=3e−5, max_seq_len=384, max_query_len=64

batch_size=10, epoch=2, learning_rate=3e−5, max_seq_len=500, max_query_len=96

BERT_large + binary_classifier batch_size=4, epoch=2, learning_rate=3e−5, max_seq_len=384, max_query_len=64

BERT_base + binary_classifier + classification feature batch_size=6, epoch=2, learning_rate=3e−5, max_seq_len=384, max_query_len=64

BERT_base + plausible_answer batch_size=12, epoch=2, learning_rate=3e−5, max_seq_len=384, max_query_len=64

Experiment details are summaries in Table 1. More specifically, we start by adding additional modules
to BERT_base, then move to BERT_large with the best performed module and proceed to fine-tuning
hyper-parameters such as epochs, batch_size and max_seq_len. BERT_base model has 12-layer,
768-hidden, 12-heads and 110M parameters. BERT_large modelhas 24-layer, 1024-hidden, 16-heads
and 340M parameters.

4.3 Results

Table 2: Experiment Results

EM F1

BiDAF 57.491 61.097
BERT_base 73.017 76.086
BERT_base + binary_classifier 73.593 76.538
BERT_large + binary_classifier 74.038 77.412
BERT_base + binary_classifier + classification feature 71.422 74.833
BERT_base + plausible_answer 69.809 72.794

The table above shows the EM and F1 scores in the PCE leaderboard.
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For BiDAF model we achieve scores for EM of 57.419 and F1 of 61.097 respectively. These results
are below the ones of the "BiDAF-No-Answer (single model)" (59.174 and 62.093 respectively)
submission to the SQuAD 2.0 leader board mainly because unlike in the original BiDAF model our
starter code doesn’t use character-level embeddings in addition to word-level embeddings.
The BERT_base model has significant improvements over the BiDAF on both EM and F1 scores,
which is expected as BERT is a much powerful language model.
The BERT_base + binary_classifier achieves a slightly better score than plain BERT_base model.
This is expected because the additional classification task acts like a regularization mechanism that
prevents the model from over-fitting. Moreover, since the model emphasises even more on punishing
incorrect prediction of impossible questions, the model addresses one of the weak point of BERT
model, thus has a improved score.
The BERT_large + binary_classifier scores the highest among all the models. This is expected due to
that fact that BERT_large has more than twice of the parameters than BERT_basic, implying much
greater learning potentials. In fact we expected the score improvement to be even greater. One
potential explanation for the limited gain could be that the BERT_large model was not trained long
enough to reach its full potential.
The BERT_large + binary_classifier + classification feature variant performed slightly worse than the
same model without added feature. We interpret this result this way that adding this feature to the
representations from BERT did harm rather than help in predicting the correct answer span.
The result of BERT_base + plausible_answer is much lower than expected.We presume that training
an additional task for prediction plausible answers can help the model develop a more robust
structure to distinguish between answerable and unanswerable questions. The low score indicates
some overlooked conflicts in designing the model.

5 Analysis

As we are trying to focus on improving the learning’s ability to predict on the answer type task.
Analysis on the performance about how well our classification works is proceeding along with our
experiments.

The tables 3 to 6 compare the confusion matrices of predictions on unanswerable questions for the
baseline model, the BERT model and the 2 of our multitask models respectively.

Table 3: BiDAF on the Unanswerable

Pred
Truth False∗ True∗

False 2912 1490
True 472 1678

Table 4: BERT_base on the Unanswerable

Pred
Truth False True

False 2541 867
True 369 2301

Table 5: BERT_base + binary_classifier on the
Unanswerable

Pred
Truth False True

False 2312 617
True 598 2551

Table 6: BERT_large + binary_classifier on the
Unanswerable

Pred
Truth False True

False 2544 763
True 366 2405
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Table 7: BERT_base + binary_classifier + clas-
sification_feature on the Unanswerable

Pred
Truth False True

False 2364 698
True 546 2470

Table 8: BERT_base + plausible_answer on the
Unanswerable

Pred
Truth False True

False 2555 698
True 355 2094

∗In the 6 tables above, ’True’ represents the unanswerable attribute and ’False’ the answerable
attribute.

The bar graph below presents the precision, recall and F1 on the question type prediction. We can see
that adding a classification task or configure the Bert model to large can both improve performance
on the whole. Particularly for the BERT_large model plus a binary classifier gets the best F1 outcome.
However, in the experiment of when we were trying to take plausible answers in consideration, the
prediction under-performed.

Figure 3: Precision, Recall and F1 on Unanswerable Prediction

While it sounds "plausible" for the model to learn plausible answers as a separate task, the result
is short from expectation. One possible explanation is that predicting the plausible answer span
somewhat contradicts predicting the correct answer span as the model is ask to predict both incorrect
and correct answer at the same time. Additional mechanisms should be added to prevent the model
from mixing the two tasks. Another legit explanation is that maybe learning from plausible answers
is orthogonal to the main learning goal, so it does not contribute to the overall performance; instead
the task just consumes learning power.
Another interesting finding is that increasing maximum sequence length and maximum query length
in the model configuration has a negative effect on the score. We increased the max_query_len and
max_seq_len for BERT_base + binary_classification model and both EM and F1 score (71.273,
74.386 respectively) decreased. Intuitively, a model that receives only partial question should
under-perform compared to a model receiving the entire question. Based on the analysis, the average
question length is 60 with the maximum question length being over 180. Our best performing model
sets the max_query_len to be 64, which is barely over the average question length. One conjecture is
that most of the questions have important information towards the beginning of the sentence, thus
even with partial questions, the context is mostly preserved. On the other hand, some questions
might be lengthy and wordy, which makes a negative impact on model’s understanding of question
language models.
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6 Conclusion

Our approach on multitask learning shows that the addition of a classification task for the answer
type enhances the performance of a BERT-based model for question answering. Starting from there
we see potential for further progress in finetuning the classification task as well as making use of it’s
output. Along the line of our model variants described above we could envisage model architectures
that will further leverage the potential of combining BERT with multitask learning.
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