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Announcements

A Assignment 4eleased today
ADueThursdaynext week (9 days from now)

ABased oriNeural Machine TranslatioqNMT)
Aba¢ oAttt 0S O2OSNBR AY ¢KdJzZNARI ¢
A, 2 dzQ fafuretdgetSaccess to a virtual machine with a GPL
A. dzZRISG SEGNI GAYS AT @2dzQNB y 2
(e.g.ssh tmux, remote text editing)
AGet startedearly
A The NMT system takesshoursto train!
A Assignment 4 is quite a lot more complicated than Assignment 3!
A52y Qi 0SS OFdaAKG o0& &dzNLINA &SH
At KdzZNBERIF8Qa afARS&a b y2idSa I NB |




Announcements

A Projects
ANext week: lectures are all about choosing projects
ALGQa FAYS (2 RStleé& GKAY]1AY-:Z
A. dzi At & 2dzQNB | N\BEI- R& GK)\{“[
azYS AYFTFZKAYaAaLIANI UOUAZY 2Y UK
Alncluding: project ideas from potential Stanford Al Lab

mentors. For these, best to get in contact and get started
early!



Overview

A Last lecturawe learned:

A Recurrent Neural Networks (RNMsy R g Ké GKS@ QNX 31
Modeling (LM).

ATodayg SQf t €SI NYY
A Problemsawith RNNs and how to fix them
A More complexRNN variants

A Nextlectureg SQf t € SIF NYY

A How we can ddleural Machine Translation (NMdging an RNMased
architecture callecsequenceto-sequence with attention



¢2RIé&Qa f SOUdzNS

A Vanishing gradient problem
motivates

A Two new types of RNNSTNVand GRU

A Otherfixesfor vanishing (or exploding) gradient:
A Gradient clipping
A Skip connections

Lots of important
A More fancy RNN variants: definitions today!

ABidirectionaRNNs
AMulti-layerRNNS



Vanishing gradient intuition
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Vanishing gradient intuition




Vanishing gradient intuition
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Vanishing gradient intuition
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Vanishing gradient intuition
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chain rule!



Vanishing gradient intuition
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Vanishing gradient problem:
When these are small, the
gradient signal gets smaller

and smaller as it
backpropagates further

What happens if these are small?
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Vanishing gradient proof sketch
A Recall: RO = o (Wb + W,z + b,)

Oh®)

A Therefore: 55—

= diag (cr’ (Whh(t‘” + W) + bl)) Wi, (chain rule)

A Consider the gradient of the loJ®(6) on Btefth respect
to the hidden stater(¥)  on some previous gtep

oJD (@)  8JD (0 oh®) .
Ohi) R H oht—1) (chain rule)
I<t<s
9 (9) (i—7) /
= —AW," i (t-1) (t) Oh®
= i (Wi I] diag (o (Wh,h + W,z +b1)) (value of —7— )

T I<t<s

If W,, is small, then this term gets
vanishingly small asandj get further apart

12 Sourced ahy GKS RATFTTFAOdZ G& 27T Rabthnieyah 30MBHiNS QazNNGS yriir pySadzNIscnu iz Sd g


http://proceedings.mlr.press/v28/pascanu13.pdf

Vanishing gradient proof sketch

A Consider matrix L2 norms:

H 0J @) (9) H H 0J ) ( 9)

o < |22 il T g (o (Wi + Waat® +0,))|

I<t<i

A Pascantet al showed that that if thmrgest eigenvaluef W, is
less than lthen the gradlenH o | wilirinkexponentially
A Here the bound is 1 because we have sigmoid nonlinearity

ACKSNBQa | &aAYANafgksNdighdNRu2 o NI |
exploding gradients
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http://proceedings.mlr.press/v28/pascanu13.pdf

Why Is vanishing gradient a problem?
J2) () J®) ()
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Gradient signal from farawaya t 2ad o0 S Qll
smaller thangradient signal from closky.

So model weights are only updated only with respecf to
near effects notlongterm effects
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Why is vanishing gradient a problem?

A Another explanationGradientcan be viewed as a measure of
the effect of the past on the future

A If the gradient becomes vanishingly s[nall over longer distgnce
(stepttostept+nd = U KSY 6S Ol yQu GSf ¢
1. ¢ K S N&d@@endencpetween stept andt+nin the data

2. We havewrong parameterdo capture the true
dependency betweehandt+n

15



Effect of vanishing gradient on RNDNM

A LM task:When she tried to print her tickets, she found that the
printer was out of toner. She went to the stationery store to buy
more toner. It was very overpriced. After installing the toner int
the printer, she finally printed her

A To learn from this training example, the RINM needs to
model the dependenchetweend G A Odn $hé & step and
the target worda 0 A Odt tBalleadt

A But if gradient is small, the model v Q0 S| NI 0K

A So the model isnable to predict similar londistance
dependencieat test time

16



Effect of vanishing gradient on RNDNM
- IS

are

A LM task:The writer of the books

A Correct answerThe writer of the bookis planning a sequel

/—\
A Syntacticrecency:Thewriter of the bookss (correc)
. /\ .
A Sequentialrecency:The writer of thebooksare (incorreci

A Due to vanishing gradient, RNMIs are better at learning from
sequential recencthan syntactic recencgyso they make this
0eLJS 2F SNNEN Y2 Nbzefai281%] O K|
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https://arxiv.org/pdf/1611.01368.pdf

Why isexplodinggradient a problem?

A If the gradient becomes too big, then the SGD update step

becomes too big: |
learning rate

prew — Hold . EVQJ(O)

gradient

A This can causead updateswe take too large a step and reach
a bad parameter configuration (with large loss)

A In the worst case, this will result inf or NaNin your network
(then you have to restart training from an earlier checkpoint)

18



Gradient clipping: solution for exploding gradient

A Gradient clippingif the norm of the gradient is greater than
some threshold, scale it down before applying SGD update

Algorithm 1 Pseudo-code for norm clipping
g %5

if ||g|| > threshold then
A threshold 4
€< el 8

end if

A Intuition: take a step in the same direction, but a smaller step

19 Sourced ahy GKS RATFTTFAOdZ G& 27T Rabthnieyah 30MBHiNS QazNNGS yriir pySadzNIscnu iz Sd g


http://proceedings.mlr.press/v28/pascanu13.pdf

Gradient clipping: solution for exploding gradient

o 3>
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Without clipping With clipping
<= =
3 3
~ =
V V
b b

This shows the loss surface of a simple RNN (hidden state is a scalar not a vector)
Thea Of A T T ¢ bhegause It hadstebPyrhdient

On the left, gradient descent takéso very big stepslue to steep gradient, resulting
in climbing the cliff then shooting off to the right (botfad update}

On the right, gradient clipping reduces the size of those steps, so effessidrastic

Sourced 5 S S LI [ SbolfyllawBangidand Courville 2016. Chapter 10.11.bitps://www.deeplearningbook.org/contents/rnn.htm!



https://www.deeplearningbook.org/contents/rnn.html

How to fix vanishing gradient problem?

A The main problemisthat 1 Qa (22 RATTA Odzf |
preserve information over many timesteps

A In a vanilla RNN, the hidden state is constantly beingitten
K — 5 (Whh(t—l) + W,z® 4 b)

A How about a RNN with separate=mory?

21



Long ShodTerm Memory (LSTM)

A A type of RNN proposed ijochreiterand Schmidhubein 1997 as a
solution to the vanishing gradients problem.

A On stept, there is ahidden state ™ andacell statec®
A Both are vectors length
A The cell store®ng-term information
A The LSTM camrase write andreadinformation from the cell

A The selection of which information is erased/written/read is controlled by
three correspondingjates

A The gates are also vectors length

A On each timestep, each element of the gates camjben (1), closed(0),
or somewhere irbetween.

A The gates arelynamic their value is computed based on the current
context

22 a[ 2y 3-0 8§ K¥ NI SH6¢hiiEerark] Schmidhuber1997.


https://www.bioinf.jku.at/publications/older/2604.pdf

Long ShodTerm Memory (LSTM)

We have a sequence of inptz® , and we will compute a sequence of hiddet hMites
and cell state:c!”) . On timestep

Forget gatecontrols what is kept vs values are between 0 and
forgotten, from previous cell state \

Sigmoid function all gate J\

~~
t t—1 t
Input gate:controls what parts of the f( ) = g (th( ) + Ufw( ) + bf)
new cell content are written to cell
N0, (Mh(t‘l) +Uz® + b,;)

Output gate:controls what parts of

cell are output to hidden state ~ oY) =|g (Woh(t_l) + U, z® + bo)

New cell contentithis is the new —

content to be written to the cell \
Cell state erase ¢ T 2 NEoSé ¢ (¢ .1 ;
content from last cell state, and write é) = tanh (Wch( ) + Ucm( ) + bC)

(& A y )3drieénew cell content NONFIOBIRCEIIFIOPPIO

Hidden state read @ 2 dzd)lshtné ¢ |, BL(®) — 5() o tanh e® I
content from the cell \

23

All these are vectors of same length

Gates are applied using
elementwise product

pe—




Long ShodTerm Memory (LSTM)

You can think of the LSTM equations visually like this:

W ® ®

1 1 1
4 N 'z ) 4 N\
—>—® @ T > -+
A %ﬂ;m° A
\l j_> J >j )_>
&) ) &

O—P>—>—<

Neural Network Pointwise Vector
Layer Operation Transfer

Concatenate Copy

24 Sourcehttp://colah.github.io/posts/201508-Understanding STMs/



http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long ShodTerm Memory (LSTM)

You can think of the LSTM equations visually like this:

Write some new cell content @

Forget some

cell content [ —u___|

Output some cell content

Compute the to the hidden state

forget gate

Compute the ® Compute the Compute the
input gate new cell content output gate

O—>>->—<

Neural Network Pointwise Vector
Layer Operation Transfer

Concatenate Copy

25 Sourcehttp://colah.github.io/posts/201508-Understanding. STMs/



http://colah.github.io/posts/2015-08-Understanding-LSTMs/

How does LSTM solve vanishing gradients?

A The LSTM architecture makesitsierfor the RNN to
preserve information over many timesteps

Ae.g. if the forget gate is set to remember everything on even
timestep, then the info in the cell is preserved indefinitely

A.& O2YUONIaldx A0Qa KIFNRSNI F2
weight matrixW, that preserves info in hidden state

Al { ¢ a Rgu&@anygethat there is no vanishing/exploding
gradient, but it does provide an easier way for the model to
learn longdistance dependencies

26



LSTMSs: realvorld success

A In20132015 LSTMs started achieving staibthe-art results

A Successful tasks include: handwriting recognition, speech
recognition, machine translation, parsing, image captioning

ALSTNbecame thedominant approach

A Now (2019) other approaches (e.gransformery have become
more dominant for certain tasks.

AFor example iWWMT (a MT conference + competition):
Aln WMT2016 the summary report contains w b b dimes n

Aln WMT2018 the report containst w b btimescand
G ¢ NI yvVaTamesSSNE ¢ o

Source!'Findings of the 2016 Conference on Machine Translation (WMTR6jdret al. 2016,
27 Source!'Findings of the 2018 Conference on Machine Translation (WMTR8}dret al. 2018,


http://www.statmt.org/wmt16/pdf/W16-2301.pdf
http://www.statmt.org/wmt18/pdf/WMT028.pdf

Gated Recurrent Units (GRU)

A Proposed by Cho et al. in 2014 as a simpler alternative to the LSTM.
A On each timestepwe have inpuiz® and hidden st h®) (no cell state).

Update gate:controls what parts of
hidden state are updated vs preserve

Reset gatecontrols what parts of
previous hidden state are used to
compute new content

a\u(t) — O (Wuh(t—l) + Uum(t) + bu)

R 2

New hidden state contentreset gate
selects useful parts girev hidden
state. Use this and current input to
compute new hidden content.

/Fl(t) — tanh (Wh(r(t) o h(t_l)) + Uh.’L‘(t) + bh)
Rt — (1— u(t)) o h(t—=1) + u® o B

Hidden state:update gate
simultaneously controls what is kept

How does this solve vanishing gradient?
Like LSTM, GRU makes it easier to retain ipfo

from previous hidden state, and what

is updated to new hidden state content

long-term (e.qg. by setting update gate to 0)

28 "Learning Phrase Representations using RNN Engbéeoder for Statistical Machine Translation”, Cho et al. 2004s://arxiv.org/pdf/1406.1078v3.pdf



https://arxiv.org/pdf/1406.1078v3.pdf

LSTM vs GRU

A Researchers have proposed many gated RNN variants, but LS
and GRU are the most widelged

A The biggest difference is thatR Lis quicker to computeand has
fewer parameters

A There is no conclusive evidence that one consistently perform:s
better than the other

A LSTMs agood default choicgespecially if your data has
particularly long dependencies, or you have lots of training dat:

A Rule of thumb start with LSTM, but switch to GRU if you want
something more efficient

29



Is vanishing/exploding gradient just a RNN problem?

A Nol! It can be a problem for all neural architectures (including
feed-forward andconvolutiona), especiallyleepones.

A Due to chain rule / choice of nonlinearity function, gradient can become
vanishingly small as it backpropagates

A Thus lower layers are learnt very slowly (hard to train)

A Solution: lots of new deep feedforward/convolutional architectures that
add more direct connection@hus allowing the gradient to flow)

X

For example: ;
A Residual connectiorls { Reskiet ) Weight'raevlef
X u
I ; v X
A Also known askip-connections weight layer .

A Theidentity connection
preserves informatioiby default

A This makesleepnetworks much
easier to train

30 "Deep Residual Learning for Image Recognition”, He et al, 2005:

F(x) +x

Figure 2. Residual learning: a building block.



https://arxiv.org/pdf/1512.03385.pdf

Is vanishing/exploding gradient just a RNN problem?

A Nol! It can be a problem for all neural architectures (including

feed-forward andconvolutiona), especiallyleepones.
A Due to chain rule / choice of nonlinearity function, gradient can become
vanishingly small as it backpropagates
A Thus lower layers are learnt very slowly (hard to train)

A Solution: lots of new deep feedforward/convolutional architectures that
add more direct connection@hus allowing the gradient to flow)

For example:
A Dense connectionks { DenseNet

A Directly connect everything to everything

Figure 1: A 5-layer dense block with a growth rate of k£ = 4.
Each layer takes all preceding feature-maps as input.

31 ¢58yasSte /2yySOGSR /2y @2t dzi kigsy bofiv.oi( 8l 602 M0 X


https://arxiv.org/pdf/1608.06993.pdf

Is vanishing/exploding gradient just a RNN problem?

A Nol! It can be a problem for all neural architectures (including

feed-forward andconvolutiona), especiallyleepones.
A Due to chain rule / choice of nonlinearity function, gradient can become
vanishingly small as it backpropagates
A Thus lower layers are learnt very slowly (hard to train)

A Solution: lots of new deep feedforward/convolutional architectures that
add more direct connection@hus allowing the gradient to flow)

For example:

A Highway connectionk { HighfvayNed

A Similar to residual connections, but the identity connection vs the
transformation layer is controlled byca/namic gate

A Inspired by LSTMs, but applied to deep feedforward/convolutional network:

32 E1ATIKEE @ bSihs2N] &b Sind/NKGIdEE 15@ 1003877 |


https://arxiv.org/pdf/1505.00387.pdf

Is vanishing/exploding gradient just a RNN problem?

A Nol! It can be a problem for all neural architectures (including
feed-forward andconvolutiona), especiallyleepones.

A Due to chain rule / choice of nonlinearity function, gradient can become
vanishingly small as it backpropagates

A Thus lower layers are learnt very slowly (hard to train)

A Solution: lots of new deep feedforward/convolutional architectures that
add more direct connection@hus allowing the gradient to flow)

33



Is vanishing/exploding gradient just a RNN problem?

A Nol! It can be a problem for all neural architectures (including
feed-forward andconvolutiona), especiallyleepones.

A Due to chain rule / choice of nonlinearity function, gradient can become
vanishingly small as it backpropagates

A Thus lower layers are learnt very slowly (hard to train)

A Solution: lots of new deep feedforward/convolutional architectures that
add more direct connection@hus allowing the gradient to flow)

A ConclusionThough vanishing/exploding gradients are a genere
problem,RNNs are particularly unstaldee to the repeated
multiplication by thesameweight matrix Bengioet al, 1994]

34 ¢ [ S| NJY AT¢r@ Dgpénglercies with Gradient Descent is DifficBihgioet al. 1994/


http://ai.dinfo.unifi.it/paolo/ps/tnn-94-gradient.pdf

Recap

AtC2RIF e 4gSQ@S € SIFENYyaGy
AVanishing g,radient problevnwhat it is, why it happens, and
pKe AlUQa O0OIFR FT2NJ wbba
ALSTMs and GRimore complicated RNNs that use gates to

control information flow; they are more resilient to vanishing
gradients

A Remainder of this lecture:
ABidirectionalRNNs
AMulti-layerRNNS

Both of these are
pretty simple

35



Bidirectional RNNs: motivation

Task: Sentiment Classification

positive
AN

Sentence encoding

0000

We can regard this hidden state as a
NB LINBE & Sy i I G AR YNI#betd
context of this sentence. We call this a
contextual representation.

AN
@ @ @ @
@ | @ | @ | ®
@ | @ | @ 1@
@ @ @ _‘_,
T 17 T 4
the movie was terribly

36
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o000

exciting

A4

These contextual
representations only
contain information
about theleft context
(g KS Y2d
gl &€

What aboutright
context?

In this example,

& S E O Asiinthg 3 ¢
right context and this
modifies the meaning
ofd U S NJdBnD t 8| ¢
negative to positive)




oo ] ¢KAa O2yidSEldza t NBIUN
BIdIrECtIOnal RNNS has both left and right context!
_/

Concatenated
hidden states

00000000

e
e
s

Backward RNN

g
U s

:

Forward RNN

(o000
\ 4
000

;
/

\\\\\{oooo

£Ixn
(o000
Q[QQQQ}

——e000]

T~
ﬁ[““}

37 the movie was terribly  exciting !
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Bidirectional RNNs

2yS FT2NBI NR Xi&udbzd
vanilla, LSTM or GRU computation.

Uy C=
S N
o<,

N C
x b

Forward RNNﬁ(t) = RNNpw|( h,>('5_1)7 m(t)) Generally, these

two RNNs have
Backward RNN%('S) = RNNBW(%(HU, m(t)) separate weights

Concatenated hidden statepf (t) |= [h>(t); 3 (6)]

/

2 S NBIINR GKAE |
aualrasSé¢ 2F + 0 ARA
This is what we pass on to the
next parts of the network.

N ()
A
—h >
X«
s X
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Bidirectional RNNs: simplified diagram

39

A
A4

N
A4
N
A4

A4

——|e000]
—(0000]

:

the movie was terribly  exciting

The twoway arrows indicate bidirectionality a
the depicted hidden states are assumed to
the concatenatedorwards+backwardstates.

]

A4

d
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Bidirectional RNNs

A Note: bidirectional RNNs are only applicable if you have acces
to the entire input sequence

AThey arenot applicable to Language Modeling, because in L|
you only have left context available.

A If you do have entire input sequence (e.g. any kind of encodinc
bidirectionality is powerfu(you should use it by default).

A For exampleBER (BidirectionalEncoder Representations from
Transformers) is a powerful pretrained contextual
representation systenvuilt on bidirectionality

AYou will learn more about BERT later in the course!

40



Multi-layer RNNs
Awbb&a NS If NBIFIRé& AGaRSSLX 2y 2
many timesteps)

A2S Oly Itaz2z YIS U0KSY AGRSSLJk
applying multiple RNNsthis is a multlayer RNN.

A This allows the network to computeore complex
representations

AThelower RNNshould computeower-level featuresand the
nigher RNNshould computénigherlevel features

A Multi-layer RNNs are also callethcked RNNs

41



The hidden states from RNN layer
are the inputs to RNN laye¥rl

Multi-layer RNNs

Foooow

e

Foooow

S

e

Foooow

RNN layer 3

H
(@@

e

I€

RNN layer 2

:

RNN layer 1

exciting

movie was terribly

the
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Multi -layer RNNSs in practice

A Highperforming RNNs are often mulayerd 6 dzii | NB Y C
as convolutional or feefbrward networks)

A For example: In a 2017 pap@&ritzet al find that for Neural
Machine Translatior to 4 layerds best for the encoder RNN,
and4 layerds best for the decoder RNN

A However skip-connectiongdenseconnectionsare needed to train
deeper RNNs (e.§.layery

A Transformerbasednetworks (e.g. BERT) can be uptolayers

A You will learn about Transformers later; they have a lot of
skippinglike connections

43 Gal 8aA @S 9ELX 2NI GA2y 2AfhitecEudaNEritzet al 2@ R A S ancyN3yiE 10B.(BA02.


https://arxiv.org/pdf/1703.03906.pdf

In summary

Lots of new information today! What are thactical takeaway?

@ ® &)
T\ a T\ ( T
{ A [ lebstll A
| | ="
&) © & "N ;
1. LSTMs are powerful but GRUs are faster 2. Clip your gradients
3. Use bidirectionality when possible 4. Multi-layer RNNs are powerful, but you

» might need skip/dens® 2 Yy SO A 2 y &



