
Natural Language Processing
with Deep Learning

CS224N/Ling284

Christopher Manning

Lecture 4: Backpropagation and 
computation graphs

Natural Language Processing
with Deep Learning

CS224N/Ling284

Christopher Manning and Richard Socher

Lecture 2: Word Vectors



Lecture Plan

Lecture 4: Backpropagation and computation graphs

1. Matrix gradients for our simple neural net and some tips [15 mins]

2. Computation graphs and backpropagation [40 mins]

3. Stuff you should know [15 mins]

a. Regularization to prevent overfitting

b. Vectorization

c. Nonlinearities

d. Initialization

e. Optimizers

f. Learning rates

2



1. Derivative wrt a weight matrix

• Let’s look carefully at computing
• Using the chain rule again:

3 ! = [  xmuseums xin xParis xare xamazing ]

" = $ %
% = &!+ (

) = *+"



Deriving gradients for backprop

• For this function (following on from last time):

• Let’s consider the derivative 
of a single weight Wij

• Wij only contributes to zi

• For example: W23 is only 
used to compute z2 not z1

4

x1 x2                 x3 +1

f(z1)=   h1 h2 =f(z2)

s  u2

W23
b2

!"
!# = % !&!# = % !

!##'+ )

!*+
!,+-

= !
!,+-

#+.' + /+
= 0

0123
∑5678 ,+595 = 9-



• We want gradient for full W – but each case is the same
• Overall answer: Outer product:

Deriving gradients for backprop

• So for derivative of single Wij :
!"
!#$%

= '$(%

5

Error signal 
from above

Local gradient 
signal



• Tip 1: Carefully define your variables and keep track of their 
dimensionality!

• Tip 2: Chain rule! If y = f(u) and u = g(x), i.e., y = f(g(x)), then:
!"
!# =

!"
!%

!%
!#

Keep straight what variables feed into what computations
• Tip 3: For the top softmax part of a model: First consider the 

derivative wrt fc when c = y (the correct class), then consider 
derivative wrt fc when c ¹ y (all the incorrect classes)

• Tip 4: Work out element-wise partial derivatives if you’re getting 
confused by matrix calculus!

• Tip 5: Use Shape Convention. Note: The error message & that 
arrives at a hidden layer has the same dimensionality as that 
hidden layer

Deriving gradients: Tips

6



• The gradient that arrives at and updates the word vectors can 
simply be split up for each word vector:

• Let 
• With xwindow = [  xmuseums xin xParis xare xamazing ]

• We have

Deriving gradients wrt words for window model

7



• This will push word vectors around so that they will (in 
principle) be more helpful in determining named entities. 

• For example, the model can learn that seeing xin as the word 
just before the center word is indicative for the center word to 
be a location

Updating word gradients in window model

8



A pitfall when retraining word vectors

• Setting: We are training a logistic regression classification model 
for movie review sentiment using single words. 

• In the training data we have “TV” and “telly”
• In the testing data we have “television”
• The pre-trained word vectors have all three similar:

• Question: What happens when we update the word vectors?

TV
telly

television

9



A pitfall when retraining word vectors

• Question: What happens when we update the word vectors?
• Answer:

• Those words that are in the training data move around 
• “TV” and “telly”

• Words not in the training data stay where they were
• “television”

10

TV

telly

television

This can be bad!



So what should I do?

• Question: Should I use available “pre-trained” word vectors 
Answer:
• Almost always, yes! 
• They are trained on a huge amount of data, and so they will know 

about words not in your training data and will know more about 
words that are in your training data 

• Have 100s of millions of words of data? Okay to start random
• Question: Should I update (“fine tune”) my own word vectors? 
• Answer:

• If you only have a small training data set, don’t train the word 
vectors

• If you have have a large dataset, it probably will work better to 
train = update = fine-tune word vectors to the task

11



Backpropagation

We’ve almost shown you backpropagation

It’s taking derivatives and using the (generalized) 
chain rule

Other trick: we re-use derivatives computed for higher 
layers in computing derivatives for lower layers so as to 
minimize computation

12



2. Computation Graphs and Backpropagation

� + �

• We represent our neural net 
equations as a graph 
• Source nodes: inputs

• Interior nodes: operations

13



Computation Graphs and Backpropagation

� + �

• We represent our neural net 
equations as a graph 
• Source nodes: inputs

• Interior nodes: operations

• Edges pass along result of the 
operation

14



Computation Graphs and Backpropagation

� + �

• Representing our neural net 
equations as a graph 
• Source nodes: inputs

• Interior nodes: operations

• Edges pass along result of the 
operation

“Forward Propagation”

15



Backpropagation

� + �

• Go backwards along edges
• Pass along gradients

16



Backpropagation: Single Node

• Node receives an “upstream gradient”

• Goal is to pass on the correct 
“downstream gradient”

Upstream 
gradient 

17 Downstream 
gradient



Backpropagation: Single Node

Downstream 
gradient

Upstream 
gradient 

• Each node has a local gradient
• The gradient of it’s output with 

respect to it’s input

Local 
gradient

18



Backpropagation: Single Node

Downstream 
gradient

Upstream 
gradient 

• Each node has a local gradient
• The gradient of it’s output with 

respect to it’s input

Local 
gradient

19

Chain 
rule!



Backpropagation: Single Node

Downstream 
gradient

Upstream 
gradient 

• Each node has a local gradient
• The gradient of it’s output with 

respect to it’s input

Local 
gradient

• [downstream gradient] = [upstream gradient] x [local gradient]

20



Backpropagation: Single Node

*

• What about nodes with multiple inputs?

21



Backpropagation: Single Node

Downstream 
gradients

Upstream 
gradient 

Local 
gradients

*

• Multiple inputs → multiple local gradients

22



An Example

23



An Example

+

*
max

24

Forward prop steps



An Example

+

*
max

25

Forward prop steps

6

3

2

1

2

2

0



An Example

+

*
max

26

Forward prop steps

6

3

2

1

2

2

0

Local gradients



An Example

+

*
max

27

Forward prop steps

6

3

2

1

2

2

0

Local gradients



An Example

+

*
max

28

Forward prop steps

6

3

2

1

2

2

0

Local gradients



An Example

+

*
max

29

Forward prop steps

6

3

2

1

2

2

0

Local gradients



An Example

+

*
max

30

Forward prop steps

6

3

2

1

2

2

0

Local gradients

upstream * local = downstream

1

1*3 = 3

1*2 = 2



An Example

+

*
max

31

Forward prop steps

6

3

2

1

2

2

0

Local gradients

upstream * local = downstream

1

3

2

3*1 = 3

3*0 = 0



An Example

+

*
max

32

Forward prop steps

6

3

2

1

2

2

0

Local gradients

upstream * local = downstream

1

3

2

3

0

2*1 = 2

2*1 = 2



An Example

+

*
max

33

Forward prop steps

6

3

2

1

2

2

0

Local gradients

1

3

2

3

0

2

2



Gradients sum at outward branches

34

+



Gradients sum at outward branches

35

+



Node Intuitions

+

*
max

36

6

3

2

1

2

2

0

1

2
2

2

• + “distributes” the upstream gradient



Node Intuitions

+

*
max

37

6

3

2

1

2

2

0

1

33

0

• + “distributes” the upstream gradient to each summand

• max “routes” the upstream gradient



Node Intuitions

+

*
max

38

6

3

2

1

2

2

0

1

3

2

• + “distributes” the upstream gradient

• max “routes” the upstream gradient

• * “switches” the upstream gradient



Efficiency: compute all gradients at once 

* + �

• Incorrect way of doing backprop:
• First compute 

39



Efficiency: compute all gradients at once 

* + �

• Incorrect way of doing backprop:
• First compute 

• Then independently compute

• Duplicated computation!

40



Efficiency: compute all gradients at once 

* + �

• Correct way:
• Compute all the gradients at once

• Analogous to using !when we 
computed gradients by hand

41



1. Fprop: visit nodes in topological sort order 
- Compute value of node given predecessors

2. Bprop:
- initialize output gradient = 1 
- visit nodes in reverse order:

Compute gradient wrt each node using 
gradient wrt successors

Done correctly, big O() complexity of fprop and 
bprop is the same

In general our nets have regular layer-structure 
and so we can use matrices and Jacobians…

Back-Prop in General Computation Graph

…
…

…

= successors of 

Single scalar output

42



Automatic Differentiation

• The gradient computation can be 
automatically inferred from the 
symbolic expression of the fprop

• Each node type needs to know how 
to compute its output and how to 
compute the gradient wrt its inputs 
given the gradient wrt its output

• Modern DL frameworks (Tensorflow, 
PyTorch, etc.) do backpropagation 
for you but mainly leave layer/node 
writer to hand-calculate the local 
derivative

43



Backprop Implementations

44



Implementation: forward/backward API

45



Implementation: forward/backward API

46



Gradient checking: Numeric Gradient

• For small h (≈ 1e-4),

• Easy to implement correctly

• But approximate and very slow:

• Have to recompute f for every parameter of our model

• Useful for checking your implementation

• In the old days when we hand-wrote everything, it was key 
to do this everywhere.

• Now much less needed, when throwing together layers
47



Summary

• We’ve mastered the core technology of neural nets!!!

• Backpropagation: recursively apply the chain rule 
along computation graph
• [downstream gradient] = [upstream gradient] x [local gradient]

• Forward pass: compute results of operations and save 
intermediate values

• Backward pass: apply chain rule to compute gradients
48



Why learn all these details about gradients?

• Modern deep learning frameworks compute gradients for you

• But why take a class on compilers or systems when they are 
implemented for you?
• Understanding what is going on under the hood is useful!

• Backpropagation doesn’t always work perfectly. 
• Understanding why is crucial for debugging and improving 

models
• See Karpathy article (in syllabus):
• https://medium.com/@karpathy/yes-you-should-understand-

backprop-e2f06eab496b

• Example in future lecture: exploding and vanishing gradients
49



3. We have models with many params! Regularization!

• Really a full loss function in practice includes regularization over 
all parameters !, e.g., L2 regularization:

• Regularization (largely) prevents overfitting when we have a lot 
of features (or later a very powerful/deep model, ++)

50 model power

Training error

Test error

overfitting



“Vectorization”

• E.g., looping over word vectors versus concatenating 
them all into one large matrix and then multiplying 
the softmax weights with that matrix

• 1000 loops, best of 3:   639 µs per loop
10000 loops, best of 3: 53.8 µs per loop

51



“Vectorization”

• The (10x) faster method is using a C x N matrix

• Always try to use vectors and matrices rather than for loops!

• You should speed-test your code a lot too!!

• tl;dr: Matrices are awesome!!!

52



Non-linearities: The starting points

logistic (“sigmoid”)              tanh                          hard tanh

tanh is just a rescaled and shifted sigmoid (2 � as steep, [−1,1]): 

Both logistic and tanh are still used in particular uses, but are no 
longer the defaults for making deep networks

tanh(z) = 2logistic(2z)−1

1

0

1

−1



Non-linearities: The new world order

ReLU (rectified                       Leaky ReLU Parametric ReLU
linear unit) hard tanh

• For building a feed-forward deep network, the first thing you should try is 
ReLU — it trains quickly and performs well due to good gradient backflow

rect(z) =max(z, 0)



Parameter Initialization

• You normally must initialize weights to small random values
• To avoid symmetries that prevent learning/specialization

• Initialize hidden layer biases to 0 and output (or reconstruction) 
biases to optimal value if weights were 0 (e.g., mean target or 
inverse sigmoid of mean target)

• Initialize all other weights ~ Uniform(–r, r), with r chosen so 
numbers get neither too big or too small

• Xavier initialization has variance inversely proportional to fan-in 
nin (previous layer size) and fan-out nout (next layer size):



Optimizers

• Usually, plain SGD will work just fine

• However, getting good results will often require hand-tuning 

the learning rate (next slide)

• For more complex nets and situations, or just to avoid worry, 

you often do better with one of a family of more sophisticated 

“adaptive” optimizers that scale the parameter adjustment by 

an accumulated gradient.

• These models give per-parameter learning rates

• Adagrad

• RMSprop

• Adam  ß A fairly good, safe place to begin in many cases

• SparseAdam

• …



Learning Rates

• You can just use a constant learning rate. Start around lr = 0.001?
• It must be order of magnitude right – try powers of 10
• Too big: model may diverge or not converge
• Too small: your model may not have trained by the deadline

• Better results can generally be obtained by allowing learning 
rates to decrease as you train
• By hand: halve the learning rate every k epochs 
• An epoch = a pass through the data (shuffled or sampled)

• By a formula: !" = !"$%&'(, for epoch t
• There are fancier methods like cyclic learning rates (q.v.)

• Fancier optimizers still use a learning rate but it may be an initial
rate that the optimizer shrinks – so may be able to start high


