Natural Language Processing
with Deep Learning

CS224N/Ling284

Christopher Manning

Lecture 4: Backpropagation and
computation graphs

Lecture Plan

Lecture 4: Backpropagation and computation graphs

1. Matrix gradients for our simple neural net and some tips [15 mins]
2. Computation graphs and backpropagation [40 mins]

3. Stuff you should know [15 mins]

a. Regularization to prevent overfitting
b. Vectorization

c. Nonlinearities

d. Initialization

e. Optimizers

f.

Learning rates

1. Derivative wrt a weight matrix

* Let’s look carefully at computing s
9)%4

* Using the chain rule again:

ﬁ_ 0s Oh 0z
OW Oh 0z OW

s=u'h °
h = f(Z) 0000 0000
Zz=Wx+Db

3 X =[Xmuseums Xin XPparis Xare Xamazing]

Deriving gradients for backprop

e For this function (following on from last time):

” 522 5 wxtb
aw “aw “aw

e Let’s consider the derivative
of a single weight W;
* W, only contributes to z

* For example: W, is only
used to compute z, not z,

0Zi - 0
oW;; oW

= W:x,, = x;
OWUZkl ik*k]

Deriving gradients for backprop

* So for derivative of single W :

05
—5x]

Wi; _rl_'_l\

Error signal Local gradient
from above signal

e We want gradient for full W — but each case is the same
e QOverall answer: Outer product:
0s
_ (ST ZUT
oW
nxm| [nx1|[1xm]

Deriving gradients: Tips

Tip 1: Carefully define your variables and keep track of their
dimensionality!

Tip 2: Chain rule! If y = flu) and u = g(x), i.e., y = f(g(x)), then:
dy Jdyadu
dx Ouox

Keep straight what variables feed into what computations

Tip 3: For the top softmax part of a model: First consider the
derivative wrt f. when ¢ = y (the correct class), then consider
derivative wrt f. when ¢ # y (all the incorrect classes)

Tip 4: Work out element-wise partial derivatives if you're getting
confused by matrix calculus!

Tip 5: Use Shape Convention. Note: The error message 8 that
arrives at a hidden layer has the same dimensionality as that
hidden layer

Deriving gradients wrt words for window model

 The gradient that arrives at and updates the word vectors can
simply be split up for each word vector:

- LetV,J=W!'§=96,

° With Xwindow =[Xmuseums Xin Xparis Xare Xamazing]

e We have - 7

xmuseums

8

n

5window — TParis

xare

14444

Lamazing

Updating word gradients in window model

e This will push word vectors around so that they will (in
principle) be more helpful in determining named entities.

* For example, the model can learn that seeing x;, as the word
just before the center word is indicative for the center word to
be a location

A pitfall when retraining word vectors

e Setting: We are training a logistic regression classification model
for movie review sentiment using single words.

e Inthe training data we have “TV” and “telly”
* Inthe testing data we have “television”
e The pre-trained word vectors have all three similar:

TV
telly

television

° Question: What happens when we update the word vectors?

A pitfall when retraining word vectors

e Question: What happens when we update the word vectors?
* Answer:

* Those words that are in the training data move around
e “TV” and “telly”

* Words not in the training data stay where they were

e “television”

telly

TV

This can be bad!

television

10

So what should | do?

e Question: Should | use available “pre-trained” word vectors
Answer:
* Almost always, yes!

* They are trained on a huge amount of data, and so they will know
about words not in your training data and will know more about
words that are in your training data

e Have 100s of millions of words of data? Okay to start random
e Question: Should | update (“fine tune”) my own word vectors?

e Answer:

* If you only have a small training data set, don’t train the word
vectors

 If you have have a large dataset, it probably will work better to
train = update = fine-tune word vectors to the task

11

Backpropagation

We've almost shown you backpropagation

It’s taking derivatives and using the (generalized)
chain rule

Other trick: we re-use derivatives computed for higher
layers in computing derivatives for lower layers so as to
minimize computation

12

2. Computation Graphs and Backpropagation

T
* We represent our neural net s=u h
equations as a graph h=f(z)
* Source nodes: inputs z2=Wx+0b
* Interior nodes: operations x (input)

\ 4

v o a f O
PO
%% b U

13

Computation Graphs and Backpropagation

T
* We represent our neural net s=u h
equations as a graph h=f(z)
* Source nodes: inputs z2=Wx+0b
* Interior nodes: operations x (input)

* Edges pass along result of the
operation

w_)(PW:E)@ Z @ h)@ S |
144 b u

14

Computation Graphs and Backpropagation

. T
* Representing our neural net s=u h
equations as a graph = {(z)

operation

w_(PWm)@Z@h)
%4 b

15

\ 4

Backpropagation

* Go backwards along edges s=u'h
* Pass along gradients h = f(z)
z2=Wx+0b
x (input)

r_ Wax Z{f\/h>.i>

\ 4

Backpropagation: Single Node

* Node receives an “upstream gradient”

* Goal is to pass on the correct h =

“downstream gradient”

Z h

N
A

\ 4

88 0S
0z Oh
17 Downstream Upstream

gradient gradient

Backpropagation: Single Node

* Each node has a local gradient

 The gradient of it’s output with h

respect to it’s input

Z h

N
A

\ 4

88 83
0z oh
18 Downstream Local Upstream

gradient gradient gradient

Backpropagation: Single Node

* Each node has a local gradient

* The gradient of it’s output with h = f(z)

respect to it’s input

h

\ 4

pd
~

Chain [ds 0Os oh) 0s

rule! 192 = Oh Oz oh

1 Downstream Local Upstream
gradient gradient gradient

Backpropagation: Single Node

* Each node has a local gradient

* The gradient of it’s output with h = f(z)
respect to it’s input

* [downstream gradient] = [upstream gradient] x [local gradient]

Z h

\ 4

< <€

0s 0s Oh ds
0z Oh 0z oh
20 Downstream Local Upstream

gradient gradient gradient

Backpropagation: Single Node

21

What about nodes with multiple inputs?

|44

z=Wax

Backpropagation: Single Node

* Multiple inputs - multiple local gradients

m

z=Wx

S <
- - >
oW 0z oW
<
T 0s
/ 0z
Js 0s 0z
ox 0z Ox
Downstream Local Upstream
22 gradients gradients gradient

An Example f(z,y,2z) = (x + y) max(y,)
r=1y=2,2=0

23

An Example f(z,y,2z) = (x + y) max(y,)
r=1,y=2,2=0

Forward prop steps

a=+Y
b = max(y, 2)
f=ab

X

y * >

Z

24

An Example f(z,y,2z) = (x + y) max(y,)
r=1,y=2,2=0

Forward prop steps
a=x+tYy
b = max(y, z)

f=ab

25

An Example f(z,y,2z) = (x + y) max(y,)
r=1,y=2,2=0

Forward prop steps Local gradients
da da
b = max(y, z)

f=ab

26

An Example f(z,y,2z) = (x + y) max(y,)
r=1,y=2,2=0

Forward prop steps Local gradients
da da
@ T+ Yy Ox oy
b = max(y, z b _ 1 P _
(y7) ay—l(y>z)—1 82_1(Z>y>_0
f=ab

X

27

An Example

Forward prop steps

a=+Y
b = max(y, 2)
f =ab

f(il?,y,Z) — (:Ij‘ + y) maX(y7Z)

r=1y=2,2=0

X

28

Local gradients

da da

ox oy

0b ob

Z7 _ i | —
9y 1(y > z) 5, — 1z>y)=0

An Example

Forward prop steps

a=+Y
b = max(y, 2)
f =ab

f(ll?,y,Z) — (Qj + y) maX(y7Z)

r=1y=2,2=0

X

29

Local gradients

da da

ox oy

0b ob

Z7 _ i | —
9y 1(y > z) 5, — 1z>y)=0

An Example

Forward prop steps
a=x+tYy
b = max(y, z)

f=ab

r=1,y=2,2=0

f(x,y,2) = (v +y) max(y, z)

Local gradients

30

da da
— =1 — =1
Ox oy
ob ob
af af
6

1*3 =3

upstream * local = downstream

An Example

Forward prop steps

a=+Y
b = max(y, 2)
f=ab

T 1

r=1,y=2,2=0

f(x,y,2) = (v +y) max(y, z)

Local gradients

da da
— =1 — =1
Ox oy
ob ob
af ar
6

upstream * local = downstream

An Example

Forward prop steps

r=1,y=2,2=0

f(x,y,2) = (v +y) max(y, z)

Local gradients

a=x+tYy
b = max(y, z)
f=ab
T 1
Y
3
. R

da da
— =1 — =1
Ox oy
ob ob
af af
6

upstream * local = downstream

An Example

Forward prop steps

f(z,y,2z) = (x + y) max(y,)

r=1y=2,2=0

a=x+Y
b = max(y, z)
f =ab

af

or X

of _ _

gy =3+2="5

of Y

- =0

33

OO0 W/N N\N N -

Local gradients

da da

i It |

ox oy

ob ob

— p— e :] p—
9y 1(y>z2)=1 3, (z>y)=0
of of

L _p=9 L 4=

da b ob a=3

Gradients sum at outward branches

A4

N

34

Gradients sum at outward branches

"'\
a=T+Y
b=max(y,z) Jdf dfda Of 0b
f=ab Oy Odady Obdy

35

Node Intuitions f(z,y,2) = (x + y) max(y, 2)
r=1,y=2,2=0

* + “distributes” the upstream gradient

1
'/I; 2
3
2 2
2 6
y k >
2 2 1
0
Z @

36

Node Intuitions f(z,y,2) = (x + y) max(y, 2)
r=1,y=2,2=0

* + “distributes” the upstream gradient to each summand

* max “routes” the upstream gradient

I W/N

37

Node Intuitions f(z,y,2) = (x + y) max(y, 2)
r=1,y=2,2=0

* + “distributes” the upstream gradient
* max “routes” the upstream gradient

e * “switches” the upstream gradient

38

Efficiency: compute all gradients at once

* Incorrect way of doing backprop: s=u'h
* First compute % h = f(Z)
z=Wx+b
x (input)

V

T * (@ \‘U

39 o0b

Efficiency: compute all gradients at once

: T
* Incorrect way of doing backprop: s=u h
* First compute % h = f(Z)
Then independently compute 3—‘;/ z=Wx+b
* Duplicated computation! x (input)
X * [+ f > 0 f——
Wé’s b (98 U

40 oW ob

Efficiency: compute all gradients at once

T
 Correct way: s=u"h
* Compute all the gradients at once h = f(z)
- Analogous to using & when we z=Wx+b
computed gradients by hand T (input)
T —(* (+ Fr—(s —
W os b 0s u

a1 91 %% o0b

Back-Prop in General Computation Graph

1. Fprop: visit nodes in topological sort order
Single scalar output < - Compute value of node given predecessors
2. Bprop:
- initialize output gradient =1
- visit nodes in reverse order:
Compute gradient wrt each node using
gradient wrt successors
{y1, y2, ... yn} = successors of &

0z Oy,
Z 0y; Ox

Done correctly, big O() complexity of fprop and
bprop is the same

see In general our nets have regular layer-structure

” and so we can use matrices and Jacobians...

Automatic Differentiation

* The gradient computation can be

automatically inferred from the
;‘ symbolic expression of the fprop

Each node type needs to know how
to compute its output and how to
compute the gradient wrt its inputs
given the gradient wrt its output

* Modern DL frameworks (Tensorflow,

V'~. PyTorch, etc.) do backpropagation
kf for you but mainly leave layer/node
“"e'é’ writer to hand-calculate the local
derivative

43

Backprop Implementations

class ComputationalGraph(object):
Foas
def forward(inputs):
1. [pass inputs to input gates...]
2. forward the computational graph:
for gate in self.graph.nodes topologically sorted():
gate.forward()
return loss # the final gate in the graph outputs the loss
def backward():
for gate in reversed(self.graph.nodes topologically sorted()):
gate.backward() # little piece of backprop (chain rule applied)

return inputs gradients

44

Implementation:

y
(X,y,z are scalars)

45

forward/backward API

class MultiplyGate(object):
def forward(x,y):
zZ = X%y
return z

def backward(dz):

Fadx = ... #tOd‘(\
dy = ... #todo

return [dx, dy]

oL
0z

N

OL
Ox

Implementation: forward/backward API

class MultiplyGate(object):
X def forward(x,y):
zZ = X*y
self.x = x # must keep these around!
self.y =y
return z

)/ def backward(dz):

(x,y,z are scalars) Fp g ——pr

dy = self.x * dz # [dz/dy * dL/dz]
return [dx, dy]

46

Gradient checking: Numeric Gradient

flx+h)— flz—h)
2h

e Forsmall h(=1le-4), f'(z)~
* Easy toimplement correctly

* But approximate and very slow:

* Have to recompute f for every parameter of our model

* Useful for checking your implementation

* In the old days when we hand-wrote everything, it was key
to do this everywhere.

* Now much less needed, when throwing together layers
47

Summary

48

We’'ve mastered the core technology of neural nets!!!

Backpropagation: recursively apply the chain rule
along computation graph

* [downstream gradient] = [upstream gradient] x [local gradient]

Forward pass: compute results of operations and save
intermediate values

Backward pass: apply chain rule to compute gradients

Why learn all these details about gradients?

e Modern deep learning frameworks compute gradients for you

e But why take a class on compilers or systems when they are
implemented for you?

* Understanding what is going on under the hood is useful!

e Backpropagation doesn’t always work perfectly.

* Understanding why is crucial for debugging and improving
models

* See Karpathy article (in syllabus):

https://medium.com/@karpathy/yes-you-should-understand-
backprop-e2f06eab496b

* Example in future lecture: exploding and vanishing gradients
49

3. We have models with many params! Regularization!

e Really a full loss function in practice includes regularization over
all parameters 0, e.g., L2 regularization: /

1 elvi 5
J(0) = NZ—log (ZC) +>\Zk:9k

e Regularization (largely) prevents overfitting when we have a lot
of features (or later a very powerful/deep model, ++)

A

overfitting

>
50 model power

“Vectorization”

 E.g., looping over word vectors versus concatenating
them all into one large matrix and then multiplying
the softmax weights with that matrix

from numpy import random

N = 500 # number of windows to classify
d = 300 # dimensionality of each window
C = 5 # number of classes

W = random.rand(C,d)

wordvectors list = [random.rand(d,l) for i in range(N)]
wordvectors one matrix = random.rand(d,N)

ttimeit [W.dot(wordvectors list[i]) for i in range(N)]
$timeit W.dot(wordvectors one matrix)

1000 loops, best of 3: 639 us per loop
10000 loops, best of 3: 53.8 us per loop

51

“Vectorization”

from numpy import randon

N = 500 # number of windows to classify
d = 300 # dimensionality of each window
C = 5 # number of classes

W = random.rand(C,d)

wordvectors list = [random.rand(d,l) for i in range(N)]
wordvectors one matrix = random.rand(d,N)

ttimeit [W.dot(wordvectors list[i]) for i in range(N)]
ttimeit W.dot(wordvectors one matrix)

 The (10x) faster method is using a C x N matrix
* Always try to use vectors and matrices rather than for loops!
* You should speed-test your code a lot too!!

e tl:dr: Matrices are awesome!!!

52

Non-linearities: The starting points

logistic (“sigmoid”) tanh hard tanh
. 1 pZ __ p 2 -1 ifx<-1
f(:’) = 1 exp(—:-:-)' f(:) = t.&nh(z-) = Cz C_zn HardTanh(x) = { x if —l<=x<=1
' e te 1 ifx>1

tnnh huncbon tnnh hnction

1 - 1
o8
04’
0:5 g o
04
0

tanh is just a rescaled and shifted sigmoid (2 X as steep, [-1,1]):
tanh(z) = 2logistic(2z) -1

Both logistic and tanh are still used in particular uses, but are no
longer the defaults for making deep networks

Non-linearities: The new world order

RelLU (rectified

linear unit) hard tanh

rect(z) = max(z,0)

3

I T

f(x)

0
1
3

Leaky RelLU Parametric ReLU

Leaky RelLU: y=0.01x

e For building a feed-forward deep network, the first thing you should try is
ReLU — it trains quickly and performs well due to good gradient backflow

Parameter Initialization

* You normally must initialize weights to small random values
* To avoid symmetries that prevent learning/specialization

e |nitialize hidden layer biases to 0 and output (or reconstruction)
biases to optimal value if weights were O (e.g., mean target or
inverse sigmoid of mean target)

e I|nitialize all other weights ~ Uniform(-r, r), with r chosen so
numbers get neither too big or too small

e Xavier initialization has variance inversely proportional to fan-in
n;, (previous layer size) and fan-out n,,, (next layer size):

2

Min + N out

V&I‘(WL’) —

Optimizers

e Usually, plain SGD will work just fine

* However, getting good results will often require hand-tuning
the learning rate (next slide)

e For more complex nets and situations, or just to avoid worry,
you often do better with one of a family of more sophisticated
“adaptive” optimizers that scale the parameter adjustment by
an accumulated gradient.

* These models give per-parameter learning rates
e Adagrad
RMSprop
Adam < A fairly good, safe place to begin in many cases

SparseAdam

Learning Rates

* You can just use a constant learning rate. Start around /r = 0.0017
* |t must be order of magnitude right — try powers of 10

e Too big: model may diverge or not converge
e Too small: your model may not have trained by the deadline

e Better results can generally be obtained by allowing learning
rates to decrease as you train

* By hand: halve the learning rate every k epochs
* An epoch = a pass through the data (shuffled or sampled)

* By a formula: Ir = lrye "¢, for epoch t
* There are fancier methods like cyclic learning rates (q.v.)

e Fancier optimizers still use a learning rate but it may be an initial
rate that the optimizer shrinks — so may be able to start high

