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Announcements

• We are taking attendance today
• Sign in with the TAs outside the auditorium

• No need to get up now – there will be plenty of time to sign in after the 
lecture ends

• For attendance policy special cases, see Piazza post for clarification

• Assignment 4 content covered today
• Get started early! The model takes 4 hours to train!

• Mid-quarter feedback survey:
• Will be sent out sometime in the next few days (watch Piazza). 

• Complete it for 0.5% credit
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Overview

Today we will:

• Introduce a new task: Machine Translation

• Introduce a new neural architecture: sequence-to-sequence

• Introduce a new neural technique: attention

is a major use-case of

is improved by
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Section 1: Pre-Neural Machine Translation
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Machine Translation

Machine Translation (MT) is the task of translating a sentence x 
from one language (the source language) to a sentence y in 
another language (the target language).

x: L'homme est né libre, et partout il est dans les fers

y: Man is born free, but everywhere he is in chains

- Rousseau
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1950s: Early Machine Translation

Machine Translation research 
began in the early 1950s.

• Russian → English 
(motivated by the Cold War!)

• Systems were mostly rule-based, using a bilingual dictionary to 
map Russian words to their English counterparts

1 minute video showing 1954 MT: 
https://youtu.be/K-HfpsHPmvw
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1990s-2010s: Statistical Machine Translation

• Core idea: Learn a probabilistic model from data

• Suppose we’re translating French → English.

• We want to find best English sentence y, given French sentence x

• Use Bayes Rule to break this down into two components to be 
learnt separately:

Translation Model

Models how words and phrases 
should be translated (fidelity). 

Learnt from parallel data.

Language Model 

Models how to write 
good English (fluency). 

Learnt from monolingual data.
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1990s-2010s: Statistical Machine Translation

• Question: How to learn translation model                ?

• First, need large amount of parallel data 
(e.g. pairs of human-translated French/English sentences)

Ancient Egyptian

Demotic

Ancient Greek

The Rosetta Stone
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Learning alignment for SMT

• Question: How to learn translation model                from the 
parallel corpus?

• Break it down further: we actually want to consider

where a is the alignment, i.e. word-level correspondence 
between French sentence x and English sentence y
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What is alignment?

Alignment is the correspondence between particular words in the 
translated sentence pair.

• Note: Some words have no counterpart

9/24/14 

4 

Statistical MT 

Pioneered at IBM in the early 1990s 

 

Let’s make a probabilistic model of translation 

P(e | f) 

 

Suppose f is de rien 

P(you’re welcome | de rien)  = 0.45 

P(nothing | de rien)    = 0.13 

P(piddling | de rien)   = 0.01 

P(underpants | de rien)   = 0.000000001 

Hieroglyphs 

Statistical Solution 

• Parallel Texts 

– Rosetta Stone 

Demotic 

Greek 

Statistical Solution 

– Instruction Manuals 

– Hong Kong/Macao 

Legislation 

– Canadian Parliament 

Hansards 

– United Nations Reports 

– Official Journal 

of the European 

Communities 

– Translated news 

• Parallel Texts Hmm, every time one sees  

“banco”, translation is  

bank” or “bench” …   

If it’s “banco de…”, it 

always becomes “bank”,  

never “bench”… 

A Division of Labor 

Spanish Broken 
English 

English 

Spanish/English 
Bilingual Text 

English 
Text 

Statistical Analysis Statistical Analysis 

Que hambre tengo yo I am so hungry 

Translation 

Model P(f|e) 
Language 

Model P(e) 

Decoding algorithm 
argmax P(f|e) * P(e) 

     e 

What hunger have I, 

Hungry I am so, 

I am so hungry, 

Have I that hunger … 

Fidelity Fluency 

Alignments 

We can factor the translation model P(f | e ) 
by identifying alignments (correspondences) 

between words in f and words in e 

Japan 
shaken 

by 
two 

new 
quakes 

Le 
Japon 

secoué 

par 

deux 
nouveaux 

séismes 

Japan 

shaken 

by 

two 

new 

quakes 

L
e

 

J
a

p
o

n
 

s
e

c
o

u
é

 

p
a

r 

d
e

u
x
 

n
o

u
v
e

a
u

x
 

s
é

is
m

e
s
 

spurious  

word 

Alignments: harder 

And 

the 

program 

has 

been 

implemented 

Le 

programme 

a 

été 

mis 

en 

application 

zero fertility  word 

not translated 

And 

the 

program 

has 

been 

implemented 

L
e

 

p
ro

g
ra

m
m

e
 

a
 

é
té

 

m
is

 

e
n

 

a
p

p
lic

a
ti
o

n
 

one-to-many 

alignment 
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Alignment is complex

Alignment can be many-to-one

9/24/14 
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Alignments: harder 

The 

balance 

was 

the 

territory 

of 

the 

aboriginal 

people 

Le 

reste 

 

appartenait 

 

aux 

 

autochtones 

many-to-one 

alignments 

The 

balance 

was 

the 

territory 

of 

the 

aboriginal 

people 

 L
e

 

re
s
te

 

a
p

p
a

rt
e
n

a
it
 

a
u

x
 

a
u

to
c
h
to

n
e

s
 

Alignments: hardest 

The 

poor 

don’t 

have 

any 

money 

Les 

pauvres 

sont 

démunis 

many-to-many 

alignment 

The 

poor 

don t 

have 

any 

money 

L
e

s
 

p
a

u
v
re

s
 

s
o

n
t 

d
é

m
u

n
is

 

phrase 

alignment 

Alignment as a vector 

Mary 

did 

not 

slap 

 

 

the 

green 

witch 

1 

2 

3 

4 

 

 

5 

6 

7 

Maria 

no 

daba 

una 

botefada 

a 

la 

bruja 

verde 

1 

2 

3 

4 

5 

6 

7 

8 

9 

i j 

1 

3 

4 

4 

4 

0 

5 

7 

6 

aj=i 

• used in all IBM models 

• a is vector of length J 

• maps indexes j to indexes i 

• each aj  {0, 1 … I} 

• aj = 0  fj is spurious  

• no one-to-many alignments 

• no many-to-many alignments 

• but provides foundation for 

phrase-based alignment 

IBM Model 1 generative story 

And 

the 

program 

has 

been 

implemented 

aj 

L
e
 

p
ro

g
ra

m
m

e
 

a
 

é
té

 

m
is

 

e
n
 

a
p
p

lic
a

ti
o

n
 

2  3  4  5  6  6  6  

Choose length J for French sentence 

For each j in 1 to J: 

– Choose aj uniformly from 0, 1, … I 

– Choose fj by translating eaj 

Given English sentence e1, e2, … eI 

We want to learn 

how to do this 

Want: P(f|e) 

IBM Model 1 parameters 

And 

the 

program 

has 

been 

implemented 

L
e

 

p
ro

g
ra

m
m

e
 

a
 

é
té

 

m
is

 

e
n

 

a
p

p
lic

a
ti
o

n
 

2 3 4 5 6 6 6  aj 

Applying Model 1* 

As translation model 

As alignment model 

P(f, a | e) can be used as a translation model or an alignment model 

* Actually, any P(f, a | e), e.g., any IBM model 
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Alignment is complex

Alignment can be one-to-many

9/24/14 

4 

Statistical MT 

Pioneered at IBM in the early 1990s 

 

Let’s make a probabilistic model of translation 

P(e | f) 

 

Suppose f is de rien 
P(you’re welcome | de rien)  = 0.45 

P(nothing | de rien)    = 0.13 

P(piddling | de rien)   = 0.01 

P(underpants | de rien)   = 0.000000001 

Hieroglyphs 

Statistical Solution 

• Parallel Texts 

– Rosetta Stone 

Demotic 

Greek 

Statistical Solution 

– Instruction Manuals 

– Hong Kong/Macao 
Legislation 

– Canadian Parliament 

Hansards 

– United Nations Reports 

– Official Journal 
of the European 

Communities 

– Translated news 

• Parallel Texts Hmm, every time one sees  

“banco”, translation is  

bank” or “bench” …   

If it’s “banco de…”, it 

always becomes “bank”,  

never “bench”… 

A Division of Labor 

Spanish Broken 

English 
English 

Spanish/English 
Bilingual Text 

English 
Text 

Statistical Analysis Statistical Analysis 

Que hambre tengo yo I am so hungry 

Translation 

Model P(f|e) 
Language 

Model P(e) 

Decoding algorithm 

argmax P(f|e) * P(e) 

     e 

What hunger have I, 

Hungry I am so, 

I am so hungry, 

Have I that hunger … 

Fidelity Fluency 

Alignments 

We can factor the translation model P(f | e ) 

by identifying alignments (correspondences) 

between words in f and words in e 

Japan 

shaken 

by 

two 

new 

quakes 

Le 
Japon 

secoué 

par 

deux 

nouveaux 

séismes 

Japan 

shaken 

by 

two 

new 

quakes 

L
e

 

J
a

p
o

n
 

s
e

c
o

u
é
 

p
a

r 

d
e

u
x
 

n
o

u
v
e

a
u
x
 

s
é

is
m

e
s
 

spurious  

word 

Alignments: harder 

And 

the 

program 

has 

been 

implemented 

Le 

programme 

a 

été 

mis 

en 

application 

zero fertility  word 

not translated 

And 

the 

program 

has 

been 

implemented 

L
e

 

p
ro

g
ra

m
m

e
 

a
 

é
té

 

m
is

 

e
n

 

a
p

p
lic

a
ti
o

n
 

one-to-many 

alignment 
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fertile word
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Alignment is complex

Some words are very fertile!
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il

a

m’

entarté

he

hit

me

with

a

pie

h
e

h
it

m
e

w
it
h

a p
ie

il

a

m’

entarté

This word has no single-
word equivalent in English



Alignment is complex

Alignment can be many-to-many (phrase-level)
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Alignments: harder 

The 

balance 

was 

the 

territory 

of 

the 

aboriginal 

people 

Le 

reste 

 

appartenait 

 

aux 

 

autochtones 

many-to-one 

alignments 

The 

balance 

was 

the 

territory 

of 

the 

aboriginal 

people 

 L
e

 

re
s
te

 

a
p

p
a
rt

e
n
a

it
 

a
u

x
 

a
u

to
c
h

to
n

e
s
 

Alignments: hardest 

The 

poor 

don’t 

have 

any 

money 

Les 

pauvres 

sont 

démunis 

many-to-many 

alignment 

The 

poor 

don t 

have 

any 

money 

L
e

s
 

p
a

u
v
re

s
 

s
o

n
t 

d
é

m
u

n
is

 

phrase 

alignment 

Alignment as a vector 

Mary 

did 

not 

slap 

 

 

the 

green 

witch 

1 

2 

3 

4 

 

 

5 

6 

7 

Maria 

no 

daba 

una 

botefada 

a 

la 

bruja 

verde 

1 

2 

3 

4 

5 

6 

7 

8 

9 

i j 

1 

3 

4 

4 

4 

0 

5 

7 

6 

aj=i 

• used in all IBM models 

• a is vector of length J 

• maps indexes j to indexes i 

• each aj  {0, 1 … I} 

• aj = 0  fj is spurious  

• no one-to-many alignments 

• no many-to-many alignments 

• but provides foundation for 

phrase-based alignment 

IBM Model 1 generative story 

And 

the 

program 

has 

been 

implemented 

aj 

L
e

 

p
ro

g
ra

m
m

e
 

a
 

é
té

 

m
is

 

e
n

 

a
p

p
lic

a
ti
o

n
 

2  3  4  5  6  6  6  

Choose length J for French sentence 

For each j in 1 to J: 

– Choose aj uniformly from 0, 1, … I 

– Choose fj by translating eaj 

Given English sentence e1, e2, … eI 

We want to learn 
how to do this 

Want: P(f|e) 

IBM Model 1 parameters 

And 

the 

program 

has 

been 

implemented 

L
e
 

p
ro

g
ra

m
m

e
 

a
 

é
té

 

m
is

 

e
n
 

a
p
p

lic
a

ti
o

n
 

2 3 4 5 6 6 6  aj 

Applying Model 1* 

As translation model 

As alignment model 

P(f, a | e) can be used as a translation model or an alignment model 

* Actually, any P(f, a | e), e.g., any IBM model 
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Learning alignment for SMT

• We learn                    as a combination of many factors, including:

• Probability of particular words aligning (also depends on 
position in sent)

• Probability of particular words having particular fertility 
(number of corresponding words)

• etc.
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Decoding for SMT

• We could enumerate every possible y and calculate the 
probability?  →  Too expensive!

• Answer: Use a heuristic search algorithm to search for the best 
translation, discarding hypotheses that are too low-probability 

• This process is called decoding

Question:
How to compute 

this argmax?

Translation Model

Language Model 

16



Decoding for SMT

17

Source: ”Statistical Machine Translation", Chapter 6, Koehn, 2009. 
https://www.cambridge.org/core/books/statistical-machine-translation/94EADF9F680558E13BE759997553CDE5

https://www.cambridge.org/core/books/statistical-machine-translation/94EADF9F680558E13BE759997553CDE5


Decoding for SMT

18

Source: ”Statistical Machine Translation", Chapter 6, Koehn, 2009. 
https://www.cambridge.org/core/books/statistical-machine-translation/94EADF9F680558E13BE759997553CDE5

https://www.cambridge.org/core/books/statistical-machine-translation/94EADF9F680558E13BE759997553CDE5


1990s-2010s: Statistical Machine Translation

• SMT was a huge research field

• The best systems were extremely complex

• Hundreds of important details we haven’t mentioned here

• Systems had many separately-designed subcomponents 

• Lots of feature engineering
• Need to design features to capture particular language phenomena

• Require compiling and maintaining extra resources
• Like tables of equivalent phrases

• Lots of human effort to maintain
• Repeated effort for each language pair!
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Section 2: Neural Machine Translation
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2014

(dramatic reenactment)
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2014

(dramatic reenactment)
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What is Neural Machine Translation?

• Neural Machine Translation (NMT) is a way to do Machine 
Translation with a single neural network

• The neural network architecture is called sequence-to-sequence
(aka seq2seq) and it involves two RNNs.
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En
co

d
er

 R
N

N

Neural Machine Translation (NMT)

<START>

Source sentence (input)

il a         m’      entarté

The sequence-to-sequence model
Target sentence (output)

D
eco

d
er R

N
N

Encoder RNN produces 
an encoding of the 
source sentence.

Encoding of the source sentence.
Provides initial hidden state 

for Decoder RNN.

Decoder RNN is a Language Model that generates 
target sentence, conditioned on encoding.

he

ar
gm

ax
he

ar
gm

ax

hit

hit

ar
gm

ax

me

Note: This diagram shows test time behavior: 
decoder output is fed in           as next step’s input

with         a          pie    <END>

me       with        a         pie

ar
gm

ax

ar
gm

ax

ar
gm

ax

ar
gm

ax
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Sequence-to-sequence is versatile!

• Sequence-to-sequence is useful for more than just MT

• Many NLP tasks can be phrased as sequence-to-sequence:

• Summarization (long text → short text)

• Dialogue (previous utterances → next utterance)

• Parsing (input text → output parse as sequence)

• Code generation (natural language → Python code)

25



Neural Machine Translation (NMT)

• The sequence-to-sequence model is an example of a 
Conditional Language Model.
• Language Model because the decoder is predicting the 

next word of the target sentence y

• Conditional because its predictions are also conditioned on the source 
sentence x

• NMT directly calculates            :

• Question: How to train a NMT system?

• Answer: Get a big parallel corpus…

Probability of next target word, given 
target words so far and source sentence x
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Training a Neural Machine Translation system
En

co
d

er
 R

N
N

Source sentence (from corpus)

<START>    he        hit         me      with         a         pieil a         m’      entarté

Target sentence (from corpus)

Seq2seq is optimized as a single system.
Backpropagation operates “end-to-end”.

D
eco

d
er R

N
N

ො𝑦1 ො𝑦2 ො𝑦3 ො𝑦4 ො𝑦5 ො𝑦6 ො𝑦7

𝐽1 𝐽2 𝐽3 𝐽4 𝐽5 𝐽6 𝐽7

= negative log 
prob of “he”

𝐽 =
1

𝑇
෍

𝑡=1

𝑇

𝐽𝑡 =                 +          +         +         +          +         +

= negative log 
prob of <END>

= negative log 
prob of “with”
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Greedy decoding

• We saw how to generate (or “decode”) the target sentence by 
taking argmax on each step of the decoder

• This is greedy decoding (take most probable word on each step)

• Problems with this method?

<START>

he

ar
gm

ax

he

ar
gm

ax

hit

hit

ar
gm

ax

me with         a          pie   <END>

me        with        a         pie
ar

gm
ax

ar
gm

ax

ar
gm

ax

ar
gm

ax
28



Problems with greedy decoding

• Greedy decoding has no way to undo decisions! 

• Input: il a m’entarté (he hit me with a pie)

• → he ____

• → he hit ____

• → he hit a ____  (whoops! no going back now…)

• How to fix this?
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Exhaustive search decoding

• Ideally we want to find a (length T) translation y that maximizes 

• We could try computing all possible sequences y
• This means that on each step t of the decoder, we’re tracking Vt possible 

partial translations, where V is vocab size

• This O(VT) complexity is far too expensive!
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Beam search decoding

• Core idea: On each step of decoder, keep track of the k most 
probable partial translations (which we call hypotheses)
• k is the beam size (in practice around 5 to 10)

• A hypothesis                      has a score which is its log probability:

• Scores are all negative, and higher score is better

• We search for high-scoring hypotheses, tracking top k on each step

• Beam search is not guaranteed to find optimal solution

• But much more efficient than exhaustive search!
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Beam search decoding: example
Beam size = k = 2. Blue numbers =

<START>

32

Calculate prob
dist of next word



Beam search decoding: example
Beam size = k = 2. Blue numbers =

<START>

he

I

33

-0.7

-0.9

Take top k words 
and compute scores

= log PLM(he|<START>)

= log PLM(I|<START>)



Beam search decoding: example
Beam size = k = 2. Blue numbers =

hit

struck

was

got

<START>

he

I

34

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9

For each of the k hypotheses, find 
top k next words and calculate scores

= log PLM(hit|<START> he) + -0.7

= log PLM(struck|<START> he) + -0.7

= log PLM(was|<START> I) + -0.9

= log PLM(got|<START> I) + -0.9



Beam search decoding: example
Beam size = k = 2. Blue numbers =

hit

struck

was

got

<START>

he

I

35

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9

Of these k2 hypotheses,
just keep k with highest scores



Beam search decoding: example
Beam size = k = 2. Blue numbers =

hit

struck

was

got

a

me

hit

struck

<START>

he

I

36

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

For each of the k hypotheses, find 
top k next words and calculate scores

= log PLM(a|<START> he hit) + -1.7

= log PLM(me|<START> he hit) + -1.7

= log PLM(hit|<START> I was) + -1.6

= log PLM(struck|<START> I was) + -1.6



Beam search decoding: example
Beam size = k = 2. Blue numbers =

hit

struck

was

got

a

me

hit

struck

<START>

he

I

37

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

Of these k2 hypotheses,
just keep k with highest scores



Beam search decoding: example
Beam size = k = 2. Blue numbers =

hit

struck

was

got

a

me

hit

struck

tart

pie

with

on<START>

he

I

38

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

-3.5

-3.3

-4.0

-3.4

For each of the k hypotheses, find 
top k next words and calculate scores



Beam search decoding: example
Beam size = k = 2. Blue numbers =

hit

struck

was

got

a

me

hit

struck

tart

pie

with

on<START>

he

I

39

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

-3.5

-3.3

-4.0

-3.4

Of these k2 hypotheses,
just keep k with highest scores



Beam search decoding: example
Beam size = k = 2. Blue numbers =

hit

struck

was

got

a

me

hit

struck

tart

pie

with

on

in

with

a

one<START>

he

I

40

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

-3.5

-3.3

-4.0

-3.4

-3.7

-4.3

-4.5

-4.8

For each of the k hypotheses, find 
top k next words and calculate scores



Beam search decoding: example
Beam size = k = 2. Blue numbers =

hit

struck

was

got

a

me

hit

struck

tart

pie

with

on

in

with

a

one<START>

he

I

41

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

-3.5

-3.3

-4.0

-3.4

-3.7

-4.3

-4.5

-4.8

Of these k2 hypotheses,
just keep k with highest scores



Beam search decoding: example
Beam size = k = 2. Blue numbers =

hit

struck

was

got

a

me

hit

struck

tart

pie

with

on

in

with

a

one

pie

tart

pie

tart

<START>

he

I

42

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

-3.5

-3.3

-4.0

-3.4

-3.7

-4.3

-4.5

-4.8

-4.3

-4.6

-5.0

-5.3

For each of the k hypotheses, find 
top k next words and calculate scores



Beam search decoding: example
Beam size = k = 2. Blue numbers =

hit

struck

was

got

a

me

hit

struck

tart

pie

with

on

in

with

a

one

pie

tart

pie

tart

<START>

he

I

43

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

-3.5

-3.3

-4.0

-3.4
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This is the top-scoring hypothesis!



Beam search decoding: example
Beam size = k = 2. Blue numbers =

hit

struck

was

got

a

me

hit

struck

tart

pie

with

on

in

with

a

one

pie

tart

pie

tart

<START>

he

I
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-5.0

-5.3

Backtrack to obtain the full hypothesis



Beam search decoding: stopping criterion

• In greedy decoding, usually we decode until the model produces 
a <END> token
• For example: <START> he hit me with a pie <END>

• In beam search decoding, different hypotheses may produce 
<END> tokens on different timesteps
• When a hypothesis produces <END>, that hypothesis is complete. 

• Place it aside and continue exploring other hypotheses via beam search.

• Usually we continue beam search until:
• We reach timestep T (where T is some pre-defined cutoff), or

• We have at least n completed hypotheses (where n is pre-defined cutoff)
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Beam search decoding: finishing up

• We have our list of completed hypotheses. 

• How to select top one with highest score?

• Each hypothesis                     on our list has a score

• Problem with this: longer hypotheses have lower scores

• Fix: Normalize by length. Use this to select top one instead:
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Advantages of NMT

Compared to SMT, NMT has many advantages:

• Better performance

• More fluent

• Better use of context

• Better use of phrase similarities

• A single neural network to be optimized end-to-end

• No subcomponents to be individually optimized

• Requires much less human engineering effort

• No feature engineering

• Same method for all language pairs

47



Disadvantages of NMT?

Compared to SMT:

• NMT is less interpretable 

• Hard to debug

• NMT is difficult to control

• For example, can’t easily specify rules or guidelines for 
translation

• Safety concerns!
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How do we evaluate Machine Translation?

BLEU (Bilingual Evaluation Understudy)

• BLEU compares the machine-written translation to one or 
several human-written translation(s), and computes a similarity 
score based on:

• n-gram precision (usually for 1, 2, 3 and 4-grams)

• Plus a penalty for too-short system translations

• BLEU is useful but imperfect

• There are many valid ways to translate a sentence

• So a good translation can get a poor BLEU score because it 
has low n-gram overlap with the human translation 
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You’ll see BLEU in detail 
in Assignment 4!

Source: ” BLEU: a Method for Automatic Evaluation of Machine Translation", Papineni et al, 2002. 



MT progress over time
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Source: http://www.meta-net.eu/events/meta-forum-2016/slides/09_sennrich.pdf

[Edinburgh En-De WMT newstest2013 Cased BLEU; NMT 2015 from U. Montréal]
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http://www.meta-net.eu/events/meta-forum-2016/slides/09_sennrich.pdf


NMT: the biggest success story of NLP Deep Learning

Neural Machine Translation went from a fringe research activity in 
2014 to the leading standard method in 2016

• 2014: First seq2seq paper published

• 2016: Google Translate switches from SMT to NMT

• This is amazing!

• SMT systems, built by hundreds of engineers over many 
years, outperformed by NMT systems trained by a handful of 
engineers in a few months
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So is Machine Translation solved?

• Nope!

• Many difficulties remain:

• Out-of-vocabulary words

• Domain mismatch between train and test data

• Maintaining context over longer text

• Low-resource language pairs
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Further reading: “Has AI surpassed humans at translation? Not even close!” 
https://www.skynettoday.com/editorials/state_of_nmt

https://www.skynettoday.com/editorials/state_of_nmt


So is Machine Translation solved?

• Nope!

• Using common sense is still hard

?
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So is Machine Translation solved?

• Nope!

• NMT picks up biases in training data

Source: https://hackernoon.com/bias-sexist-or-this-is-the-way-it-should-be-ce1f7c8c683c

Didn’t specify gender
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Further%20reading:%20%20“Has%20AI%20surpassed%20humans%20at%20translation?%20Not%20even%20close!”%20%20https://www.skynettoday.com/editorials/state_of_nmt


So is Machine Translation solved?

• Nope!

• Uninterpretable systems do strange things

Picture source: https://www.vice.com/en_uk/article/j5npeg/why-is-google-translate-spitting-out-sinister-religious-prophecies
Explanation: https://www.skynettoday.com/briefs/google-nmt-prophecies55

https://www.vice.com/en_uk/article/j5npeg/why-is-google-translate-spitting-out-sinister-religious-prophecies
https://www.skynettoday.com/briefs/google-nmt-prophecies


NMT research continues

NMT is the flagship task for NLP Deep Learning

• NMT research has pioneered many of the recent innovations of 
NLP Deep Learning

• In 2019: NMT research continues to thrive

• Researchers have found many, many improvements to the 
“vanilla” seq2seq NMT system we’ve presented today

• But one improvement is so integral that it is the new vanilla…

ATTENTION
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Section 3: Attention
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Sequence-to-sequence: the bottleneck problem
En

co
d

er
 R

N
N

Source sentence (input)

<START>    he        hit        me       with        a         pieil a         m’      entarté

he        hit        me       with        a          pie    <END>

D
eco

d
er R

N
N

Target sentence (output)

Problems with this architecture?

Encoding of the 
source sentence. 
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Sequence-to-sequence: the bottleneck problem
En

co
d

er
 R

N
N

Source sentence (input)

<START>    he        hit        me       with        a         pieil a         m’      entarté

he        hit        me       with        a          pie    <END>

D
eco

d
er R

N
N

Target sentence (output)

Encoding of the 
source sentence. 

This needs to capture all 
information about the 

source sentence.
Information bottleneck!
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Attention

• Attention provides a solution to the bottleneck problem.

• Core idea: on each step of the decoder, use direct connection to 
the encoder to focus on a particular part of the source sequence

• First we will show via diagram (no equations), then we will show 
with equations
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Sequence-to-sequence with attention
En

co
d

er
 

R
N

N

Source sentence (input)

<START>il a         m’      entarté

D
eco

d
er R

N
N

A
tt

en
ti

o
n

 
sc

o
re

s

dot product
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Sequence-to-sequence with attention
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Sequence-to-sequence with attention
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Sequence-to-sequence with attention
En
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Source sentence (input)

<START>il a         m’      entarté

D
eco

d
er R

N
N

A
tt

en
ti

o
n

 
sc

o
re

s

dot product

64



Sequence-to-sequence with attention
En

co
d

er
 

R
N

N

Source sentence (input)

<START>il a         m’      entarté

D
eco

d
er R

N
N

A
tt

en
ti

o
n

 
sc

o
re

s

On this decoder timestep, we’re 
mostly focusing on the first 
encoder hidden state (”he”)

A
tt

en
ti

o
n

 
d

is
tr

ib
u

ti
o

n

Take softmax to turn the scores 
into a probability distribution
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Sequence-to-sequence with attention
En

co
d

er
 

R
N

N

Source sentence (input)

<START>il a         m’      entarté

D
eco

d
er R

N
N

A
tt

en
ti

o
n

 
d

is
tr

ib
u

ti
o

n
A

tt
en

ti
o

n
 

sc
o

re
s

Attention 
output

Use the attention distribution to take a 
weighted sum of the encoder hidden 
states.

The attention output mostly contains 
information from the hidden states that 
received high attention.
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Sequence-to-sequence with attention
En

co
d

er
 

R
N

N

Source sentence (input)

<START>il a         m’      entarté

D
eco

d
er R

N
N

A
tt

en
ti

o
n

 
d
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ib
u

ti
o

n
A

tt
en

ti
o

n
 

sc
o

re
s

Attention 
output

Concatenate attention output 
with decoder hidden state, then 
use to compute ො𝑦1 as before

ො𝑦1

he
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Sequence-to-sequence with attention
En

co
d

er
 

R
N

N

Source sentence (input)

<START>il a         m’      entarté

D
eco

d
er R

N
N

A
tt

en
ti

o
n

 
sc

o
re

s

he

A
tt

en
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o
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d

is
tr

ib
u

ti
o

n

Attention 
output

ො𝑦2

hit
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Sometimes we take the 
attention output from the 
previous step, and also 
feed it into the decoder 
(along with the usual 
decoder input). We do 
this in Assignment 4.



Sequence-to-sequence with attention
En

co
d

er
 

R
N

N

Source sentence (input)
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Attention 
output

he hit

ො𝑦3

me
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Sequence-to-sequence with attention
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he hit me

ො𝑦4

with
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Sequence-to-sequence with attention
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Source sentence (input)
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output

he hit with

ො𝑦5

a

me
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Sequence-to-sequence with attention
En
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Source sentence (input)
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Attention 
output

he hit me with a

ො𝑦6

pie
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Attention: in equations

• We have encoder hidden states 

• On timestep t, we have decoder hidden state 

• We get the attention scores         for this step:

• We take softmax to get the attention distribution        for this step (this is a 
probability distribution and sums to 1)

• We use        to take a weighted sum of the encoder hidden states to get the 
attention output 

• Finally we concatenate the attention output        with the decoder hidden 
state      and proceed as in the non-attention seq2seq model
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Attention is great

• Attention significantly improves NMT performance
• It’s very useful to allow decoder to focus on certain parts of the source

• Attention solves the bottleneck problem
• Attention allows decoder to look directly at source; bypass bottleneck

• Attention helps with vanishing gradient problem
• Provides shortcut to faraway states

• Attention provides some interpretability
• By inspecting attention distribution, we can see 

what the decoder was focusing on

• We get (soft) alignment for free!

• This is cool because we never explicitly trained
an alignment system

• The network just learned alignment by itself
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Attention is a general Deep Learning technique

• We’ve seen that attention is a great way to improve the 
sequence-to-sequence model for Machine Translation.

• However: You can use attention in many architectures 
(not just seq2seq) and many tasks (not just MT)

• More general definition of attention:

• Given a set of vector values, and a vector query, attention is a 
technique to compute a weighted sum of the values, 
dependent on the query.

• We sometimes say that the query attends to the values.

• For example, in the seq2seq + attention model, each decoder 
hidden state (query) attends to all the encoder hidden states 
(values).75



Attention is a general Deep Learning technique

More general definition of attention:

Given a set of vector values, and a vector query, attention is a 
technique to compute a weighted sum of the values, dependent on 
the query.
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Intuition:

• The weighted sum is a selective summary of the information 
contained in the values, where the query determines which 
values to focus on.

• Attention is a way to obtain a fixed-size representation of an 
arbitrary set of representations (the values), dependent on 
some other representation (the query).



There are several attention variants

• We have some values and a query

• Attention always involves:

1. Computing the attention scores  

2. Taking softmax to get attention distribution ⍺:

3. Using attention distribution to take weighted sum of values:

thus obtaining the attention output a (sometimes called the 
context vector)
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There are 
multiple ways 

to do this



Attention variants

There are several ways you can compute                from                                   
and                :

• Basic dot-product attention:

• Note: this assumes

• This is the version we saw earlier

• Multiplicative attention:

• Where                       is a weight matrix

• Additive attention:

• Where                                                 are weight matrices and
is a weight vector. 

• d3 (the attention dimensionality) is a hyperparameter
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More information:
“Deep Learning for NLP Best Practices”, Ruder, 2017. http://ruder.io/deep-learning-nlp-best-practices/index.html#attention

“Massive Exploration of Neural Machine Translation Architectures”, Britz et al, 2017, https://arxiv.org/pdf/1703.03906.pdf

You’ll think about the relative 
advantages/disadvantages of these in Assignment 4!

http://ruder.io/deep-learning-nlp-best-practices/index.html#attention
https://arxiv.org/pdf/1703.03906.pdf


Summary of today’s lecture

• We learned some history of Machine Translation (MT)

• Since 2014, Neural MT rapidly 
replaced intricate Statistical MT

• Sequence-to-sequence is the 
architecture for NMT (uses 2 RNNs)

• Attention is a way to focus on 
particular parts of the input

• Improves sequence-to-sequence a lot!
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