## The Natural Language Decathlon: Multitask Learning as Question Answering

Richard Socher Chief Scientist at Salesforce

Joint work with Bryan McCann, Nitish Keskar and Caiming Xiong Salesforce Research

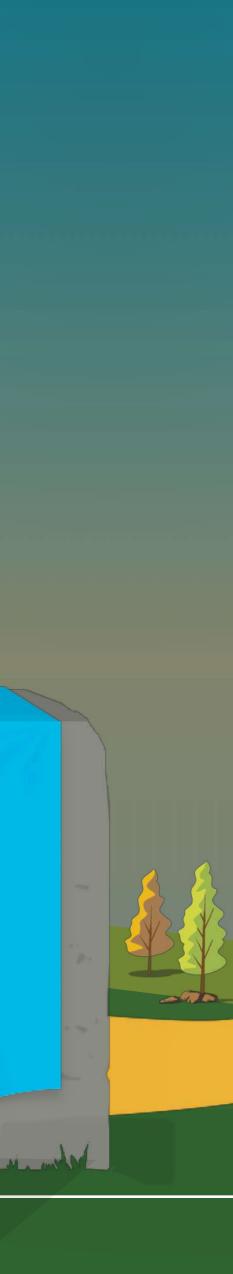


## What's next for NLP & AI?

Shek !!

Machine learning with feature engineering Deep learning for feature learning Deep architecture engineering for single tasks

Junk



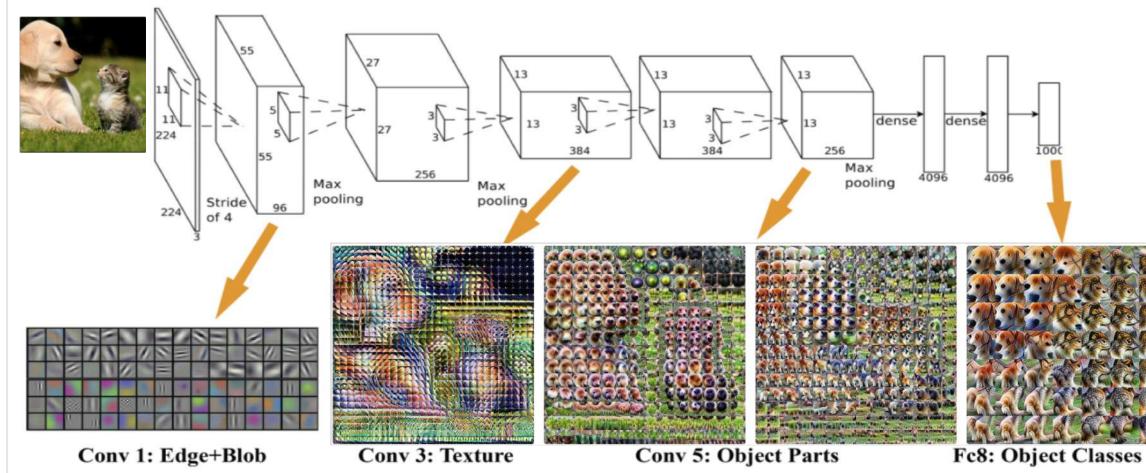
# The Limits of Single-task Learning

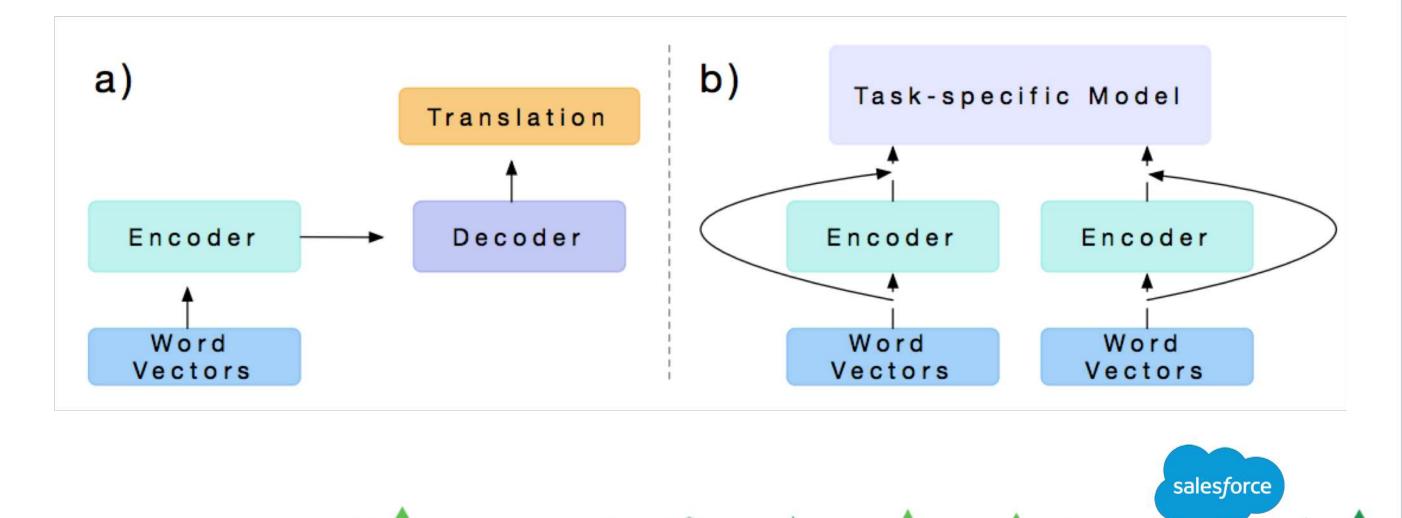
- Great performance improvements in recent years given {dataset, task, model, metric}
- We can hill-climb to local optima as long as |dataset| > 1000xC
- For more general AI, we need continuous learning in a single model instead
- Models typically start from random or are only partly pre-trained  $\rightarrow \bigotimes$



## Pre-training and sharing knowledge is great!

- Computer Vision:
- ImageNet+CNN huge success
- Classification was *the* blocking task in vision.
- NLP:
- Word2Vec, GloVe, CoVe, ELMo, BERT
   → beginning success
- No single blocking task in natural language







# Why has weight & model sharing not happened as much in NLP?

- NLP requires many types of reasoning: logical, linguistic, emotional, visual, ++
- Requires short and long term memory
- NLP had been divided into intermediate and separate tasks to make progress → Benchmark chasing in each community
- Can a single unsupervised task solve it all? No.
- Language clearly requires supervision in nature



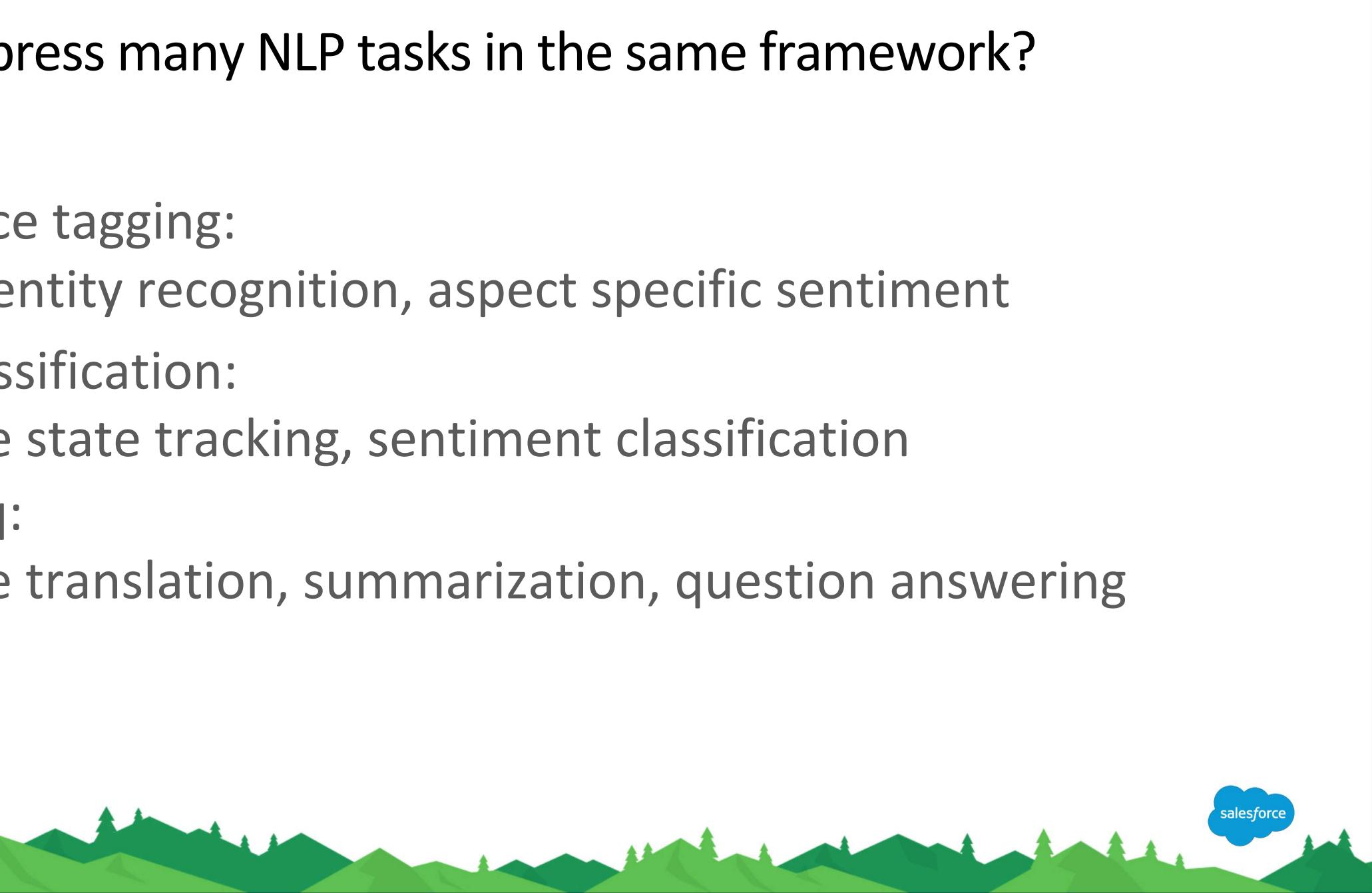
# Why a unified multi-task model for NLP?

- Multi-task learning is a <u>blocker</u> for general NLP systems
- Unified models can decide how to transfer knowledge (domain adaptation, weight sharing, transfer and zero shot learning)
- Unified, multi-task models can
  - More easily adapt to new tasks
  - Make deploying to production X times simpler
  - Lower the bar for more people to solve new tasks
    - Potentially move towards continual learning



## How to express many NLP tasks in the same framework?

- Sequence tagging: named entity recognition, aspect specific sentiment
- Text classification: dialogue state tracking, sentiment classification
- Seq2seq: machine translation, summarization, question answering



## 3 equivalent Supertasks of NLP

## Language Modeling

## **Question Answering**

Dialogue

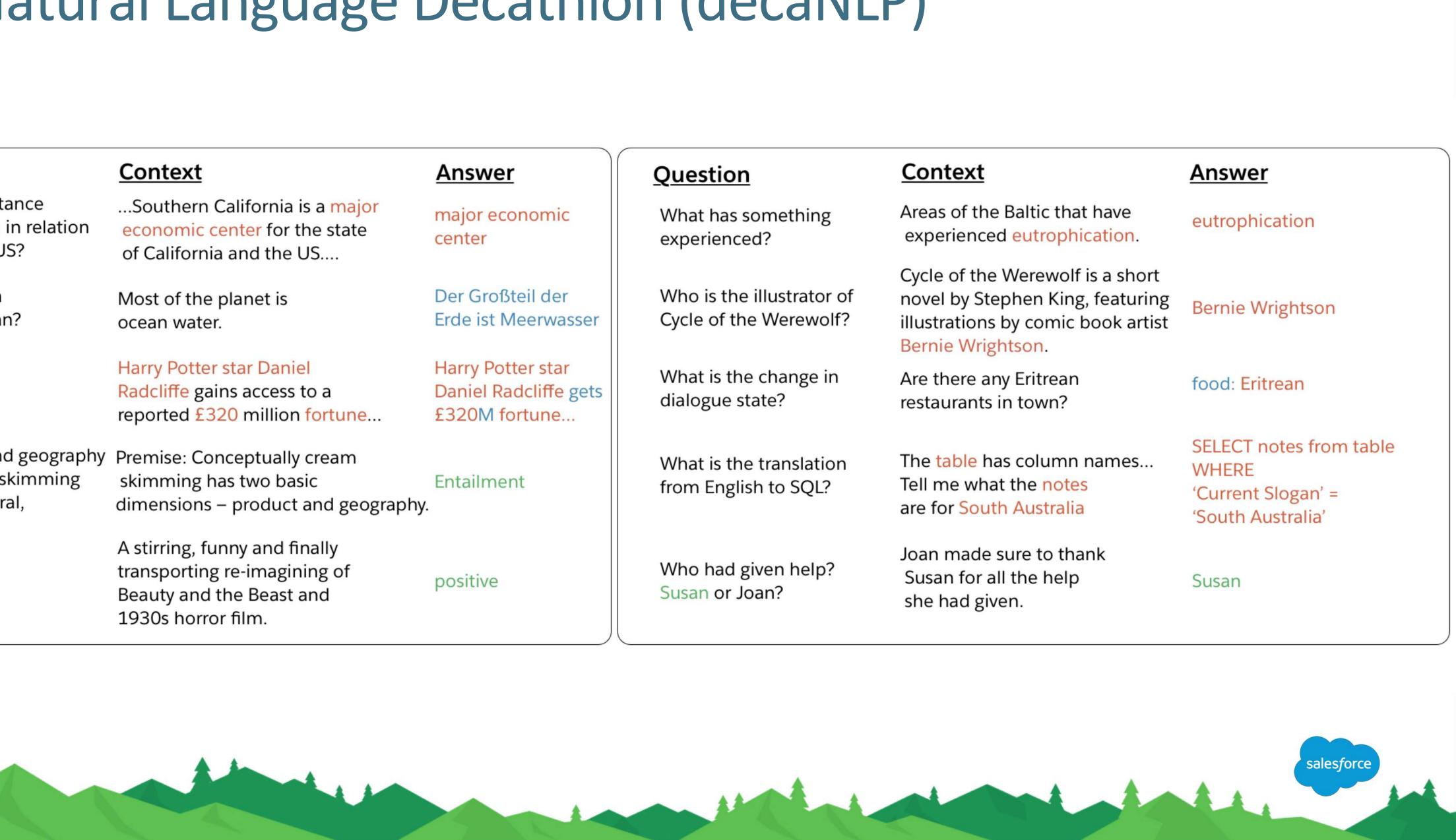
Usefulness and complexity in their current interpretation



# The Natural Language Decathlon (decaNLP)

## Examples

|   | <u>Question</u>                                                                                                      | <u>Context</u>                                                                                                  | Answer                                                      | Question                                            | <u>Context</u>                                                                                                                  | <u>Answer</u>                                                            |
|---|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
|   | What is a major importance<br>of Southern California in relation<br>to California and the US?                        | Southern California is a major<br>economic center for the state<br>of California and the US                     | major economic<br>center                                    | What has something experienced?                     | Areas of the Baltic that have experienced eutrophication.                                                                       | eutrophication                                                           |
|   | What is the translation from English to German?                                                                      | Most of the planet is ocean water.                                                                              | Der Großteil der<br>Erde ist Meerwasser                     | Who is the illustrator of<br>Cycle of the Werewolf? | Cycle of the Werewolf is a short<br>novel by Stephen King, featuring<br>illustrations by comic book artist<br>Bernie Wrightson. | Bernie Wrightson                                                         |
|   | What is the summary?                                                                                                 | Harry Potter star Daniel<br>Radcliffe gains access to a<br>reported £320 million fortune                        | Harry Potter star<br>Daniel Radcliffe gets<br>£320M fortune | What is the change in dialogue state?               | Are there any Eritrean restaurants in town?                                                                                     | food: Eritrean                                                           |
|   | Hypothesis: Product and geography<br>are what make cream skimming<br>work. Entailment, neutral,<br>or contradiction? | Premise: Conceptually cream<br>skimming has two basic<br>dimensions – product and geography.                    | Entailment                                                  | What is the translation from English to SQL?        | The table has column names<br>Tell me what the notes<br>are for South Australia                                                 | SELECT notes from ta<br>WHERE<br>'Current Slogan' =<br>'South Australia' |
|   | Is this sentence positive or negative?                                                                               | A stirring, funny and finally<br>transporting re-imagining of<br>Beauty and the Beast and<br>1930s horror film. | positive                                                    | Who had given help?<br>Susan or Joan?               | Joan made sure to thank<br>Susan for all the help<br>she had given.                                                             | Susan                                                                    |
| _ |                                                                                                                      |                                                                                                                 |                                                             |                                                     |                                                                                                                                 |                                                                          |



## Multitask Learning as Question Answering

- **Question Answering**
- Machine Translation
- Summarization
- Natural Language Inference
- Sentiment Classification
- Meta-Supervised learning: From {x, y} to {x, t, y} (t is the task)  $\bigcirc$
- Use a question, q, as a natural description of the task, t, to allow the  $\bigcirc$ model to use linguistic information to connect tasks

O y is the answer to q and x is the context necessary to answer q

- Semantic Role Labeling
- **Relation Extraction**
- Dialogue
- **Semantic Parsing**
- **Commonsense Reasoning**



## Designing a model for decaNLP

Specifications:

- not available
- Must be able to adjust internally to perform disparate tasks



## No task-specific modules or parameters because we assume the task ID is

## Should leave open the possibility of zero-shot inference for unseen tasks

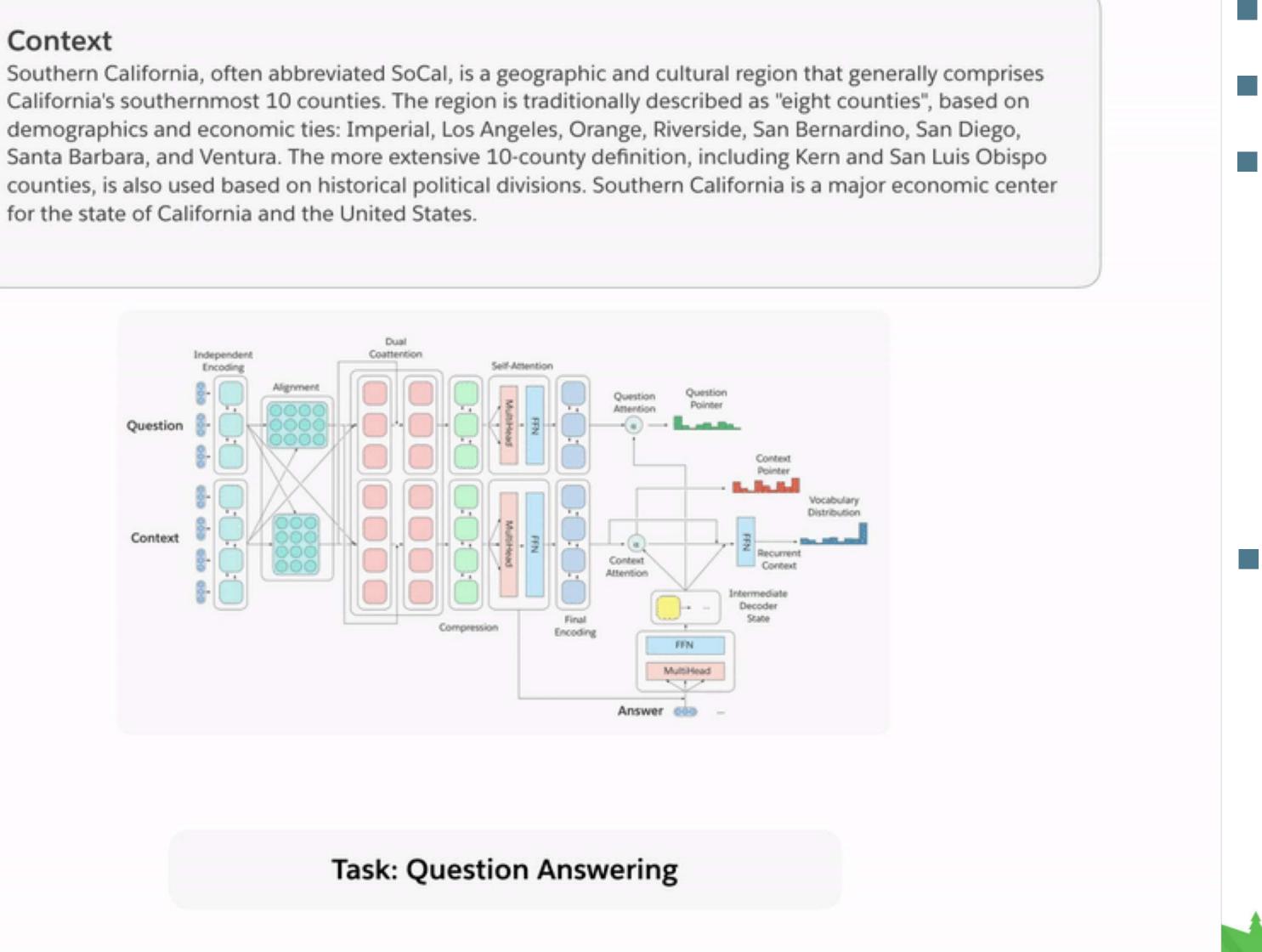




## A Multitask Question Answering Network for decaNLP

### Context

for the state of California and the United States.

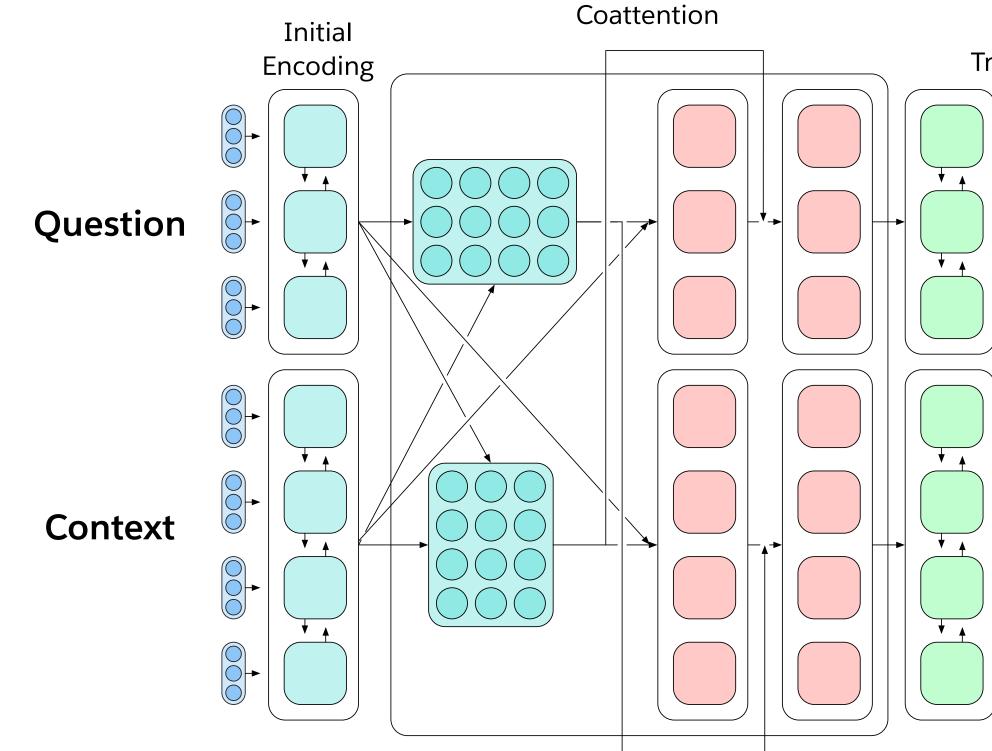


- Start with a context
- Ask a question
- Generate the answer one word at a time by
- Pointing to context
- Pointing to question
- Or choosing a word from an external vocabulary
- Pointer Switch is choosing between those three options for each output word







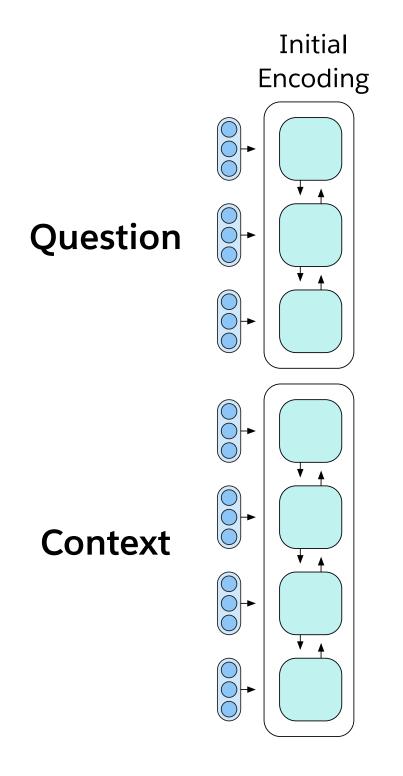


# For code and leaderboard see www.decaNLP.com

Transformer Layer x2 Question Question MultiHead Pointer Attention FFZ γ Context Pointer Vocabulary Distribution MultiHead FFZ α Context Attention ••• Final Encoding FFN MultiHead < ↑ Answer  $(\bigcirc)\bigcirc$ 

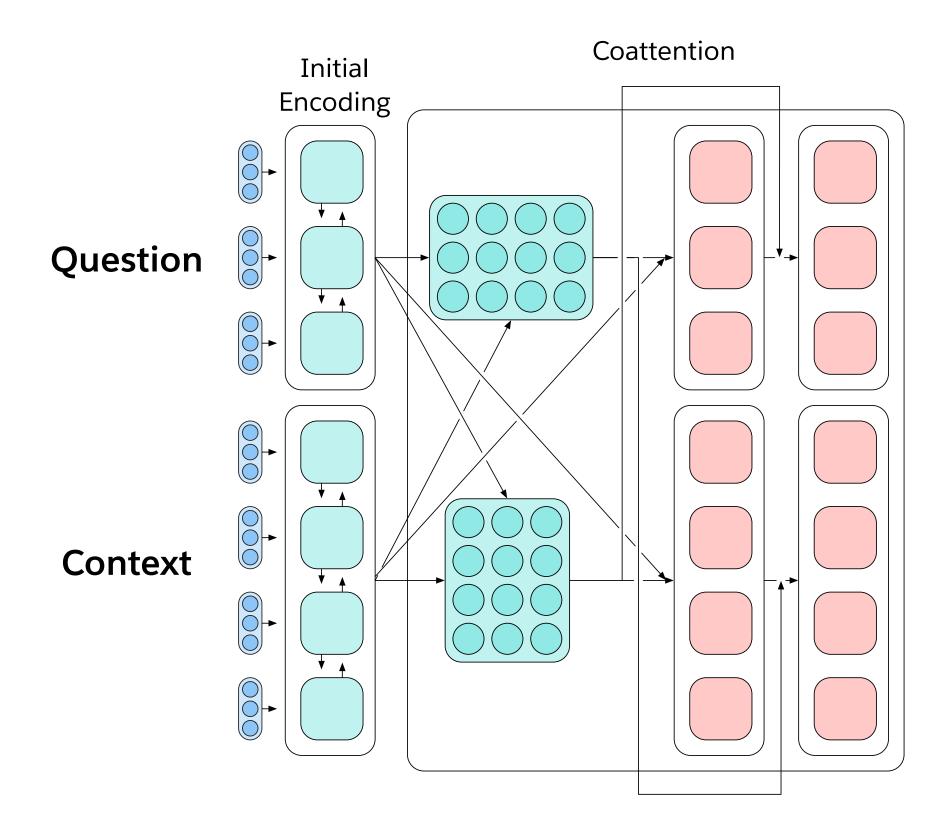
**Output Distribution** 





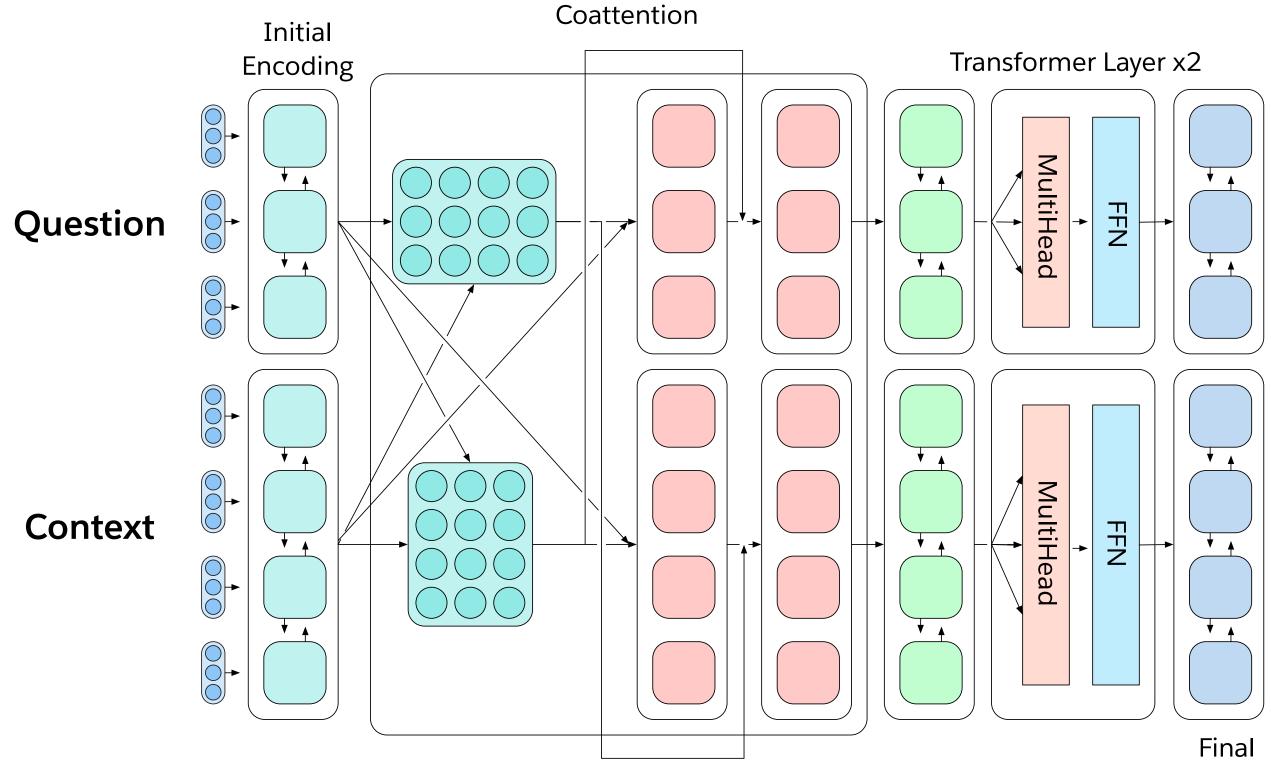
Fixed Glove+Character n-gram embeddings  $\rightarrow$  Linear  $\rightarrow$  Shared BiLSTM with skip connection





Attention summations from one sequence to the other and back again with skip connections

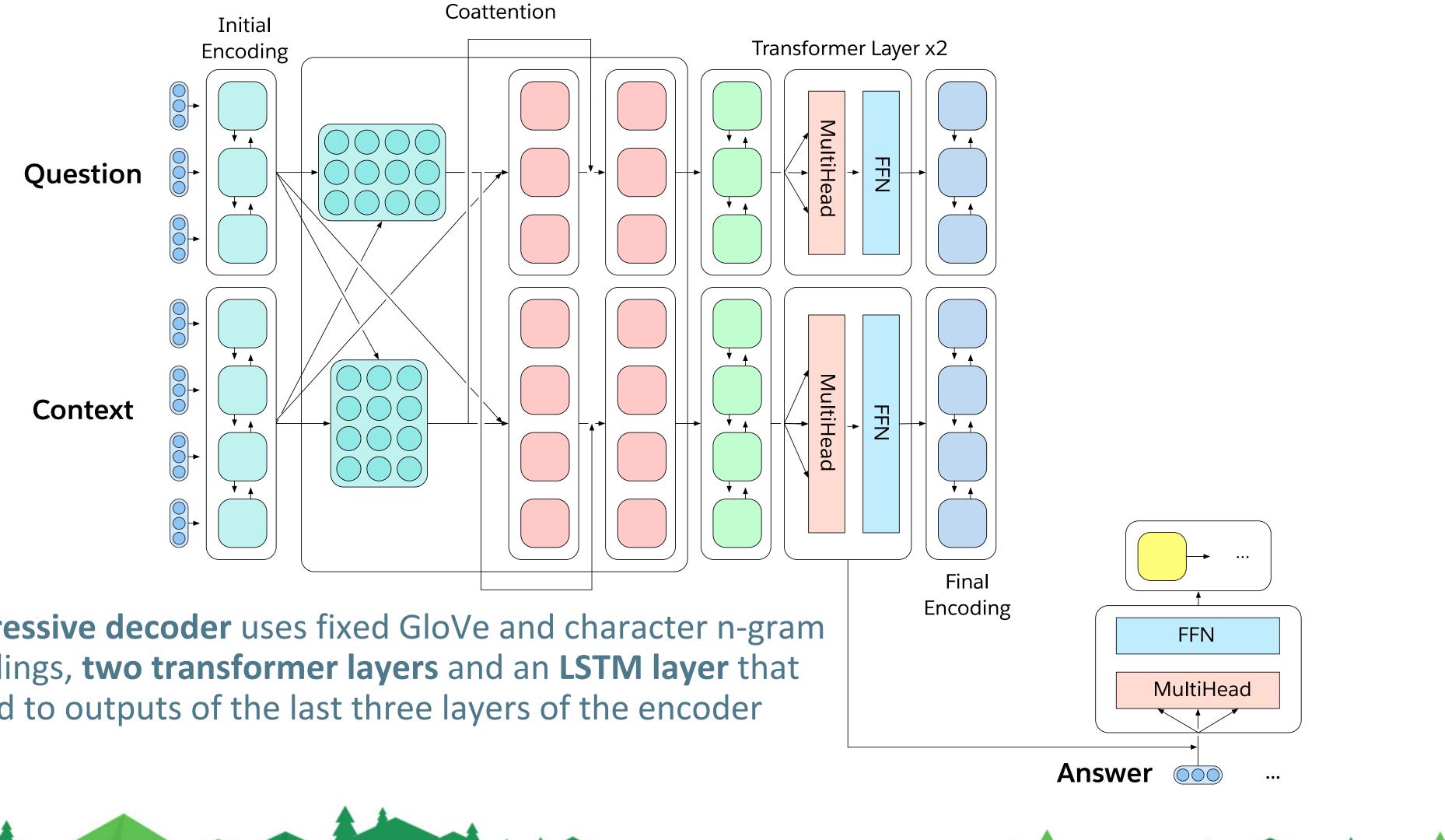




Separate BiLSTMs to reduce dimensionality, two transformer layers, another BiLSTM

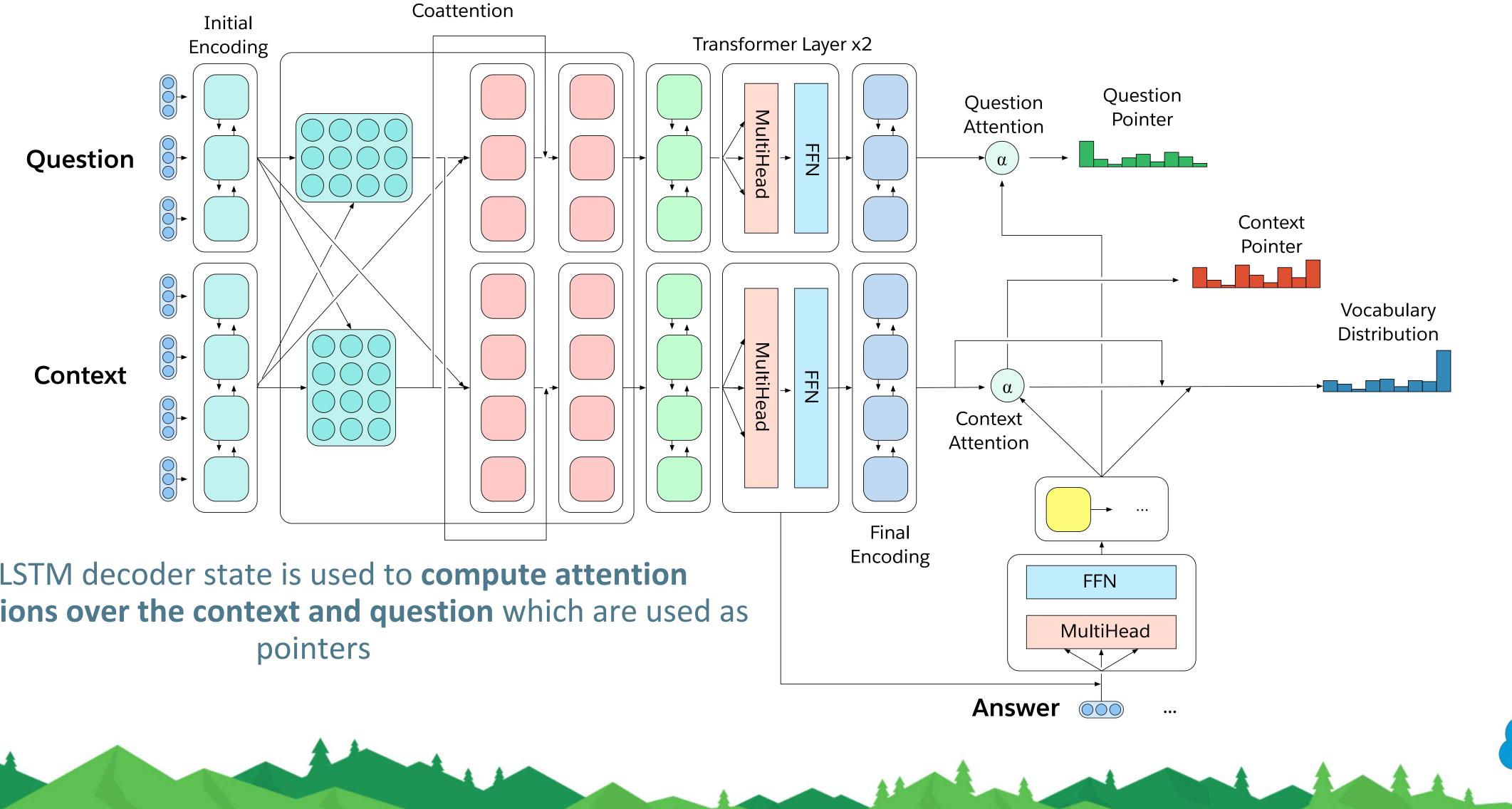
Encoding

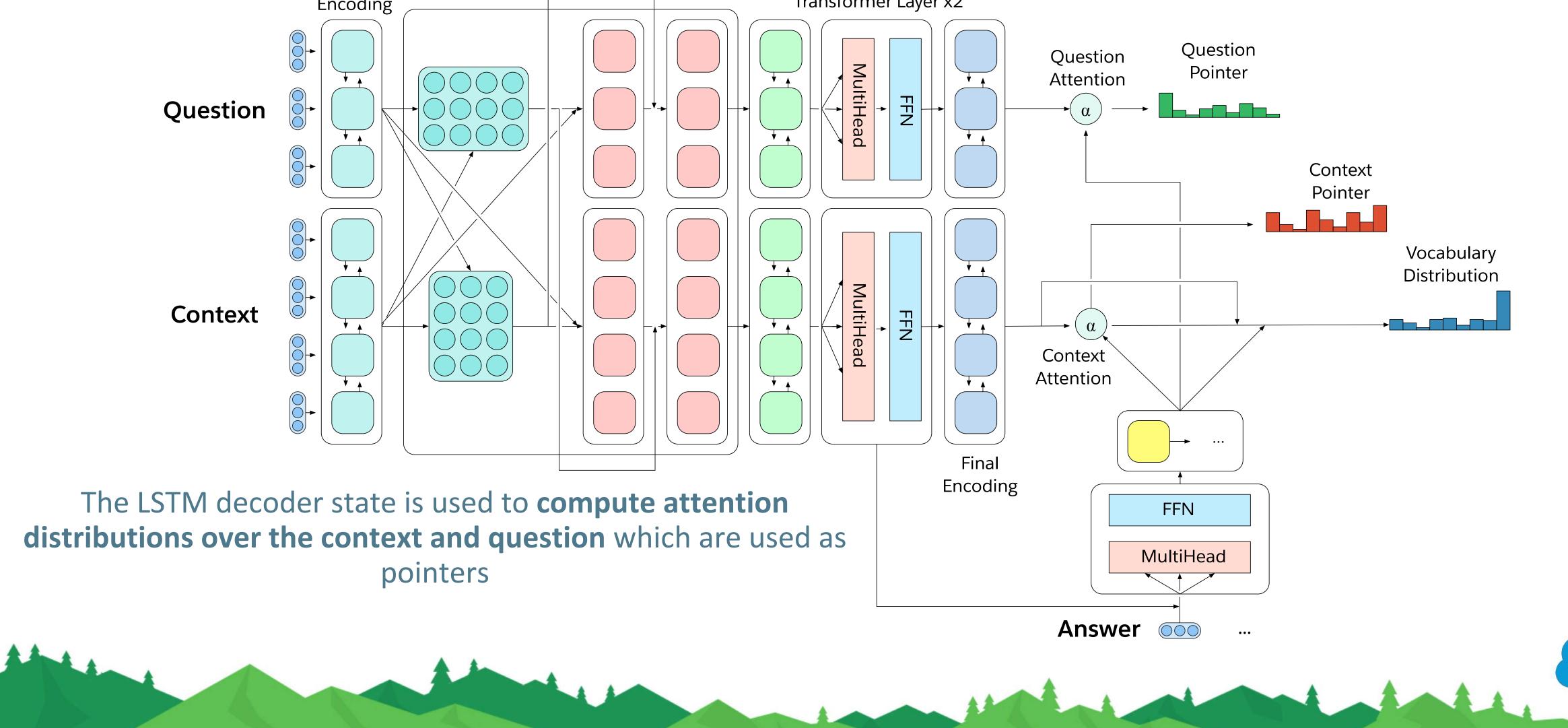




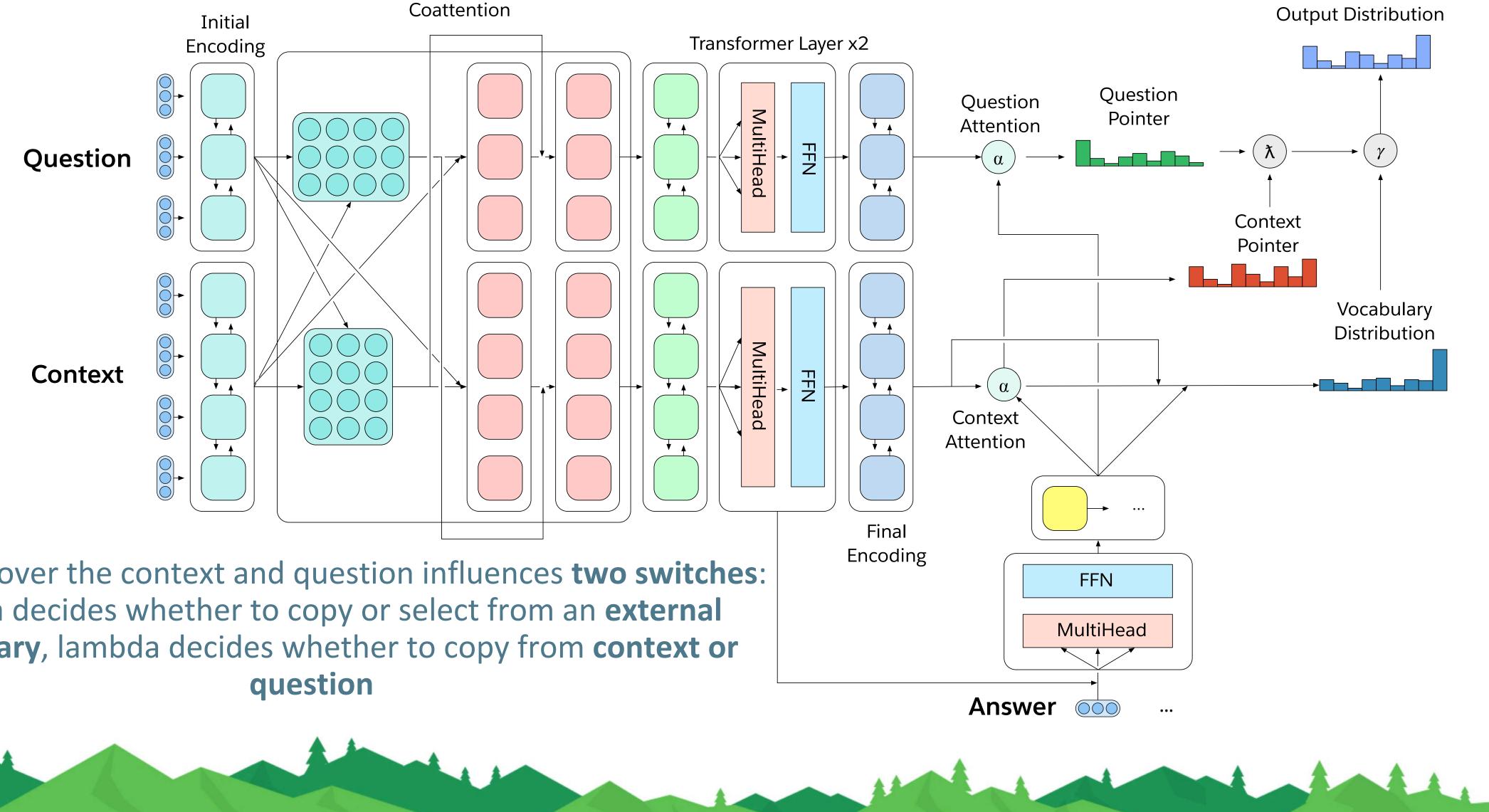
Auto-regressive decoder uses fixed GloVe and character n-gram embeddings, two transformer layers and an LSTM layer that attend to outputs of the last three layers of the encoder











Attention over the context and question influences **two switches**: gamma decides whether to copy or select from an **external** vocabulary, lambda decides whether to copy from context or



## Evaluation

Question Answering Machine Translation Summarization Natural Language Inference Sentiment Analysis Semantic Role Labeling Relation Extraction Goal-Oriented Dialogue Semantic Parsing Pronoun Resolution

nF1 = normalized word-level F1
 (case insensitive , no punctutation or articles)
ROUGE = average of ROUGE-1, 2, and L
EM = exact match

## Dataset

SQuAD IWSLT En — De CNN/DailyMail MultiNLI SST2 QA-SRL QA-SRL QA-ZRE WOZ WikiSQL WikiSQL

## Metric

nF1 BLEU ROUGE EM EM nF1 cF1 dsEM lfEM EM

cF1 = corpus-level F1 (accounts for unanswerable questions) dsEM = dialogue state EM IfEM = logical form EM



## Evaluation

Question Answering Machine Translation Summarization Natural Language Inference Sentiment Analysis Semantic Role Labeling Relation Extraction Goal-Oriented Dialogue Semantic Parsing Pronoun Resolution

Natural Language Decathlon

decaScore = sum of task-specific metrics

SQuAD IWSLT En — De CNN/DailyMail MultiNLI SST2 QA-SRL QA-SRL QA-ZRE WOZ WikiSQL WikiSQL Winograd Schemas nF1 BLEU ROUGE EM EM nF1 cF1 dsEM lfEM EM

decaScore



|                  | S          | Single-task     | Performa      | ance         | Multitask Performance |                 |               |              |  |
|------------------|------------|-----------------|---------------|--------------|-----------------------|-----------------|---------------|--------------|--|
| <u>Dataset</u>   | <u>S2S</u> | <u>+SelfAtt</u> | <u>+CoAtt</u> | <u>+QPtr</u> | <u>S2S</u>            | <u>+SelfAtt</u> | <u>+CoAtt</u> | <u>+QPtr</u> |  |
| SQuAD            | 48.2       | 68.2            | 74.6          | 75.5         | 47.5                  | 66.8            | 71.8          | 70.8         |  |
| IWSLT En — De    | 25.0       | 23.3            | 26.0          | 25.5         | 14.2                  | 13.6            | 9.00          | 16.1         |  |
| CNN/DailyMail    | 19.0       | 20.0            | 25.1          | 24.0         | 25.7                  | 14.0            | 15.7          | 23.9         |  |
| MultiNLI         | 67.5       | 68.5            | 34.7          | 72.8         | 60.9                  | 69.0            | 70.4          | 70.5         |  |
| SST2             | 86.4       | 86.8            | 86.2          | 88.1         | 85.9                  | 84.7            | 86.5          | 86.2         |  |
| QA-SRL           | 63.5       | 67.8            | 74.8          | 75.2         | 68.7                  | 75.1            | 76.1          | 75.8         |  |
| QA-ZRE           | 20.0       | 19.9            | 16.6          | 15.6         | 28.5                  | 31.7            | 28.5          | 28.0         |  |
| WOZ              | 85.3       | 86.0            | 86.5          | 84.4         | 84.0                  | 82.8            | 75.1          | 80.6         |  |
| WikiSQL          | 60.0       | 72.4            | 72.3          | 72.6         | 45.8                  | 64.8            | 62.9          | 62.0         |  |
| Winograd Schemas | 43.9       | 46.3            | 40.4          | 52.4         | 52.4                  | 43.9            | 37.8          | 48.8         |  |
| decaScore        |            |                 |               |              | 513.6                 | 546.4           | 533.8         | 562.7        |  |

- S2S = Seq2Seq
- +SelfAtt = plus self attention
- +CoAtt = plus coattention
- +QPtr = plus question pointer == MQAN





## Single-task Performance

| <u>Dataset</u>   | <u>S2S</u> | <u>+SelfAtt</u> | +CoAtt | <u>+QPtr</u> | <u>S2S</u> | <u>+SelfAtt</u> | <u>+CoAtt</u> | <u>+QPtr</u> |  |
|------------------|------------|-----------------|--------|--------------|------------|-----------------|---------------|--------------|--|
| SQuAD            | 48.2       | 68.2            | 74.6   | 75.5         | 47.5       | 66.8            | 71.8          | 70.8         |  |
| IWSLT En — De    | 25.0       | 23.3            | 26.0   | 25.5         | 14.2       | 13.6            | 9.00          | 16.1         |  |
| CNN/DailyMail    | 19.0       | 20.0            | 25.1   | 24.0         | 25.7       | 14.0            | 15.7          | 23.9         |  |
| MultiNLI         | 67.5       | 68.5            | 34.7   | 72.8         | 60.9       | 69.0            | 70.4          | 70.5         |  |
| SST2             | 86.4       | 86.8            | 86.2   | 88.1         | 85.9       | 84.7            | 86.5          | 86.2         |  |
| QA-SRL           | 63.5       | 67.8            | 74.8   | 75.2         | 68.7       | 75.1            | 76.1          | 75.8         |  |
| QA-ZRE           | 20.0       | 19.9            | 16.6   | 15.6         | 28.5       | 31.7            | 28.5          | 28.0         |  |
| WOZ              | 85.3       | 86.0            | 86.5   | 84.4         | 84.0       | 82.8            | 75.1          | 80.6         |  |
| WikiSQL          | 60.0       | 72.4            | 72.3   | 72.6         | 45.8       | 64.8            | 62.9          | 62.0         |  |
| Winograd Schemas | 43.9       | 46.3            | 40.4   | 52.4         | 52.4       | 43.9            | 37.8          | 48.8         |  |
| decaScore        |            |                 |        |              | 513.6      | 546.4           | 533.8         | 562.7        |  |

## Multitask Performance

Transformer layers yield benefits in singletask and multitask setting







## Single-task Performance

| <u>Dataset</u>   | <u>S2S</u> | <u>+SelfAtt</u> | <u>+CoAtt</u> | <u>+QPtr</u> | <u>S2S</u> | <u>+SelfAtt</u> | <u>+CoAtt</u> | <u>+QPtr</u> |  |
|------------------|------------|-----------------|---------------|--------------|------------|-----------------|---------------|--------------|--|
| SQuAD            | 48.2       | 68.2            | 74.6          | 75.5         | 47.5       | 66.8            | 71.8          | 70.8         |  |
| IWSLT En — De    | 25.0       | 23.3            | 26.0          | 25.5         | 14.2       | 13.6            | 9.00          | 16.1         |  |
| CNN/DailyMail    | 19.0       | 20.0            | 25.1          | 24.0         | 25.7       | 14.0            | 15.7          | 23.9         |  |
| MultiNLI         | 67.5       | 68.5            | 34.7          | 72.8         | 60.9       | 69.0            | 70.4          | 70.5         |  |
| SST2             | 86.4       | 86.8            | 86.2          | 88.1         | 85.9       | 84.7            | 86.5          | 86.2         |  |
| QA-SRL           | 63.5       | 67.8            | 74.8          | 75.2         | 68.7       | 75.1            | 76.1          | 75.8         |  |
| QA-ZRE           | 20.0       | 19.9            | 16.6          | 15.6         | 28.5       | 31.7            | 28.5          | 28.0         |  |
| WOZ              | 85.3       | 86.0            | 86.5          | 84.4         | 84.0       | 82.8            | 75.1          | 80.6         |  |
| WikiSQL          | 60.0       | 72.4            | 72.3          | 72.6         | 45.8       | 64.8            | 62.9          | 62.0         |  |
| Winograd Schemas | 43.9       | 46.3            | 40.4          | 52.4         | 52.4       | 43.9            | 37.8          | 48.8         |  |
| decaScore        |            |                 |               |              | 513.6      | 546.4           | 533.8         | 562.7        |  |

## Multitask Performance

Transformer layers yield benefits in singletask and multitask setting

QA and SRL have a strong connection

|                  | S          | Single-task     | Performa      | ance         | Multitask Performance |                 |               |              |  |  |
|------------------|------------|-----------------|---------------|--------------|-----------------------|-----------------|---------------|--------------|--|--|
| <u>Dataset</u>   | <u>S2S</u> | <u>+SelfAtt</u> | <u>+CoAtt</u> | <u>+QPtr</u> | <u>S2S</u>            | <u>+SelfAtt</u> | <u>+CoAtt</u> | <u>+QPtr</u> |  |  |
| SQuAD            | 48.2       | 68.2            | 74.6          | 75.5         | 47.5                  | 66.8            | 71.8          | 70.8         |  |  |
| IWSLT En — De    | 25.0       | 23.3            | 26.0          | 25.5         | 14.2                  | 13.6            | 9.00          | 16.1         |  |  |
| CNN/DailyMail    | 19.0       | 20.0            | 25.1          | 24.0         | 25.7                  | 14.0            | 15.7          | 23.9         |  |  |
| MultiNLI         | 67.5       | 68.5            | 34.7          | 72.8         | 60.9                  | 69.0            | 70.4          | 70.5         |  |  |
| SST2             | 86.4       | 86.8            | 86.2          | 88.1         | 85.9                  | 84.7            | 86.5          | 86.2         |  |  |
| QA-SRL           | 63.5       | 67.8            | 74.8          | 75.2         | 68.7                  | 75.1            | 76.1          | 75.8         |  |  |
| QA-ZRE           | 20.0       | 19.9            | 16.6          | 15.6         | 28.5                  | 31.7            | 28.5          | 28.0         |  |  |
| WOZ              | 85.3       | 86.0            | 86.5          | 84.4         | 84.0                  | 82.8            | 75.1          | 80.6         |  |  |
| WikiSQL          | 60.0       | 72.4            | 72.3          | 72.6         | 45.8                  | 64.8            | 62.9          | 62.0         |  |  |
| Winograd Schemas | 43.9       | 46.3            | 40.4          | 52.4         | 52.4                  | 43.9            | 37.8          | 48.8         |  |  |
| decaScore        |            |                 |               |              | 513.6                 | 546.4           | 533.8         | 562.7        |  |  |

Transformer layers yield benefits in singletask and multitask setting

- QA and SRL have a strong connection
- Pointing to the question is essential

|                  | S                                                     | Single-task | Performa     | ance       | Multitask Performance |               |              |       |  |  |  |
|------------------|-------------------------------------------------------|-------------|--------------|------------|-----------------------|---------------|--------------|-------|--|--|--|
| <u>Dataset</u>   | <u>S2S</u> <u>+SelfAtt</u> <u>+CoAtt</u> <u>+QPtr</u> |             | <u>+QPtr</u> | <u>S2S</u> | <u>+SelfAtt</u>       | <u>+CoAtt</u> | <u>+QPtr</u> |       |  |  |  |
| SQuAD            | 48.2                                                  | 68.2        | 74.6         | 75.5       | 47.5                  | 66.8          | 71.8         | 70.8  |  |  |  |
| IWSLT En — De    | 25.0                                                  | 23.3        | 26.0         | 25.5       | 14.2                  | 13.6          | 9.00         | 16.1  |  |  |  |
| CNN/DailyMail    | 19.0                                                  | 20.0        | 25.1         | 24.0       | 25.7                  | 14.0          | 15.7         | 23.9  |  |  |  |
| MultiNLI         | 67.5                                                  | 68.5        | 34.7         | 72.8       | 60.9                  | 69.0          | 70.4         | 70.5  |  |  |  |
| SST2             | 86.4                                                  | 86.8        | 86.2         | 88.1       | 85.9                  | 84.7          | 86.5         | 86.2  |  |  |  |
| QA-SRL           | 63.5                                                  | 67.8        | 74.8         | 75.2       | 68.7                  | 75.1          | 76.1         | 75.8  |  |  |  |
| QA-ZRE           | 20.0                                                  | 19.9        | 16.6         | 15.6       | 28.5                  | 31.7          | 28.5         | 28.0  |  |  |  |
| WOZ              | 85.3                                                  | 86.0        | 86.5         | 84.4       | 84.0                  | 82.8          | 75.1         | 80.6  |  |  |  |
| WikiSQL          | 60.0                                                  | 72.4        | 72.3         | 72.6       | 45.8                  | 64.8          | 62.9         | 62.0  |  |  |  |
| Winograd Schemas | 43.9                                                  | 46.3        | 40.4         | 52.4       | 52.4                  | 43.9          | 37.8         | 48.8  |  |  |  |
| decaScore        |                                                       |             |              |            | 513.6                 | 546.4         | 533.8        | 562.7 |  |  |  |



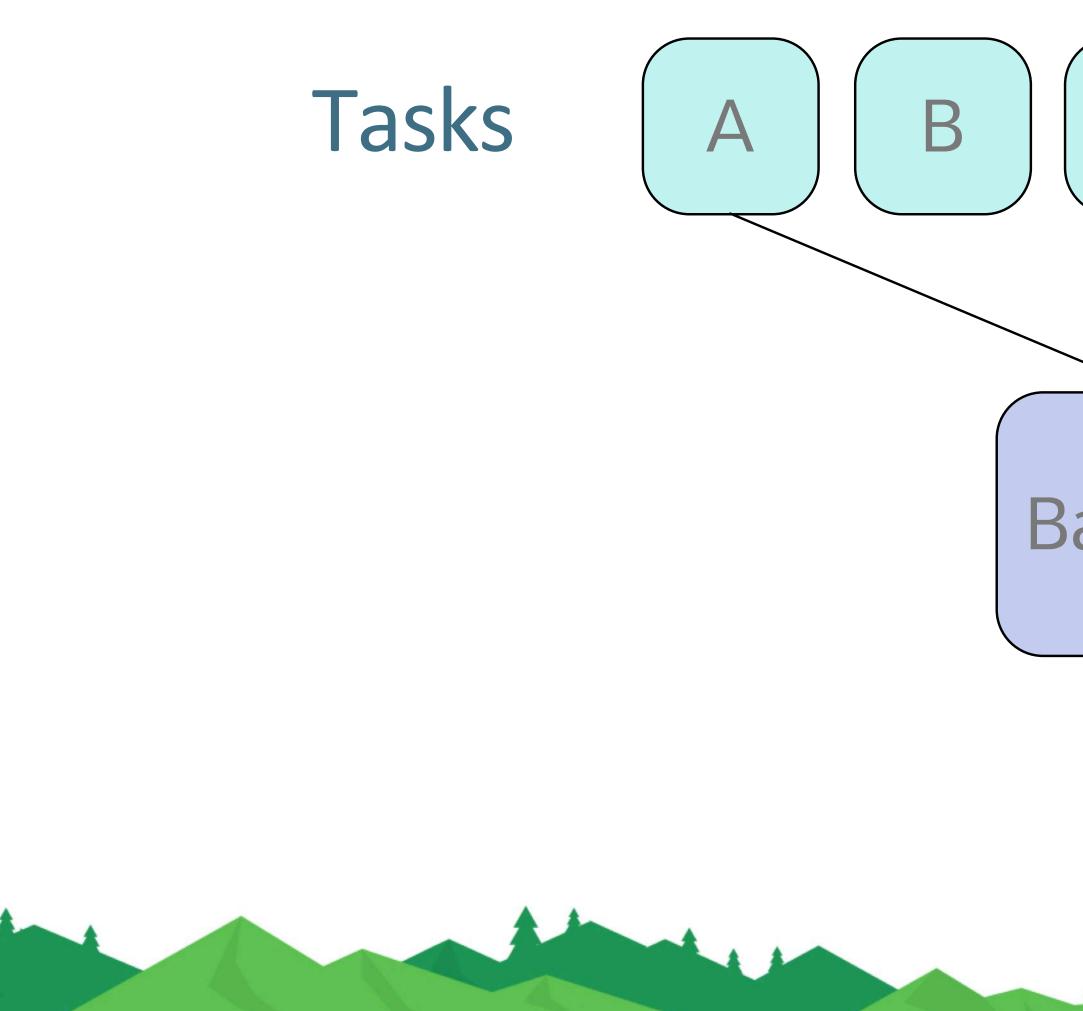
Transformer layers yield benefits in singletask and multitask setting

- QA and SRL have a strong connection
- Pointing to the question is essential
  - Multitasking helps zero-shot

|                  | S          | Single-task     | Performa      | ance         | Multitask Performance |                 |               |              |  |  |
|------------------|------------|-----------------|---------------|--------------|-----------------------|-----------------|---------------|--------------|--|--|
| Dataset          | <u>S2S</u> | <u>+SelfAtt</u> | <u>+CoAtt</u> | <u>+QPtr</u> | <u>S2S</u>            | <u>+SelfAtt</u> | <u>+CoAtt</u> | <u>+QPtr</u> |  |  |
| SQuAD            | 48.2       | 68.2            | 74.6          | 75.5         | 47.5                  | 66.8            | 71.8          | 70.8         |  |  |
| IWSLT En — De    | 25.0       | 23.3            | 26.0          | 25.5         | 14.2                  | 13.6            | 9.00          | 16.1         |  |  |
| CNN/DailyMail    | 19.0       | 20.0            | 25.1          | 24.0         | 25.7                  | 14.0            | 15.7          | 23.9         |  |  |
| MultiNLI         | 67.5       | 68.5            | 34.7          | 72.8         | 60.9                  | 69.0            | 70.4          | 70.5         |  |  |
| SST2             | 86.4       | 86.8            | 86.2          | 88.1         | 85.9                  | 84.7            | 86.5          | 86.2         |  |  |
| QA-SRL           | 63.5       | 67.8            | 74.8          | 75.2         | 68.7                  | 75.1            | 76.1          | 75.8         |  |  |
| QA-ZRE           | 20.0       | 19.9            | 16.6          | 15.6         | 28.5                  | 31.7            | 28.5          | 28.0         |  |  |
| WOZ              | 85.3       | 86.0            | 86.5          | 84.4         | 84.0                  | 82.8            | 75.1          | 80.6         |  |  |
| WikiSQL          | 60.0       | 72.4            | 72.3          | 72.6         | 45.8                  | 64.8            | 62.9          | 62.0         |  |  |
| Winograd Schemas | 43.9       | 46.3            | 40.4          | 52.4         | 52.4                  | 43.9            | 37.8          | 48.8         |  |  |
| decaScore        |            |                 |               | (586.1       | ) 513.6               | 546.4           | 533.8         | 562.7        |  |  |

Transformer layers yield benefits in singletask and multitask setting

- QA and SRL have a strong connection
- Pointing to the question is essential
- Multitasking helps zero-shot
- There is a gap between the combined singletask models and the single multitask model

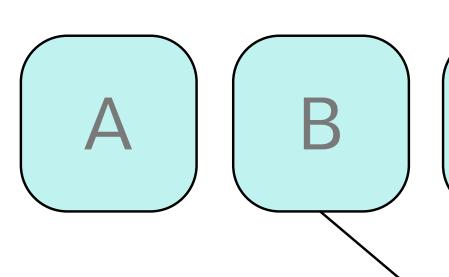


# C D E

Batch 1





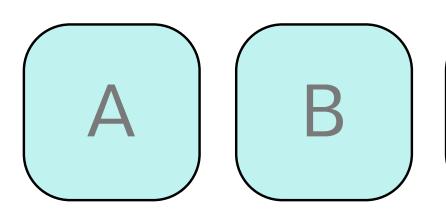


# C D E

Batch 2



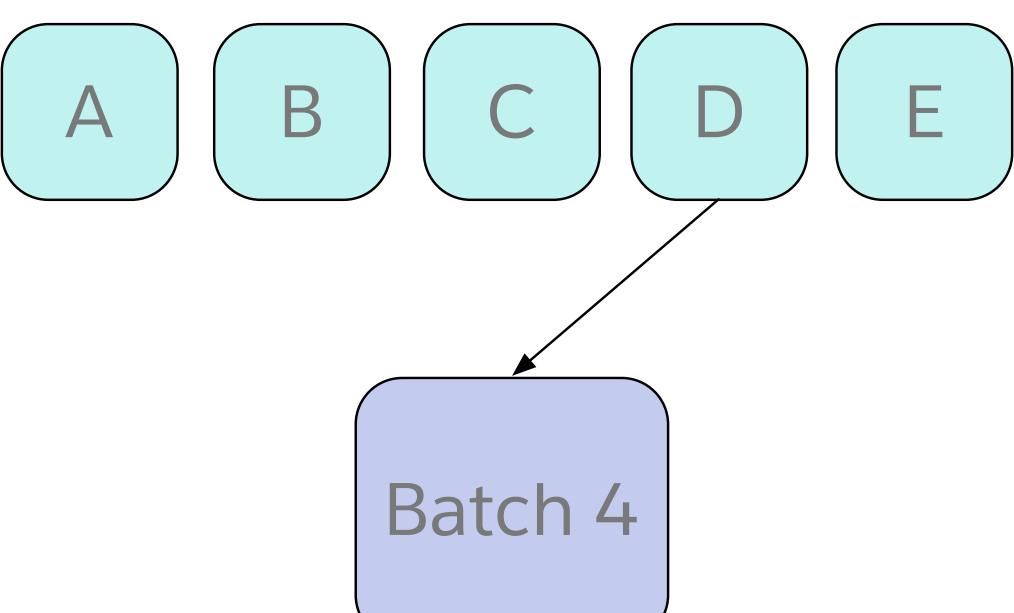
Tasks

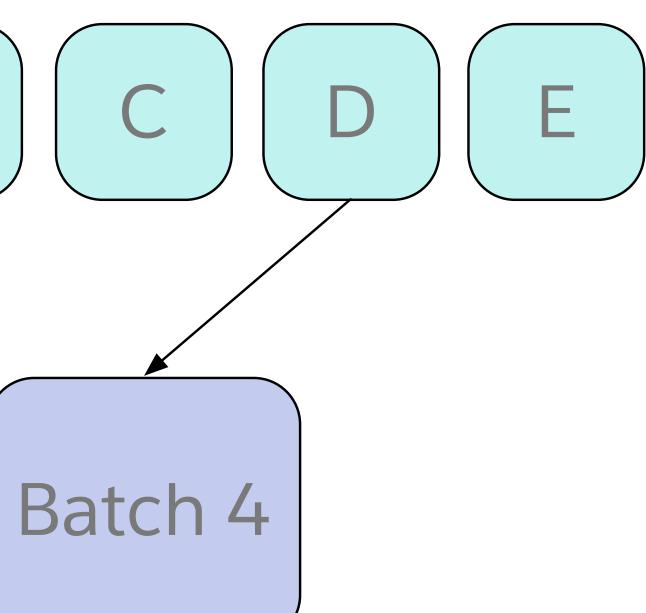


# C D E Batch 3



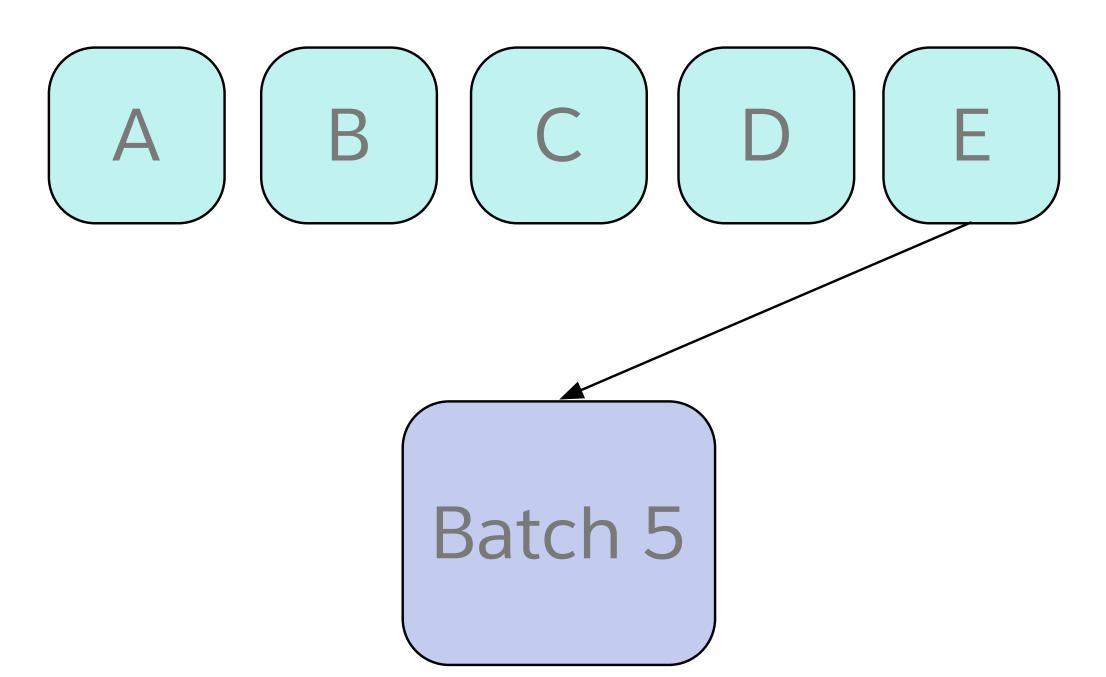
Tasks





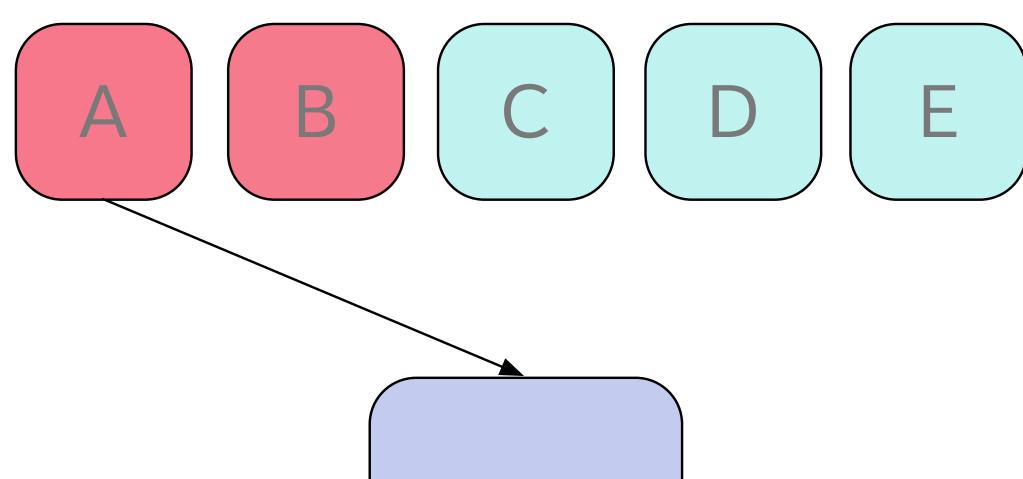


Tasks



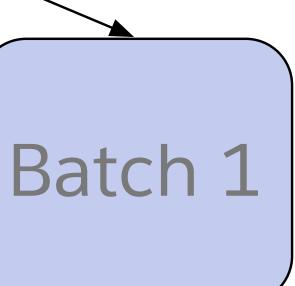


Decreasing order of difficulty



Difficulty: how many iterations to convergence in the single-task setting.

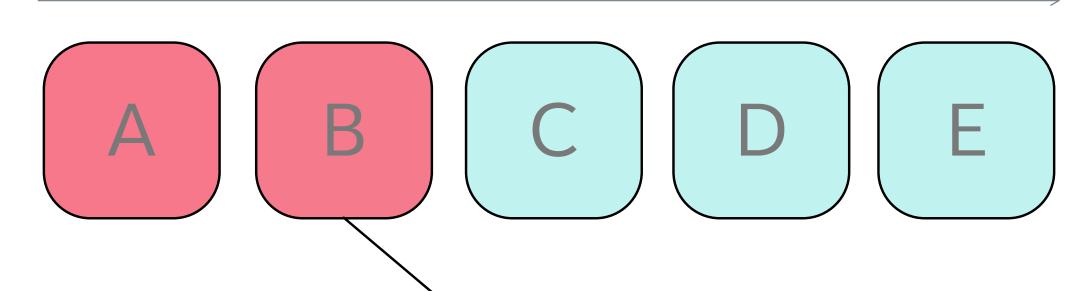
Tasks





Decreasing order of difficulty



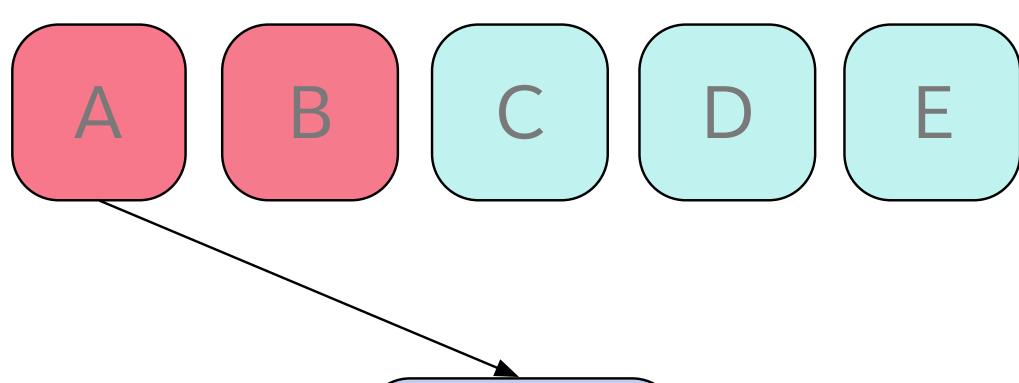


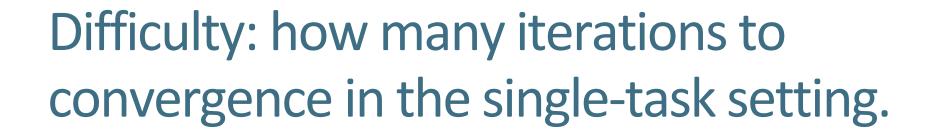
Batch 2

Difficulty: how many iterations to convergence in the single-task setting.

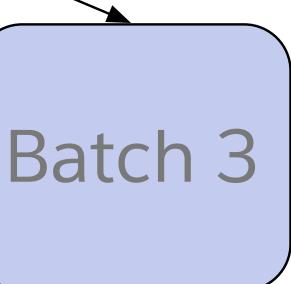


Decreasing order of difficulty





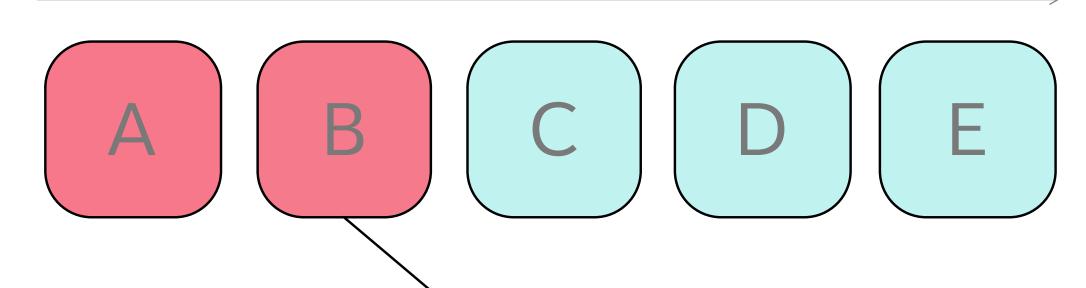
Tasks





Decreasing order of difficulty



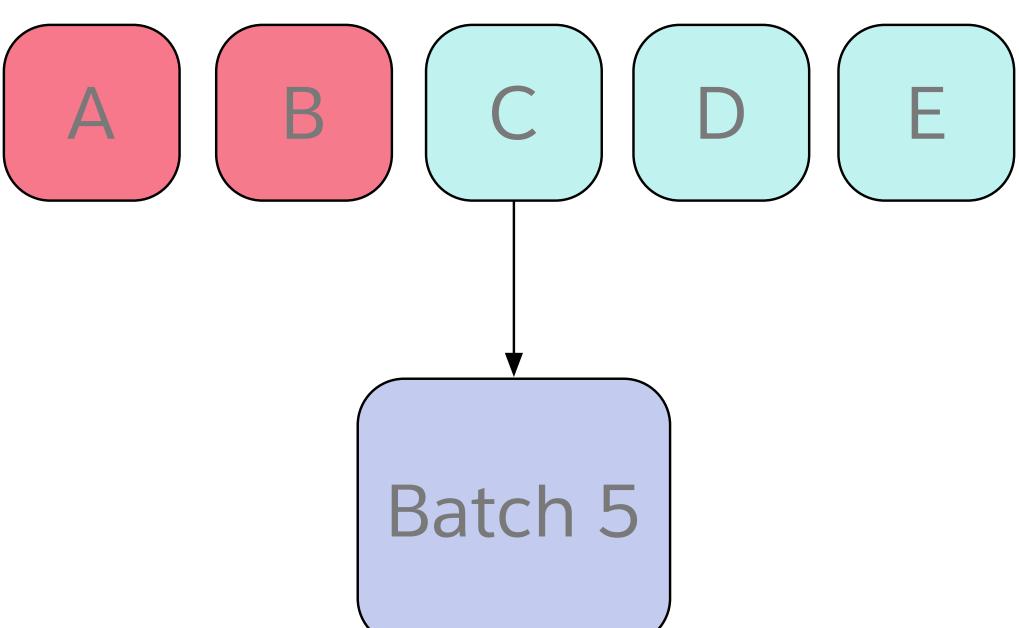


Difficulty: how many iterations to convergence in the single-task setting.

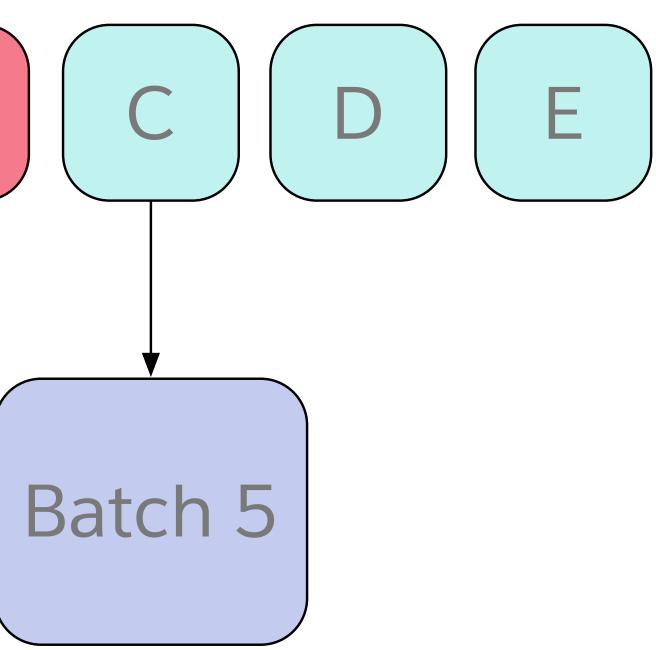
Batch 4



Decreasing order of difficulty







Difficulty: how many iterations to convergence in the single-task setting.



|                  |            | Single-task     | Performa      | ance         |            | Multitask       | Performa      | nce          |               |
|------------------|------------|-----------------|---------------|--------------|------------|-----------------|---------------|--------------|---------------|
| <u>Dataset</u>   | <u>S2S</u> | <u>+SelfAtt</u> | <u>+CoAtt</u> | <u>+QPtr</u> | <u>S2S</u> | <u>+SelfAtt</u> | <u>+CoAtt</u> | <u>+QPtr</u> | <u>+ACurr</u> |
| SQuAD            | 48.2       | 68.2            | 74.6          | 75.5         | 47.5       | 66.8            | 71.8          | 70.8         | 74.3          |
| IWSLT En — De    | 25.0       | 23.3            | 26.0          | 25.5         | 14.2       | 13.6            | 9.00          | 16.1         | 13.7          |
| CNN/DailyMail    | 19.0       | 20.0            | 25.1          | 24.0         | 25.7       | 14.0            | 15.7          | 23.9         | 24.6          |
| MultiNLI         | 67.5       | 68.5            | 34.7          | 72.8         | 60.9       | 69.0            | 70.4          | 70.5         | 69.2          |
| SST2             | 86.4       | 86.8            | 86.2          | 88.1         | 85.9       | 84.7            | 86.5          | 86.2         | 86.4          |
| QA-SRL           | 63.5       | 67.8            | 74.8          | 75.2         | 68.7       | 75.1            | 76.1          | 75.8         | 77.6          |
| QA-ZRE           | 20.0       | 19.9            | 16.6          | 15.6         | 28.5       | 31.7            | 28.5          | 28.0         | 34.7          |
| WOZ              | 85.3       | 86.0            | 86.5          | 84.4         | 84.0       | 82.8            | 75.1          | 80.6         | 84.1          |
| WikiSQL          | 60.0       | 72.4            | 72.3          | 72.6         | 45.8       | 64.8            | 62.9          | 62.0         | 58.7          |
| Winograd Schemas | 43.9       | 46.3            | 40.4          | 52.4         | 52.4       | 43.9            | 37.8          | 48.8         | 48.4          |
| decaScore        |            |                 |               | (586.1)      | 513.6      | 5 546.4         | 533.8         | 562.7        | 571.7         |

- Anti-curriculum pre-training for QA improves over fully joint training
- But MT was still bad

## **Closing the Gap: Some Recent Experiments**

-- the gap started at 23

MQAN at ~571 with anti-curriculum training (SQuAD pre-training) --dropped the gap to 15.

MQAN at~593 and BOSM ~618 with CoVe --increased the gap from 15 to 25, but raised overall performance

-- dropped the gap to about 5 points.

MQAN at ~617 by oversampling on IWSLT --dropped the gap to 1 point

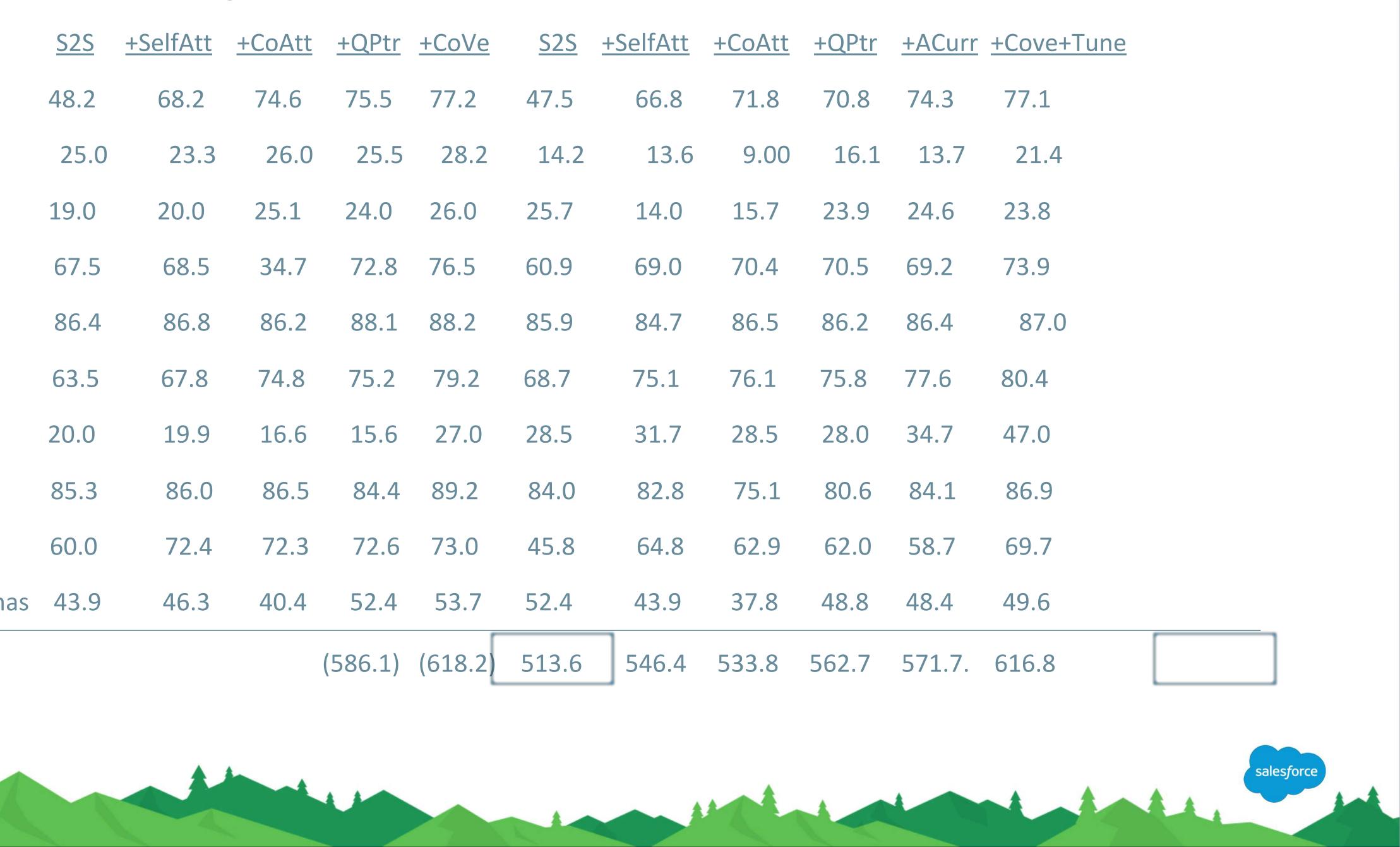
- MQAN at ~563 with fully joint training, Set of Single Models (SOSM) started at 586.1
- MQAN at ~609 by including more tasks in the first phase of anti-curriculum pretraining



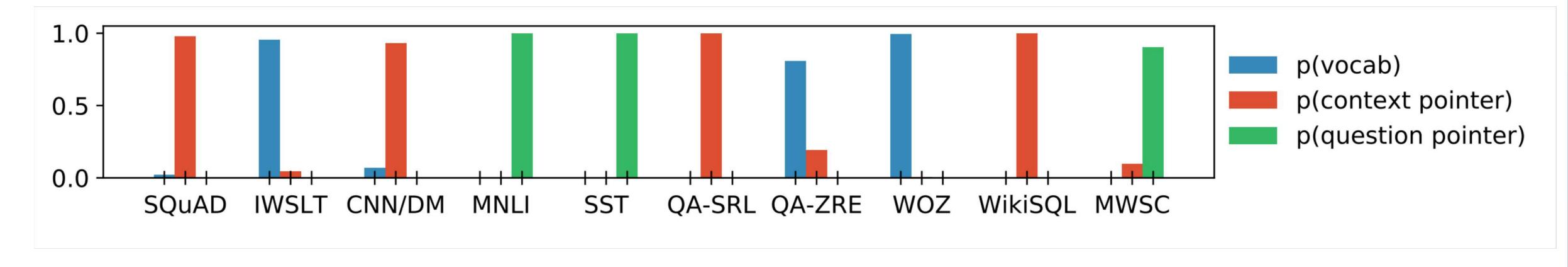
## Single-task Performance

| <u>Dataset</u>   | <u>S2S</u> | <u>+SelfAtt</u> | <u>+CoAtt</u> | <u>+QPtr</u> | +CoVe   | <u>S2S</u> | <u>+SelfAtt</u> | <u>+CoAtt</u> | <u>+QPtr</u> | <u>+ACurr</u> | +Cove+Tune |  |
|------------------|------------|-----------------|---------------|--------------|---------|------------|-----------------|---------------|--------------|---------------|------------|--|
| SQuAD            | 48.2       | 68.2            | 74.6          | 75.5         | 77.2    | 47.5       | 66.8            | 71.8          | 70.8         | 74.3          | 77.1       |  |
| IWSLT En — De    | 25.0       | 23.3            | 26.0          | 25.5         | 28.2    | 14.2       | 13.6            | 9.00          | 16.1         | 13.7          | 21.4       |  |
| CNN/DailyMail    | 19.0       | 20.0            | 25.1          | 24.0         | 26.0    | 25.7       | 14.0            | 15.7          | 23.9         | 24.6          | 23.8       |  |
| MultiNLI         | 67.5       | 68.5            | 34.7          | 72.8         | 76.5    | 60.9       | 69.0            | 70.4          | 70.5         | 69.2          | 73.9       |  |
| SST2             | 86.4       | 86.8            | 86.2          | 88.1         | 88.2    | 85.9       | 84.7            | 86.5          | 86.2         | 86.4          | 87.0       |  |
| QA-SRL           | 63.5       | 67.8            | 74.8          | 75.2         | 79.2    | 68.7       | 75.1            | 76.1          | 75.8         | 77.6          | 80.4       |  |
| QA-ZRE           | 20.0       | 19.9            | 16.6          | 15.6         | 27.0    | 28.5       | 31.7            | 28.5          | 28.0         | 34.7          | 47.0       |  |
| WOZ              | 85.3       | 86.0            | 86.5          | 84.4         | 89.2    | 84.0       | 82.8            | 75.1          | 80.6         | 84.1          | 86.9       |  |
| WikiSQL          | 60.0       | 72.4            | 72.3          | 72.6         | 73.0    | 45.8       | 64.8            | 62.9          | 62.0         | 58.7          | 69.7       |  |
| Winograd Schemas | 43.9       | 46.3            | 40.4          | 52.4         | 53.7    | 52.4       | 43.9            | 37.8          | 48.8         | 48.4          | 49.6       |  |
| decaScore        |            |                 |               | (586.1)      | (618.2) | 513.6      | 546.4           | 533.8         | 562.7        | 571.7.        | 616.8      |  |

### Multitask Performance



## Where MQAN Points



Answers are correctly copied from either context or question 

to use

## No confusion over which task the model should perform or which output space





# Pretraining on decaNLP improves final performance

- For e.g. additional IWSLT language pairs
- Or new tasks like named entity recognition.

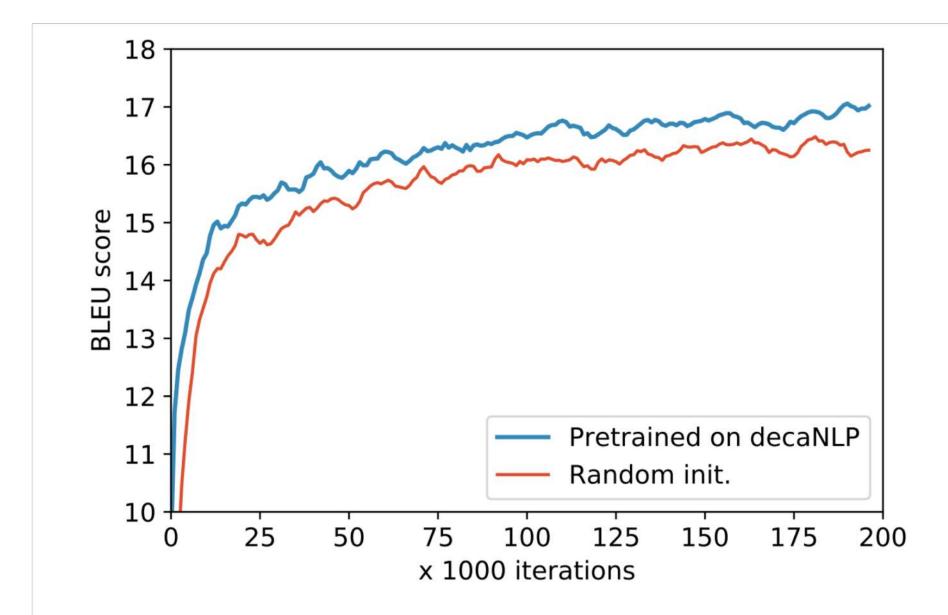


Figure 4: MQAN pretrained on decaNLP outperforms random initialization when adapting to new domains and learning new tasks. Left: training on a new language pair – English to Czech, right: training on a new task – Named Entity Recognition (NER).





## Zero-Shot Domain Adaptation of pretrained MQAN:

Achieves 80% accuracy on Amazon and Yelp reviews

Achieves 62% on SNLI

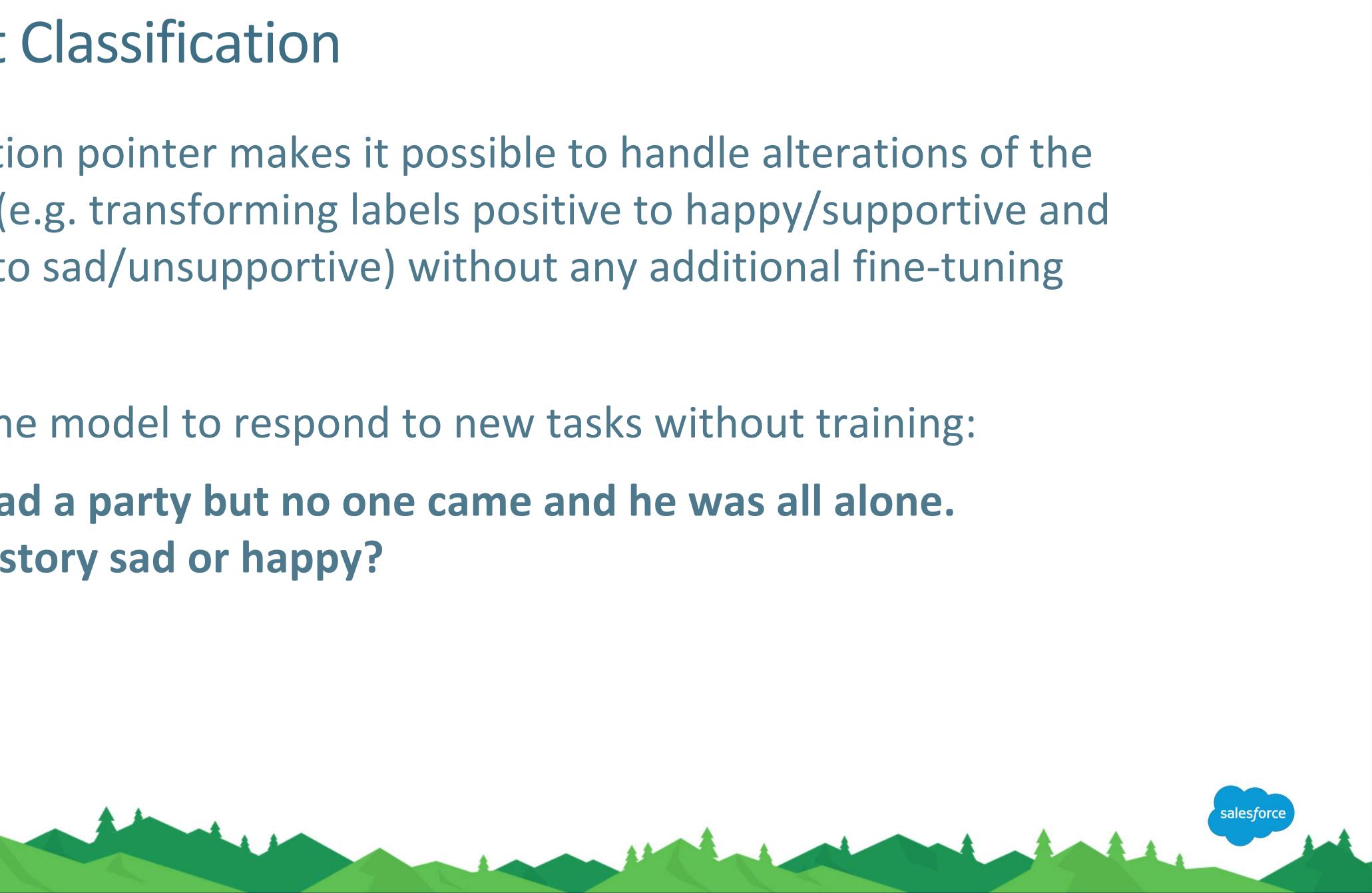
## (87% with fine-tuning, a 2 point gain over random initialization)



## Zero-Shot Classification

The question pointer makes it possible to handle alterations of the question (e.g. transforming labels positive to happy/supportive and negative to sad/unsupportive) without any additional fine-tuning

Enables the model to respond to new tasks without training: C: John had a party but no one came and he was all alone. Q: Is this story sad or happy? A: Sad



## decaNLP: A Benchmark for Generalized NLP

- questions)
- Framework for tackling
  - more general language understanding
  - multitask learning
  - domain adaptation
  - transfer learning
  - weight sharing, pre-training, fine-tuning (towards ImageNet-CNN of NLP?)
  - zero-shot learning

Train single question answering model for multiple NLP tasks (aka





## Related Work (tiny subset)

Multitask Learning

Collobert and J. Weston. A unified architecture for natural language processing: deep neural networks with multitask learning. In ICML, 2008.

M. Johnson, M. Schuster, Q. V. Le, M. Krikun, Y. Wu, Z. Chen, N. Thorat, F. B. Viégas, M. Wattenberg, G. S. Corrado, M. Hughes, and J. Dean. Google's multilingual neural machine translation system: Enabling zero-shot translation. TACL, 5:339–351, 2017.

M.-T. Luong, Q. V. Le, I. Sutskever, O. Vinyals, and L. Kaiser. Multi-task sequence to sequence learning. CoRR, abs/1511.06114, 2015a.

L. Kaiser, A. N. Gomez, N. Shazeer, A. Vaswani, N. Parmar, L. Jones, and J. Uszkoreit. One model to learn them all. CoRR, abs/1706.05137, 2017.

Model

A. See, P. J. Liu, and C. D. Manning. Get to the point: Summarization with pointer-generator networks. In ACL, 2017. Training

Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In ICML, 2009.





## What's next for NLP?

## Thank you ③

Machine learning with feature engineering

**Deep learning** 

## We are hiring, see https://einstein.ai

