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Lecture Plan:

Lecture 18: Tree Recursive Neural Networks, Constituency Parsing, 
and Sentiment
1. Motivation: Compositionality and Recursion (10 mins)
2. Structure prediction with simple Tree RNN: Parsing (20 mins)
3. Backpropagation through Structure (5 mins)
4. More complex TreeRNN units (35 mins)
5. Other uses of tree-recursive neural nets (5 mins)
6. Institute for Human-Centered Artificial Intelligence (5 mins)
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Last minute project tips

• Nothing works and everything is too slow à Panic

• Simplify model à Go back to basics: bag of vectors + nnet
• Make a very small network and/or dataset for debugging
• Once no bugs: increase model size
• Make sure you can overfit to your training dataset
• Plot your training and dev errors over training iterations
• Once its working, then regularize with L2 and Dropout
• Then if you have time, do some hyperparameter search

• Talk to us in office hours!
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1. The spectrum of language in CS
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Semantic interpretation of language –
Not just word vectors

How can we work out the meaning of larger 
phrases?
• The snowboarder is leaping over a mogul

• A person on a snowboard jumps into the air

People interpret the meaning of larger text units –
entities, descriptive terms, facts, arguments, stories – by 
semantic composition of smaller elements
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Compositionality





Language understanding –
& Artificial Intelligence – requires 
being able to understand bigger 

things from knowing about smaller 
parts
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Are languages recursive?

• Cognitively somewhat debatable (need to head to infinity)
• But: recursion is natural for describing language

• [The person standing next to [the man from [the company that 
purchased [the firm that you used to work at]]]]

• noun phrase containing a noun phrase containing a noun phrase
• It’s a very powerful prior for language structure
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Penn Treebank tree
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2. Building on Word Vector Space Models
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1
5

1.1
4

the country of my birth
the place where I was born

How can we represent the meaning of longer phrases?
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How should we map phrases into a vector space?

the  country       of       my  birth
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Use principle of compositionality
The meaning (vector) of a sentence 
is  determined by 
(1) the meanings of its words and
(2) the rules that combine them.

Models in this section 
can jointly learn parse 
trees and compositional 
vector representations
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Socher, Manning, and Ng. ICML, 
2011
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Constituency Sentence Parsing: What we want
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Learn Structure and Representation
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Recursive vs. recurrent neural networks
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Recursive vs. recurrent neural networks

• Recursive neural nets
require a tree structure

• Recurrent neural nets
cannot capture phrases
without prefix context
and often capture too much
of last words in final vector
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Recursive Neural Networks for Structure Prediction

on               the               mat.
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Inputs: two candidate children’s representations
Outputs:
1. The semantic representation if the two nodes are merged.
2. Score of how plausible the new node would be.

8
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Recursive Neural Network Definition

score  =  UTp

p =  tanh(W + b),

Same W parameters at all nodes 
of the tree
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c1 c2

c1
c2
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Parsing a sentence with an RNN (greedily)
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Parsing a sentence
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Parsing a sentence
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Parsing a sentence
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Max-Margin Framework - Details

• The score of a tree is computed by 
the sum of the parsing decision
scores at each node:

• x is sentence; y is parse tree
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RNN
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Max-Margin Framework - Details

• Similar to max-margin parsing (Taskar et al. 2004), a supervised 
max-margin objective

• The loss                penalizes all incorrect decisions

• Structure search for A(x) was greedy (join best nodes each time)
• Instead: Beam search with chart
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Scene Parsing

• The meaning of a scene image is 
also a function of smaller regions, 

• how they combine as parts to form 
larger objects,

• and how the objects interact.

Similar principle of compositionality.
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Algorithm for Parsing Images

Same Recursive Neural Network as for natural language parsing! 
(Socher et al. ICML 2011)

Features

Grass Tree

Segments

Semantic  
Representations

People Building

Parsing Natural Scene ImagesParsing Natural Scene Images
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Multi-class segmentation

Method Accuracy
Pixel CRF (Gould et al., ICCV 2009) 74.3

Classifier on superpixel features 75.9

Region-based energy (Gould et al., ICCV 2009) 76.4

Local labelling (Tighe & Lazebnik, ECCV 2010) 76.9

Superpixel MRF (Tighe & Lazebnik, ECCV 2010) 77.5

Simultaneous MRF (Tighe & Lazebnik, ECCV 2010) 77.5

Recursive Neural Network 78.1

Stanford Background Dataset (Gould et al. 2009)29



3. Backpropagation Through Structure

Introduced by Goller & Küchler (1996) 

Principally the same as general backpropagation

Calculations resulting from the recursion and tree structure:
1. Sum derivatives of W from all nodes (like RNN)
2. Split derivatives at each node (for tree)
3. Add error messages from parent + node itself

The second derivative in eq. 28 for output units is simply
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We adopt standard notation and introduce the error � related to an output unit:
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So far, we only computed errors for output units, now we will derive �’s for normal hidden units and
show how these errors are backpropagated to compute weight derivatives of lower levels. We will start with
second to top layer weights from which a generalization to arbitrarily deep layers will become obvious.
Similar to eq. 28, we start with the error derivative:
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where we used in the first line that the top layer is linear. This is a very detailed account of essentially
just the chain rule.

So, we can write the � errors of all layers l (except the top layer) (in vector format, using the Hadamard
product �):
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⇣
(W (l))T �(l+1)

⌘
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where the sigmoid derivative from eq. 14 gives f 0(z(l)) = (1� a(l))a(l). Using that definition, we get the
hidden layer backprop derivatives:
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Which in one simplified vector notation becomes:

@
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ER = �(l+1)(a(l))T + �W (l). (62)

In summary, the backprop procedure consists of four steps:

1. Apply an input xn and forward propagate it through the network to get the hidden and output
activations using eq. 18.

2. Evaluate �(nl) for output units using eq. 42.

3. Backpropagate the �’s to obtain a �(l) for each hidden layer in the network using eq. 59.

4. Evaluate the required derivatives with eq. 62 and update all the weights using an optimization
procedure such as conjugate gradient or L-BFGS. CG seems to be faster and work better when
using mini-batches of training data to estimate the derivatives.

If you have any further questions or found errors, please send an email to richard@socher.org

5 Recursive Neural Networks

Same as backprop in previous section but splitting error derivatives and noting that the derivatives of the
same W at each node can all be added up. Lastly, the delta’s from the parent node and possible delta’s
from a softmax classifier at each node are just added.

References

[Ben07] Yoshua Bengio. Learning deep architectures for ai. Technical report, Dept. IRO, Universite de
Montreal, 2007.
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BTS: 1) Sum derivatives of all nodes
You can actually assume it’s a different W at each node
Intuition via example:

If we take separate derivatives of each occurrence, we get same:

31



BTS: 2) Split derivatives at each node

During forward prop, the parent is computed using 2 children

Hence, the errors need to be computed wrt each of them:

where each child’s error is n-dimensional
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BTS: 3) Add error messages

• At each node: 
• What came up (fprop) must come down (bprop)
• Total error messages  = error messages from parent + error 

message from own score
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3
3

8
3

c1 c2

parentscore
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BTS Python Code: forwardProp
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BTS Python Code: backProp

The second derivative in eq. 28 for output units is simply
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where we used in the first line that the top layer is linear. This is a very detailed account of essentially
just the chain rule.

So, we can write the � errors of all layers l (except the top layer) (in vector format, using the Hadamard
product �):

�(l) =
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(W (l))T �(l+1)

⌘
� f 0(z(l)), (59)

7

where the sigmoid derivative from eq. 14 gives f 0(z(l)) = (1� a(l))a(l). Using that definition, we get the
hidden layer backprop derivatives:
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Which in one simplified vector notation becomes:

@
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ER = �(l+1)(a(l))T + �W (l). (62)

In summary, the backprop procedure consists of four steps:

1. Apply an input xn and forward propagate it through the network to get the hidden and output
activations using eq. 18.

2. Evaluate �(nl) for output units using eq. 42.

3. Backpropagate the �’s to obtain a �(l) for each hidden layer in the network using eq. 59.

4. Evaluate the required derivatives with eq. 62 and update all the weights using an optimization
procedure such as conjugate gradient or L-BFGS. CG seems to be faster and work better when
using mini-batches of training data to estimate the derivatives.

If you have any further questions or found errors, please send an email to richard@socher.org

5 Recursive Neural Networks

Same as backprop in previous section but splitting error derivatives and noting that the derivatives of the
same W at each node can all be added up. Lastly, the delta’s from the parent node and possible delta’s
from a softmax classifier at each node are just added.

References

[Ben07] Yoshua Bengio. Learning deep architectures for ai. Technical report, Dept. IRO, Universite de
Montreal, 2007.
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Discussion: Simple TreeRNN
• Decent results with single matrix TreeRNN

• Single weight matrix TreeRNN could capture some 
phenomena but not adequate for more complex, 
higher order composition and parsing long sentences

• There is no real interaction between the input words

• The composition function is the same 
for all syntactic categories, punctuation, etc. W

c1 c2

p
Wscore s
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4. Version 2: Syntactically-Untied RNN

• A symbolic Context-Free Grammar (CFG) backbone is 
adequate for basic syntactic structure

• We use the discrete syntactic categories of the 
children to choose the composition matrix

• A TreeRNN can do better with different composition 
matrix for different syntactic environments

• The result gives us a better semantics

[Socher, Bauer, Manning, Ng 2013]
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Compositional Vector Grammars

• Problem: Speed. Every candidate score in beam 
search needs a matrix-vector product.

• Solution: Compute score only for a subset of trees 
coming from a simpler, faster model (PCFG)
• Prunes very unlikely candidates for speed
• Provides coarse syntactic categories of the 

children for each beam candidate

• Compositional Vector Grammar = PCFG + TreeRNN
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Related Work for parsing

• Resulting CVG Parser is related to previous work that extends PCFG 
parsers

• Klein and Manning (2003a) : manual feature engineering
• Petrov et al. (2006) : learning algorithm that splits and merges 

syntactic categories 
• Lexicalized parsers (Collins, 2003; Charniak, 2000): describe each 

category with a lexical item
• Hall and Klein (2012) combine several such annotation schemes in a 

factored parser. 
• CVGs extend these ideas from discrete representations to richer 

continuous ones
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Experiments
• Standard WSJ split, labeled F1
• Based on simple PCFG with fewer states
• Fast pruning of search space, few matrix-vector products
• 3.8% higher F1

Parser Test, All Sentences
Stanford PCFG, (Klein and Manning, 2003a) 85.5

Stanford Factored (Klein and Manning, 2003b) 86.6

Factored PCFGs (Hall and Klein, 2012) 89.4

Collins (Collins, 1997) 87.7

SSN (Henderson, 2004) 89.4

Berkeley Parser (Petrov and Klein, 2007) 90.1

CVG (RNN) (Socher et al., ACL 2013) 85.0

CVG (SU-RNN) (Socher et al., ACL 2013) 90.4

Charniak - Self Trained (McClosky et al. 2006) 91.0

Charniak - Self Trained-ReRanked (McClosky et al. 2006) 92.140



SU-RNN / CVG [Socher, Bauer, Manning, Ng 2013]

Learns soft notion of head words
Initialization: 

NP-CC

NP-PP PP-NP

PRP$-NP
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SU-RNN / CVG [Socher, Bauer, Manning, Ng 2013]

ADJP-NP

ADVP-ADJP

JJ-NP

DT-NP
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Analysis of resulting vector representations

All the figures are adjusted for seasonal variations
1. All the numbers are adjusted for seasonal fluctuations
2. All the figures are adjusted to remove usual seasonal patterns

Knight-Ridder wouldn’t comment on the offer
1. Harsco declined to say what country placed the order
2. Coastal wouldn’t disclose the terms

Sales grew almost 7% to $UNK m. from $UNK m.
1. Sales rose more than 7% to $94.9 m. from $88.3 m.
2. Sales surged 40% to UNK b. yen from UNK b.
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Version 3:
Compositionality Through Recursive Matrix-Vector Spaces

One way to make the composition function more powerful was by 
untying the weights W

But what if words act mostly as an operator, e.g. “very” in
very good

Proposal: A new composition function

p  =  tanh(W       + b)c1
c2

Before:

[Socher, Huval, Bhat, Manning, & Ng, 2012]
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Compositionality Through Recursive Matrix-Vector 
Recursive Neural Networks

p  =  tanh(W       + b)c1
c2

p  =  tanh(W            + b)C2c1
C1c2
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Matrix-vector RNNs
[Socher, Huval, Bhat, Manning, & Ng, 2012]

p =

 A             B 

=P
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Predicting Sentiment Distributions
Good example for non-linearity in language
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Classification of Semantic Relationships

• Can an MV-RNN learn how a large syntactic context 
conveys a semantic relationship?

• My [apartment]e1 has a pretty large [kitchen] e2
à component-whole relationship (e2,e1)

• Build a single compositional semantics for the minimal 
constituent including both terms
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Classification of Semantic Relationships

Classifier Features F1
SVM POS, stemming, syntactic patterns 60.1
MaxEnt POS, WordNet, morphological features, noun 

compound system, thesauri, Google n-grams
77.6

SVM POS, WordNet, prefixes, morphological 
features, dependency parse features, Levin 
classes, PropBank, FrameNet, NomLex-Plus, 
Google n-grams, paraphrases, TextRunner

82.2

RNN – 74.8
MV-RNN – 79.1
MV-RNN POS, WordNet, NER 82.4
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Version 4: Recursive Neural Tensor Network

• Less parameters than MV-RNN
• Allows the two word or phrase vectors to interact 

multiplicatively

Socher, Perelygin, Wu, Chuang, Manning, Ng, and Potts 2013



Beyond the bag of words: Sentiment detection

Is the tone of a piece of text positive, negative, or neutral?

• Sentiment is that sentiment is “easy”
• Detection accuracy for longer documents ~90%, BUT

… … loved … … … … … great … … … … … … impressed 
… … … … … … marvelous … … … …



Stanford Sentiment Treebank

• 215,154 phrases labeled in 11,855 sentences
• Can actually train and test compositions

http://nlp.stanford.edu:8080/sentiment/



Better Dataset Helped All Models

• Hard negation cases are still mostly incorrect
• We also need a more powerful model!
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Version 4: Recursive Neural Tensor Network

Idea: Allow both additive and mediated
multiplicative interactions of vectors



Recursive Neural Tensor Network



Recursive Neural Tensor Network



Recursive Neural Tensor Network

• Use resulting vectors in tree as input to 
a classifier like logistic regression

• Train all weights jointly with gradient descent



Positive/Negative Results on Treebank
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Classifying Sentences: Accuracy improves to 85.4



Experimental Results on Treebank
• RNTN can capture constructions like X but Y
• RNTN accuracy of 72%, compared to MV-RNN (65%), 

biword NB (58%) and RNN (54%)



Negation Results
When negating negatives, positive activation should 
increase!

Demo: http://nlp.stanford.edu:8080/sentiment/



Version 5:
Improving Deep Learning Semantic 
Representations using a TreeLSTM
[Tai et al., ACL 2015; also Zhu et al. ICML 2015]

Goals:
• Still trying to represent the meaning of a sentence as a location 

in a (high-dimensional, continuous) vector space
• In a way that accurately handles semantic composition and 

sentence meaning
• Generalizing the widely used chain-structured LSTM to trees



Long Short-Term Memory (LSTM) Units for 
Sequential Composition

Gates are vectors in [0,1]d multiplied element-wise for soft masking
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Tree-Structured Long Short-Term Memory 
Networks                                [Tai et al., ACL 2015]



Tree-structured LSTM

Generalizes sequential LSTM to trees with any branching factor
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Tree-structured LSTM

Generalizes sequential LSTM to trees with any branching factor
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Results: Sentiment Analysis:
Stanford Sentiment Treebank

Method Accuracy %
(Fine-grain,
5 classes)

RNTN (Socher et al. 2013) 45.7
Paragraph-Vec (Le & Mikolov 2014) 48.7
DRNN (Irsoy & Cardie 2014) 49.8
LSTM 46.4
Tree LSTM (this work) 50.9



Results: Sentiment Analysis:
Stanford Sentiment Treebank

Method Accuracy %
(Pos/Neg)

RNTN (Socher et al. 2013) 85.4
Paragraph-Vec (Le & Mikolov 2014) 87.8
DRNN (Irsoy & Cardie 2014) 86.6
LSTM 84.9
Tree LSTM (this work) 88.0



Results: Semantic Relatedness
SICK 2014 (Sentences Involving Compositional Knowledge)

Method Pearson 
correlation

Word vector average 0.758
Meaning Factory (Bjerva et al. 2014) 0.827
ECNU (Zhao et al. 2014) 0.841
LSTM 0.853
Tree LSTM 0.868



Forget Gates: Selective State Preservation

• Stripes = forget gate activations; more white ⇒ more preserved
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5. QCD-Aware Recursive Neural Networks for Jet Physics
Gilles Louppe, Kyunghun Cho, Cyril Becot, Kyle Cranmer (2017)



Tree-to-tree Neural Networks for Program Translation 
[Chen, Liu, and Song NeurIPS 2018]

• Explores using tree-structured encoding and generation for
translation between programming languages

• In generation, you use attention over the source tree
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Tree-to-tree Neural Networks for Program Translation 
[Chen, Liu, and Song NeurIPS 2018]

72



Tree-to-tree Neural Networks for Program Translation 
[Chen, Liu, and Song NeurIPS 2018]
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Stanford Institute for 
Human-Centered Artificial Intelligence (HAI)



Human-Centered Artificial Intelligence

Artificial intelligence is poised to transform 
economies and societies, change the way we 

communicate and work, reshape governance and 
politics, and challenge the international order

HAI’s mission is to advance AI research, education, 
policy, and practice to improve the human condition



Guiding and 
forecasting

the human and 
societal impact 

of AI

Designing AI 
applications that 
augment human 

capabilities

Developing AI 
technologies 
inspired by 

human
intelligence


