Natural Language Processing with Deep Learning CS224N/Ling284

Christopher Manning

Lecture 4: Backpropagation and computation graphs

Lecture Plan

Lecture 4: Backpropagation and computation graphs

- 1. Matrix gradients for our simple neural net and some tips [15 mins]
- 2. Computation graphs and backpropagation [40 mins]
- Stuff you should know [15 mins]
 - Regularization to prevent overfitting
 - b. Vectorization
 - c. Nonlinearities
 - d. Initialization
 - e. Optimizers
 - f. Learning rates

1. Derivative wrt a weight matrix

- Let's look carefully at computing $rac{\partial s}{\partial oldsymbol{W}}$
 - Using the chain rule again:

$$\frac{\partial s}{\partial \boldsymbol{W}} = \frac{\partial s}{\partial \boldsymbol{h}} \frac{\partial \boldsymbol{h}}{\partial \boldsymbol{z}} \frac{\partial \boldsymbol{z}}{\partial \boldsymbol{W}}$$

$$s = u^{T}h$$

$$h = f(z)$$

$$z = Wx + b$$

$$x = [x_{\text{museums}} x_{\text{in}} x_{\text{Paris}} x_{\text{are}} x_{\text{amazing}}]$$

Deriving gradients for backprop

For this function (following on from last time):

$$\frac{\partial S}{\partial W} = \delta \frac{\partial \mathbf{z}}{\partial W} = \delta \frac{\partial}{\partial W} W x + \mathbf{b}$$

- Let's consider the derivative of a single weight W_{ii}
- W_{ij} only contributes to z_i
 - For example: W_{23} is only used to compute z_2 not z_1

$$\frac{\partial z_i}{\partial W_{ij}} = \frac{\partial}{\partial W_{ij}} \mathbf{W}_{i.} \mathbf{x} + b_i$$
$$= \frac{\partial}{\partial W_{ij}} \sum_{k=1}^{d} W_{ik} x_k = x_j$$

Deriving gradients for backprop

So for derivative of single W_{ii}:

$$\frac{\partial s}{\partial W_{ij}} = \delta_i x_j$$
Error signal Local gradient from above signal

- We want gradient for full W but each case is the same
- Overall answer: Outer product:

$$rac{\partial s}{\partial oldsymbol{W}} = oldsymbol{\delta}^T oldsymbol{x}^T \ [n imes n] [n imes 1][1 imes m]$$

Deriving gradients: Tips

- Tip 1: Carefully define your variables and keep track of their dimensionality!
- **Tip 2**: Chain rule! If $\mathbf{y} = f(\mathbf{u})$ and $\mathbf{u} = g(\mathbf{x})$, i.e., $\mathbf{y} = f(g(\mathbf{x}))$, then:

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \frac{\partial \mathbf{y}}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$$

Keep straight what variables feed into what computations

- **Tip 3**: For the top softmax part of a model: First consider the derivative wrt f_c when c = y (the correct class), then consider derivative wrt f_c when $c \neq y$ (all the incorrect classes)
- Tip 4: Work out element-wise partial derivatives if you're getting confused by matrix calculus!
- **Tip 5:** Use Shape Convention. Note: The error message δ that arrives at a hidden layer has the same dimensionality as that hidden layer

Deriving gradients wrt words for window model

- The gradient that arrives at and updates the word vectors can simply be split up for each word vector:
- $\begin{array}{lll} \bullet & \text{Let } \nabla_x J = W^T \delta = \delta_{x_{window}} \\ \bullet & \text{With } x_{\text{window}} = [\ \ \mathbf{x}_{\text{museums}} \ \ \ \mathbf{x}_{\text{in}} \ \ \mathbf{x}_{\text{Paris}} \ \ \mathbf{x}_{\text{are}} \ \ \mathbf{x}_{\text{amazing}} \] \end{array}$
- We have

$$\delta_{window} = \begin{bmatrix} \nabla_{x_{museums}} \\ \nabla_{x_{in}} \\ \nabla_{x_{Paris}} \\ \nabla_{x_{are}} \\ \nabla_{x_{amazina}} \end{bmatrix} \in \mathbb{R}^{5d}$$

Updating word gradients in window model

- This will push word vectors around so that they will (in principle) be more helpful in determining named entities.
- For example, the model can learn that seeing x_{in} as the word just before the center word is indicative for the center word to be a location

A pitfall when retraining word vectors

- Setting: We are training a logistic regression classification model for movie review sentiment using single words.
- In the training data we have "TV" and "telly"
- In the testing data we have "television"
- The pre-trained word vectors have all three similar:

• Question: What happens when we update the word vectors?

A pitfall when retraining word vectors

- Question: What happens when we update the word vectors?
- Answer:
 - Those words that are in the training data move around
 - "TV" and "telly"
 - Words not in the training data stay where they were
 - "television"

So what should I do?

- Question: Should I use available "pre-trained" word vectors
 Answer:
 - Almost always, yes!
 - They are trained on a huge amount of data, and so they will know about words not in your training data and will know more about words that are in your training data
 - Have 100s of millions of words of data? Okay to start random
- Question: Should I update ("fine tune") my own word vectors?
- Answer:
 - If you only have a small training data set, don't train the word vectors
 - If you have have a large dataset, it probably will work better to train = update = fine-tune word vectors to the task

Backpropagation

We've almost shown you backpropagation

It's taking derivatives and using the (generalized) chain rule

Other trick: we **re-use** derivatives computed for higher layers in computing derivatives for lower layers so as to minimize computation

2. Computation Graphs and Backpropagation

- We represent our neural net equations as a graph
 - Source nodes: inputs
 - Interior nodes: operations

$$egin{aligned} s &= oldsymbol{u}^T oldsymbol{h} \ oldsymbol{h} &= f(oldsymbol{z}) \ oldsymbol{z} &= oldsymbol{W} oldsymbol{x} + oldsymbol{b} \ oldsymbol{x} & ext{(input)} \end{aligned}$$

Computation Graphs and Backpropagation

- We represent our neural net equations as a graph
 - Source nodes: inputs
 - Interior nodes: operations
 - Edges pass along result of the operation

$$egin{aligned} s &= oldsymbol{u}^T oldsymbol{h} \ oldsymbol{h} &= f(oldsymbol{z}) \ oldsymbol{z} &= oldsymbol{W} oldsymbol{x} + oldsymbol{b} \ oldsymbol{x} & ext{(input)} \end{aligned}$$

Computation Graphs and Backpropagation

Representing our neural net equations as a graph

$$s = \boldsymbol{u}^T \boldsymbol{h}$$

$$oldsymbol{h} = f(oldsymbol{z})$$

"Forward Propagation" (t+b)

operation

Backpropagation

- Go backwards along edges
 - Pass along gradients

$$egin{aligned} s &= oldsymbol{u}^T oldsymbol{h} \ oldsymbol{h} &= f(oldsymbol{z}) \ oldsymbol{z} &= oldsymbol{W} oldsymbol{x} + oldsymbol{b} \ oldsymbol{x} & ext{(input)} \end{aligned}$$

- Node receives an "upstream gradient"
- Goal is to pass on the correct "downstream gradient"

$$\boldsymbol{h} = f(\boldsymbol{z})$$

- Each node has a local gradient
 - The gradient of it's output with respect to it's input

$$h = f(z)$$

- Each node has a local gradient
 - The gradient of it's output with respect to it's input

$$\boldsymbol{h} = f(\boldsymbol{z})$$

- Each node has a local gradient
 - The gradient of it's output with respect to it's input

$$\boldsymbol{h} = f(\boldsymbol{z})$$

[downstream gradient] = [upstream gradient] x [local gradient]

• What about nodes with multiple inputs?

$$z = Wx$$

Multiple inputs → multiple local gradients

$$z = Wx$$

Downstream gradients

Local gradients

Upstream gradient

$$f(x, y, z) = (x + y) \max(y, z)$$
$$x = 1, y = 2, z = 0$$

Forward prop steps

$$a = x + y$$
$$b = \max(y, z)$$
$$f = ab$$

$$f(x, y, z) = (x + y) \max(y, z)$$
$$x = 1, y = 2, z = 0$$

Forward prop steps

$$a = x + y$$
$$b = \max(y, z)$$
$$f = ab$$

$$f(x, y, z) = (x + y) \max(y, z)$$
$$x = 1, y = 2, z = 0$$

Forward prop steps

$$a = x + y$$
$$b = \max(y, z)$$
$$f = ab$$

$$\frac{\partial a}{\partial x} = 1 \quad \frac{\partial a}{\partial y} = 1$$

$$f(x, y, z) = (x + y) \max(y, z)$$
$$x = 1, y = 2, z = 0$$

Forward prop steps

$$a = x + y$$
$$b = \max(y, z)$$
$$f = ab$$

$$\frac{\partial a}{\partial x} = 1 \quad \frac{\partial a}{\partial y} = 1$$

$$\frac{\partial b}{\partial y} = \mathbf{1}(y > z) = 1 \quad \frac{\partial b}{\partial z} = \mathbf{1}(z > y) = 0$$

$$f(x, y, z) = (x + y) \max(y, z)$$
$$x = 1, y = 2, z = 0$$

Forward prop steps

$$a = x + y$$
$$b = \max(y, z)$$
$$f = ab$$

$$\frac{\partial a}{\partial x} = 1 \quad \frac{\partial a}{\partial y} = 1$$

$$\frac{\partial b}{\partial y} = \mathbf{1}(y > z) = 1 \quad \frac{\partial b}{\partial z} = \mathbf{1}(z > y) = 0$$

$$\frac{\partial f}{\partial a} = b = 2 \quad \frac{\partial f}{\partial b} = a = 3$$

$$f(x, y, z) = (x + y) \max(y, z)$$
$$x = 1, y = 2, z = 0$$

Forward prop steps

$$a = x + y$$
$$b = \max(y, z)$$
$$f = ab$$

$$\frac{\partial a}{\partial x} = 1 \quad \frac{\partial a}{\partial y} = 1$$

$$\frac{\partial b}{\partial y} = \mathbf{1}(y > z) = 1 \quad \frac{\partial b}{\partial z} = \mathbf{1}(z > y) = 0$$

$$\frac{\partial f}{\partial a} = b = 2 \quad \frac{\partial f}{\partial b} = a = 3$$

$$f(x, y, z) = (x + y) \max(y, z)$$
$$x = 1, y = 2, z = 0$$

Forward prop steps

$$a = x + y$$
$$b = \max(y, z)$$
$$f = ab$$

$$\frac{\partial a}{\partial x} = 1 \quad \frac{\partial a}{\partial y} = 1$$

$$\frac{\partial b}{\partial y} = \mathbf{1}(y > z) = 1 \quad \frac{\partial b}{\partial z} = \mathbf{1}(z > y) = 0$$

$$\frac{\partial f}{\partial a} = b = 2 \quad \frac{\partial f}{\partial b} = a = 3$$

$$f(x, y, z) = (x + y) \max(y, z)$$
$$x = 1, y = 2, z = 0$$

Forward prop steps

$$a = x + y$$

$$b = \max(y, z)$$

$$f = ab$$

$$\frac{\partial a}{\partial x} = 1 \quad \frac{\partial a}{\partial y} = 1$$

$$\frac{\partial b}{\partial y} = \mathbf{1}(y > z) = 1$$
 $\frac{\partial b}{\partial z} = \mathbf{1}(z > y) = 0$

$$\frac{\partial f}{\partial a} = b = 2 \quad \frac{\partial f}{\partial b} = a = 3$$

 $f(x, y, z) = (x + y) \max(y, z)$ x = 1, y = 2, z = 0

Forward prop steps

$$a = x + y$$
$$b = \max(y, z)$$
$$f = ab$$

$$\frac{\partial a}{\partial x} = 1 \quad \frac{\partial a}{\partial y} = 1$$

$$\frac{\partial b}{\partial y} = \mathbf{1}(y > z) = 1 \quad \frac{\partial b}{\partial z} = \mathbf{1}(z > y) = 0$$

$$\frac{\partial f}{\partial a} = b = 2 \quad \frac{\partial f}{\partial b} = a = 3$$

$$f(x, y, z) = (x + y) \max(y, z)$$
$$x = 1, y = 2, z = 0$$

Forward prop steps

$$a = x + y$$
$$b = \max(y, z)$$
$$f = ab$$

$$\frac{\partial a}{\partial x} = 1 \quad \frac{\partial a}{\partial y} = 1$$

$$\frac{\partial b}{\partial y} = \mathbf{1}(y > z) = 1 \quad \frac{\partial b}{\partial z} = \mathbf{1}(z > y) = 0$$

$$\frac{\partial f}{\partial a} = b = 2 \quad \frac{\partial f}{\partial b} = a = 3$$

Gradients sum at outward branches

Gradients sum at outward branches

$$a = x + y$$

$$b = \max(y, z)$$

$$f = ab$$

$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial a} \frac{\partial a}{\partial y} + \frac{\partial f}{\partial b} \frac{\partial b}{\partial y}$$

Node Intuitions

$$f(x, y, z) = (x + y) \max(y, z)$$
$$x = 1, y = 2, z = 0$$

+ "distributes" the upstream gradient

Node Intuitions

$$f(x, y, z) = (x + y) \max(y, z)$$
$$x = 1, y = 2, z = 0$$

- + "distributes" the upstream gradient to each summand
- max "routes" the upstream gradient

Node Intuitions

$$f(x, y, z) = (x + y) \max(y, z)$$
$$x = 1, y = 2, z = 0$$

- + "distributes" the upstream gradient
- max "routes" the upstream gradient
- * "switches" the upstream gradient

Efficiency: compute all gradients at once

- Incorrect way of doing backprop:
 - First compute $\frac{\partial s}{\partial b}$

$$egin{aligned} s &= oldsymbol{u}^T oldsymbol{h} \ oldsymbol{h} &= f(oldsymbol{z}) \ oldsymbol{z} &= oldsymbol{W} oldsymbol{x} + oldsymbol{b} \ oldsymbol{x} & ext{(input)} \end{aligned}$$

Efficiency: compute all gradients at once

- Incorrect way of doing backprop:
 - First compute $\frac{\partial s}{\partial b}$
 - Then independently compute $\frac{\partial s}{\partial W}$
 - Duplicated computation!

$$egin{aligned} s &= oldsymbol{u}^T oldsymbol{h} \ oldsymbol{h} &= f(oldsymbol{z}) \ oldsymbol{z} &= oldsymbol{W} oldsymbol{x} + oldsymbol{b} \ oldsymbol{x} & ext{(input)} \end{aligned}$$

Efficiency: compute all gradients at once

- Correct way:
 - Compute all the gradients at once
 - Analogous to using $oldsymbol{\delta}$ when we computed gradients by hand

$$egin{aligned} s &= oldsymbol{u}^T oldsymbol{h} \ oldsymbol{h} &= f(oldsymbol{z}) \ oldsymbol{z} &= oldsymbol{W} oldsymbol{x} + oldsymbol{b} \ oldsymbol{x} & ext{(input)} \end{aligned}$$

Back-Prop in General Computation Graph

- 1. Fprop: visit nodes in topological sort order
 - Compute value of node given predecessors
- 2. Bprop:
 - initialize output gradient = 1
 - visit nodes in reverse order:

Compute gradient wrt each node using gradient wrt successors

$$\{y_1,\,y_2,\;\ldots\;y_n\}$$
 = successors of x

$$\frac{\partial z}{\partial x} = \sum_{i=1}^{n} \frac{\partial z}{\partial y_i} \frac{\partial y_i}{\partial x}$$

Done correctly, big O() complexity of fprop and bprop is **the same**

In general our nets have regular layer-structure and so we can use matrices and Jacobians...

Automatic Differentiation

- The gradient computation can be automatically inferred from the symbolic expression of the fprop
- Each node type needs to know how to compute its output and how to compute the gradient wrt its inputs given the gradient wrt its output
- Modern DL frameworks (Tensorflow, PyTorch, etc.) do backpropagation for you but mainly leave layer/node writer to hand-calculate the local derivative

Backprop Implementations

```
class ComputationalGraph(object):
   # . . .
   def forward(inputs):
       # 1. [pass inputs to input gates...]
       # 2. forward the computational graph:
       for gate in self.graph.nodes_topologically_sorted():
            gate.forward()
        return loss # the final gate in the graph outputs the loss
   def backward():
       for gate in reversed(self.graph.nodes_topologically_sorted()):
            gate.backward() # little piece of backprop (chain rule applied)
        return inputs_gradients
```

Implementation: forward/backward API

Implementation: forward/backward API

(x,y,z are scalars)

```
class MultiplyGate(object):
    def forward(x,y):
        z = x*y
        self.x = x # must keep these around!
        self.y = y
        return z
    def backward(dz):
        dx = self.y * dz # [dz/dx * dL/dz]
        dy = self.x * dz # [dz/dy * dL/dz]
        return [dx, dy]
```

Gradient checking: Numeric Gradient

- For small h (pprox 1e-4), $f'(x) pprox \frac{f(x+h)-f(x-h)}{2h}$
- Easy to implement correctly
- But approximate and very slow:
 - Have to recompute f for every parameter of our model
- Useful for checking your implementation
 - In the old days when we hand-wrote everything, it was key to do this everywhere.
 - Now much less needed, when throwing together layers

Summary

We've mastered the core technology of neural nets!!!

- Backpropagation: recursively apply the chain rule along computation graph
 - [downstream gradient] = [upstream gradient] x [local gradient]
- Forward pass: compute results of operations and save intermediate values
- Backward pass: apply chain rule to compute gradients

Why learn all these details about gradients?

- Modern deep learning frameworks compute gradients for you
- But why take a class on compilers or systems when they are implemented for you?
 - Understanding what is going on under the hood is useful!
- Backpropagation doesn't always work perfectly.
 - Understanding why is crucial for debugging and improving models
 - See Karpathy article (in syllabus):
 - https://medium.com/@karpathy/yes-you-should-understandbackprop-e2f06eab496b
 - Example in future lecture: exploding and vanishing gradients

3. We have models with many params! Regularization!

• Really a full loss function in practice includes regularization over all parameters θ , e.g., L2 regularization:

$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} -\log\left(\frac{e^{f_{y_i}}}{\sum_{c=1}^{C} e^{f_c}}\right) + \lambda \sum_{k} \theta_k^2$$

 Regularization (largely) prevents overfitting when we have a lot of features (or later a very powerful/deep model, ++)

"Vectorization"

 E.g., looping over word vectors versus concatenating them all into one large matrix and then multiplying the softmax weights with that matrix

```
from numpy import random
N = 500 # number of windows to classify
d = 300 # dimensionality of each window
C = 5 # number of classes
W = random.rand(C,d)
wordvectors_list = [random.rand(d,1) for i in range(N)]
wordvectors_one_matrix = random.rand(d,N)
%timeit [W.dot(wordvectors_list[i]) for i in range(N)]
%timeit W.dot(wordvectors_one_matrix)
```

1000 loops, best of 3: 639 μs per loop
 10000 loops, best of 3: 53.8 μs per loop

"Vectorization"

```
from numpy import random
N = 500 # number of windows to classify
d = 300 # dimensionality of each window
C = 5 # number of classes
W = random.rand(C,d)
wordvectors_list = [random.rand(d,1) for i in range(N)]
wordvectors_one_matrix = random.rand(d,N)

%timeit [W.dot(wordvectors_list[i]) for i in range(N)]
%timeit W.dot(wordvectors_one_matrix)
```

- The (10x) faster method is using a C x N matrix
- Always try to use vectors and matrices rather than for loops!
- You should speed-test your code a lot too!!
- tl;dr: Matrices are awesome!!!

Non-linearities: The starting points

logistic ("sigmoid")

$$f(z) = \frac{1}{1 + \exp(-z)}.$$

tanh

$$f(z) = \frac{1}{1 + \exp(-z)}.$$
 $f(z) = \tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}},$

hard tanh

HardTanh(x) =
$$\begin{cases} -1 & \text{if } x < -1 \\ x & \text{if } -1 <= x <= 1 \\ 1 & \text{if } x > 1 \end{cases}$$

tanh is just a rescaled and shifted sigmoid $(2 \times as steep, [-1,1])$: tanh(z) = 2logistic(2z) - 1

Both logistic and tanh are still used in particular uses, but are no longer the defaults for making deep networks

Non-linearities: The new world order

ReLU (rectified linear unit) hard tanh

$$rect(z) = max(z,0)$$

Leaky ReLU

Parametric ReLU

For building a feed-forward deep network, the first thing you should try is
 ReLU — it trains quickly and performs well due to good gradient backflow

Parameter Initialization

- You normally must initialize weights to small random values
 - To avoid symmetries that prevent learning/specialization
- Initialize hidden layer biases to 0 and output (or reconstruction) biases to optimal value if weights were 0 (e.g., mean target or inverse sigmoid of mean target)
- Initialize all other weights ~ Uniform(-r, r), with r chosen so numbers get neither too big or too small
- Xavier initialization has variance inversely proportional to fan-in n_{in} (previous layer size) and fan-out n_{out} (next layer size):

$$ext{Var}(W_i) = rac{2}{n_{ ext{in}} + n_{ ext{out}}}$$

Optimizers

- Usually, plain SGD will work just fine
 - However, getting good results will often require hand-tuning the learning rate (next slide)
- For more complex nets and situations, or just to avoid worry, you often do better with one of a family of more sophisticated "adaptive" optimizers that scale the parameter adjustment by an accumulated gradient.
 - These models give per-parameter learning rates
 - Adagrad
 - RMSprop
 - Adam ← A fairly good, safe place to begin in many cases
 - SparseAdam
 - ...

Learning Rates

- You can just use a constant learning rate. Start around Ir = 0.001?
 - It must be order of magnitude right try powers of 10
 - Too big: model may diverge or not converge
 - Too small: your model may not have trained by the deadline
- Better results can generally be obtained by allowing learning rates to decrease as you train
 - By hand: halve the learning rate every k epochs
 - An epoch = a pass through the data (shuffled or sampled)
 - By a formula: $lr = lr_0 e^{-kt}$, for epoch t
 - There are fancier methods like cyclic learning rates (q.v.)
- Fancier optimizers still use a learning rate but it may be an initial rate that the optimizer shrinks – so may be able to start high