
Natural Language Processing

with Deep Learning

CS224N/Ling284

Lecture 7:

Vanishing Gradients

and Fancy RNNs

Abigail See

Natural Language Processing

w i th Deep Learning

CS224N/ Ling284

Chr istopher Manning and Richard Socher

Lecture 2: Word Vectors

Announcements

• Assignment 4 released today

• Due Thursday next week (9 days from now)

• Based on Neural Machine Translation (NMT)
• NMT will be covered in Thursday’s lecture

• You’ll use Azure to get access to a virtual machine with a GPU
• Budget extra time if you’re not used to working on a remote machine

(e.g. ssh, tmux, remote text editing)

• Get started early
• The NMT system takes 4 hours to train!

• Assignment 4 is quite a lot more complicated than Assignment 3!

• Don’t be caught by surprise!

• Thursday’s slides + notes are already online

2

Announcements

• Projects

• Next week: lectures are all about choosing projects

• It’s fine to delay thinking about projects until next week

• But if you’re already thinking about projects, you can view
some info/inspiration on the website’s project page

• Including: project ideas from potential Stanford AI Lab
mentors. For these, best to get in contact and get started
early!

3

Overview

• Last lecture we learned:
• Recurrent Neural Networks (RNNs) and why they’re great for Language

Modeling (LM).

• Today we’ll learn:
• Problems with RNNs and how to fix them

• More complex RNN variants

• Next lecture we’ll learn:
• How we can do Neural Machine Translation (NMT) using an RNN-based

architecture called sequence-to-sequence with attention

4

Today’s lecture

• Vanishing gradient problem

• Two new types of RNN: LSTM and GRU

• Other fixes for vanishing (or exploding) gradient:

• Gradient clipping

• Skip connections

• More fancy RNN variants:

• Bidirectional RNNs

• Multi-layer RNNs

motivates

5

Lots of important
definitions today!

Vanishing gradient intuition

6

Vanishing gradient intuition

?

7

Vanishing gradient intuition

chain rule!

8

Vanishing gradient intuition

chain rule!

9

Vanishing gradient intuition

chain rule!

10

Vanishing gradient intuition

What happens if these are small?

Vanishing gradient problem:
When these are small, the
gradient signal gets smaller

and smaller as it
backpropagates further11

Vanishing gradient proof sketch

• Recall:

• Therefore:

• Consider the gradient of the loss on step i, with respect
to the hidden state on some previous step j.

12

(chain rule)

(value of)

If Wh is small, then this term gets
vanishingly small as i and j get further apart

(chain rule)

Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013. http://proceedings.mlr.press/v28/pascanu13.pdf

http://proceedings.mlr.press/v28/pascanu13.pdf

Vanishing gradient proof sketch

• Consider matrix L2 norms:

• Pascanu et al showed that that if the largest eigenvalue of Wh is
less than 1, then the gradient will shrink exponentially
• Here the bound is 1 because we have sigmoid nonlinearity

• There’s a similar proof relating a largest eigenvalue >1 to
exploding gradients

13 Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013. http://proceedings.mlr.press/v28/pascanu13.pdf

http://proceedings.mlr.press/v28/pascanu13.pdf

Why is vanishing gradient a problem?

Gradient signal from faraway is lost because it’s much
smaller than gradient signal from close-by.

So model weights are only updated only with respect to
near effects, not long-term effects.

14

Why is vanishing gradient a problem?

• Another explanation: Gradient can be viewed as a measure of
the effect of the past on the future

• If the gradient becomes vanishingly small over longer distances
(step t to step t+n), then we can’t tell whether:

1. There’s no dependency between step t and t+n in the data

2. We have wrong parameters to capture the true
dependency between t and t+n

15

Effect of vanishing gradient on RNN-LM

• LM task: When she tried to print her tickets, she found that the
printer was out of toner. She went to the stationery store to buy
more toner. It was very overpriced. After installing the toner into
the printer, she finally printed her ________

• To learn from this training example, the RNN-LM needs to
model the dependency between “tickets” on the 7th step and
the target word “tickets” at the end.

• But if gradient is small, the model can’t learn this dependency

• So the model is unable to predict similar long-distance
dependencies at test time

16

Effect of vanishing gradient on RNN-LM

• LM task: The writer of the books ___

• Correct answer: The writer of the books is planning a sequel

• Syntactic recency: The writer of the books is (correct)

• Sequential recency: The writer of the books are (incorrect)

• Due to vanishing gradient, RNN-LMs are better at learning from
sequential recency than syntactic recency, so they make this
type of error more often than we’d like [Linzen et al 2016]

is

are

17 “Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies”, Linzen et al, 2016. https://arxiv.org/pdf/1611.01368.pdf

https://arxiv.org/pdf/1611.01368.pdf

Why is exploding gradient a problem?

• If the gradient becomes too big, then the SGD update step
becomes too big:

• This can cause bad updates: we take too large a step and reach
a bad parameter configuration (with large loss)

• In the worst case, this will result in Inf or NaN in your network
(then you have to restart training from an earlier checkpoint)

18

learning rate

gradient

Gradient clipping: solution for exploding gradient

19 Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013. http://proceedings.mlr.press/v28/pascanu13.pdf

• Gradient clipping: if the norm of the gradient is greater than
some threshold, scale it down before applying SGD update

• Intuition: take a step in the same direction, but a smaller step

http://proceedings.mlr.press/v28/pascanu13.pdf

Gradient clipping: solution for exploding gradient

20 Source: “Deep Learning”, Goodfellow, Bengio and Courville, 2016. Chapter 10.11.1. https://www.deeplearningbook.org/contents/rnn.html

• This shows the loss surface of a simple RNN (hidden state is a scalar not a vector)

• The “cliff” is dangerous because it has steep gradient

• On the left, gradient descent takes two very big steps due to steep gradient, resulting
in climbing the cliff then shooting off to the right (both bad updates)

• On the right, gradient clipping reduces the size of those steps, so effect is less drastic

https://www.deeplearningbook.org/contents/rnn.html

How to fix vanishing gradient problem?

• The main problem is that it’s too difficult for the RNN to learn to
preserve information over many timesteps.

• In a vanilla RNN, the hidden state is constantly being rewritten

• How about a RNN with separate memory?

21

Long Short-Term Memory (LSTM)

• A type of RNN proposed by Hochreiter and Schmidhuber in 1997 as a
solution to the vanishing gradients problem.

• On step t, there is a hidden state and a cell state

• Both are vectors length n

• The cell stores long-term information

• The LSTM can erase, write and read information from the cell

• The selection of which information is erased/written/read is controlled by
three corresponding gates

• The gates are also vectors length n

• On each timestep, each element of the gates can be open (1), closed (0),
or somewhere in-between.

• The gates are dynamic: their value is computed based on the current
context

22 “Long short-term memory”, Hochreiter and Schmidhuber, 1997. https://www.bioinf.jku.at/publications/older/2604.pdf

https://www.bioinf.jku.at/publications/older/2604.pdf

We have a sequence of inputs , and we will compute a sequence of hidden states
and cell states . On timestep t:

Long Short-Term Memory (LSTM)

A
ll

th
es

e
ar

e
ve

ct
o

rs
 o

f
sa

m
e

le
n

gt
h

 n

Forget gate: controls what is kept vs
forgotten, from previous cell state

Input gate: controls what parts of the
new cell content are written to cell

Output gate: controls what parts of
cell are output to hidden state

New cell content: this is the new
content to be written to the cell

Cell state: erase (“forget”) some
content from last cell state, and write
(“input”) some new cell content

Hidden state: read (“output”) some
content from the cell

Sigmoid function: all gate
values are between 0 and 1

23
Gates are applied using
element-wise product

Long Short-Term Memory (LSTM)

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

You can think of the LSTM equations visually like this:

24

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

ct-1

ht-1

ct

ht

ft

it ot

ct

ct
~

Long Short-Term Memory (LSTM)

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

You can think of the LSTM equations visually like this:

Compute the
forget gate

Forget some
cell content

Compute the
input gate

Compute the
new cell content

Compute the
output gate

Write some new cell content

Output some cell content
to the hidden state

25

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

How does LSTM solve vanishing gradients?

• The LSTM architecture makes it easier for the RNN to
preserve information over many timesteps

• e.g. if the forget gate is set to remember everything on every
timestep, then the info in the cell is preserved indefinitely

• By contrast, it’s harder for vanilla RNN to learn a recurrent
weight matrix Wh that preserves info in hidden state

• LSTM doesn’t guarantee that there is no vanishing/exploding
gradient, but it does provide an easier way for the model to
learn long-distance dependencies

26

LSTMs: real-world success

• In 2013-2015, LSTMs started achieving state-of-the-art results

• Successful tasks include: handwriting recognition, speech
recognition, machine translation, parsing, image captioning

• LSTM became the dominant approach

• Now (2019), other approaches (e.g. Transformers) have become
more dominant for certain tasks.

• For example in WMT (a MT conference + competition):

• In WMT 2016, the summary report contains ”RNN” 44 times

• In WMT 2018, the report contains “RNN” 9 times and
“Transformer” 63 times

27

Source: "Findings of the 2016 Conference on Machine Translation (WMT16)", Bojar et al. 2016, http://www.statmt.org/wmt16/pdf/W16-2301.pdf
Source: "Findings of the 2018 Conference on Machine Translation (WMT18)", Bojar et al. 2018, http://www.statmt.org/wmt18/pdf/WMT028.pdf

http://www.statmt.org/wmt16/pdf/W16-2301.pdf
http://www.statmt.org/wmt18/pdf/WMT028.pdf

Gated Recurrent Units (GRU)

• Proposed by Cho et al. in 2014 as a simpler alternative to the LSTM.

• On each timestep t we have input and hidden state (no cell state).

28 "Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation", Cho et al. 2014, https://arxiv.org/pdf/1406.1078v3.pdf

Update gate: controls what parts of
hidden state are updated vs preserved

Reset gate: controls what parts of
previous hidden state are used to
compute new content

Hidden state: update gate
simultaneously controls what is kept
from previous hidden state, and what
is updated to new hidden state content

New hidden state content: reset gate
selects useful parts of prev hidden
state. Use this and current input to
compute new hidden content.

How does this solve vanishing gradient?
Like LSTM, GRU makes it easier to retain info
long-term (e.g. by setting update gate to 0)

https://arxiv.org/pdf/1406.1078v3.pdf

LSTM vs GRU

• Researchers have proposed many gated RNN variants, but LSTM
and GRU are the most widely-used

• The biggest difference is that GRU is quicker to compute and has
fewer parameters

• There is no conclusive evidence that one consistently performs
better than the other

• LSTM is a good default choice (especially if your data has
particularly long dependencies, or you have lots of training data)

• Rule of thumb: start with LSTM, but switch to GRU if you want
something more efficient

29

Is vanishing/exploding gradient just a RNN problem?

• No! It can be a problem for all neural architectures (including
feed-forward and convolutional), especially deep ones.
• Due to chain rule / choice of nonlinearity function, gradient can become

vanishingly small as it backpropagates

• Thus lower layers are learnt very slowly (hard to train)

• Solution: lots of new deep feedforward/convolutional architectures that
add more direct connections (thus allowing the gradient to flow)

For example:

• Residual connections aka “ResNet”

• Also known as skip-connections

• The identity connection
preserves information by default

• This makes deep networks much
easier to train

30 "Deep Residual Learning for Image Recognition", He et al, 2015. https://arxiv.org/pdf/1512.03385.pdf

https://arxiv.org/pdf/1512.03385.pdf

Is vanishing/exploding gradient just a RNN problem?

• No! It can be a problem for all neural architectures (including
feed-forward and convolutional), especially deep ones.
• Due to chain rule / choice of nonlinearity function, gradient can become

vanishingly small as it backpropagates

• Thus lower layers are learnt very slowly (hard to train)

• Solution: lots of new deep feedforward/convolutional architectures that
add more direct connections (thus allowing the gradient to flow)

For example:

• Dense connections aka “DenseNet”

• Directly connect everything to everything!

31 ”Densely Connected Convolutional Networks", Huang et al, 2017. https://arxiv.org/pdf/1608.06993.pdf

https://arxiv.org/pdf/1608.06993.pdf

Is vanishing/exploding gradient just a RNN problem?

• No! It can be a problem for all neural architectures (including
feed-forward and convolutional), especially deep ones.
• Due to chain rule / choice of nonlinearity function, gradient can become

vanishingly small as it backpropagates

• Thus lower layers are learnt very slowly (hard to train)

• Solution: lots of new deep feedforward/convolutional architectures that
add more direct connections (thus allowing the gradient to flow)

For example:

• Highway connections aka “HighwayNet”

• Similar to residual connections, but the identity connection vs the
transformation layer is controlled by a dynamic gate

• Inspired by LSTMs, but applied to deep feedforward/convolutional networks

32 ”Highway Networks", Srivastava et al, 2015. https://arxiv.org/pdf/1505.00387.pdf

https://arxiv.org/pdf/1505.00387.pdf

Is vanishing/exploding gradient just a RNN problem?

• No! It can be a problem for all neural architectures (including
feed-forward and convolutional), especially deep ones.
• Due to chain rule / choice of nonlinearity function, gradient can become

vanishingly small as it backpropagates

• Thus lower layers are learnt very slowly (hard to train)

• Solution: lots of new deep feedforward/convolutional architectures that
add more direct connections (thus allowing the gradient to flow)

33

Is vanishing/exploding gradient just a RNN problem?

• No! It can be a problem for all neural architectures (including
feed-forward and convolutional), especially deep ones.
• Due to chain rule / choice of nonlinearity function, gradient can become

vanishingly small as it backpropagates

• Thus lower layers are learnt very slowly (hard to train)

• Solution: lots of new deep feedforward/convolutional architectures that
add more direct connections (thus allowing the gradient to flow)

• Conclusion: Though vanishing/exploding gradients are a general
problem, RNNs are particularly unstable due to the repeated
multiplication by the same weight matrix [Bengio et al, 1994]

34 ”Learning Long-Term Dependencies with Gradient Descent is Difficult", Bengio et al. 1994, http://ai.dinfo.unifi.it/paolo//ps/tnn-94-gradient.pdf

http://ai.dinfo.unifi.it/paolo/ps/tnn-94-gradient.pdf

Recap

• Today we’ve learnt:

• Vanishing gradient problem: what it is, why it happens, and
why it’s bad for RNNs

• LSTMs and GRUs: more complicated RNNs that use gates to
control information flow; they are more resilient to vanishing
gradients

• Remainder of this lecture:

• Bidirectional RNNs

• Multi-layer RNNs

35

Both of these are
pretty simple

Bidirectional RNNs: motivation

36

terribly exciting !the movie was

positive

Sentence encoding

We can regard this hidden state as a
representation of the word “terribly” in the
context of this sentence. We call this a
contextual representation.

These contextual
representations only
contain information
about the left context
(e.g. “the movie
was”).

What about right
context?

In this example,
“exciting” is in the
right context and this
modifies the meaning
of “terribly” (from
negative to positive)

Task: Sentiment Classification

Bidirectional RNNs

37
terribly exciting !the movie was

Forward RNN

Backward RNN

Concatenated
hidden states

This contextual representation of “terribly”
has both left and right context!

Bidirectional RNNs

38

Forward RNN

Backward RNN

Concatenated hidden states

This is a general notation to mean “compute
one forward step of the RNN” – it could be a
vanilla, LSTM or GRU computation.

We regard this as “the hidden
state” of a bidirectional RNN.
This is what we pass on to the
next parts of the network.

Generally, these
two RNNs have
separate weights

On timestep t:

Bidirectional RNNs: simplified diagram

39

terribly exciting !the movie was

The two-way arrows indicate bidirectionality and
the depicted hidden states are assumed to be
the concatenated forwards+backwards states.

Bidirectional RNNs

• Note: bidirectional RNNs are only applicable if you have access
to the entire input sequence.

• They are not applicable to Language Modeling, because in LM
you only have left context available.

• If you do have entire input sequence (e.g. any kind of encoding),
bidirectionality is powerful (you should use it by default).

• For example, BERT (Bidirectional Encoder Representations from
Transformers) is a powerful pretrained contextual
representation system built on bidirectionality.

• You will learn more about BERT later in the course!

40

Multi-layer RNNs

• RNNs are already “deep” on one dimension (they unroll over
many timesteps)

• We can also make them “deep” in another dimension by
applying multiple RNNs – this is a multi-layer RNN.

• This allows the network to compute more complex
representations

• The lower RNNs should compute lower-level features and the
higher RNNs should compute higher-level features.

• Multi-layer RNNs are also called stacked RNNs.

41

Multi-layer RNNs

42
terribly exciting !the movie was

RNN layer 1

RNN layer 2

RNN layer 3

The hidden states from RNN layer i
are the inputs to RNN layer i+1

Multi-layer RNNs in practice

• High-performing RNNs are often multi-layer (but aren’t as deep
as convolutional or feed-forward networks)

• For example: In a 2017 paper, Britz et al find that for Neural
Machine Translation, 2 to 4 layers is best for the encoder RNN,
and 4 layers is best for the decoder RNN
• However, skip-connections/dense-connections are needed to train

deeper RNNs (e.g. 8 layers)

• Transformer-based networks (e.g. BERT) can be up to 24 layers
• You will learn about Transformers later; they have a lot of

skipping-like connections

43 “Massive Exploration of Neural Machine Translation Architecutres”, Britz et al, 2017. https://arxiv.org/pdf/1703.03906.pdf

https://arxiv.org/pdf/1703.03906.pdf

In summary

Lots of new information today! What are the practical takeaways?

44

1. LSTMs are powerful but GRUs are faster 2. Clip your gradients

3. Use bidirectionality when possible 4. Multi-layer RNNs are powerful, but you
might need skip/dense-connections if it’s deep

