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Abstract 

 
Coding diagnosis and procedures in medical records is tedious and labor intensive, but this 
process is essential for accurate billings in the current medical system. In this paper, I report 
the performance of a natural language processing model (BERT) that maps patient discharge 
notes to ICD codes. Previous studies have demonstrated that deep learning models such as 
CNN and LSTM perform better at such mapping when compared to conventional machine 
learning models. Therefore, I employed a transformer-based pretrained model: BERT on the 
largest emergency department clinical notes dataset MIMIC-III to select for the top-50 ICD 
codes. The model suffers from the drawback of only allowing the first 510 tokens of a note to 
be fed into the model so its performance inevitably suffers due to this drawback, especially 
compare to CNN based methods. Yet somewhat surprisingly, it still outperforms some other 
baseline models including GRU and ULMFiT which can handle arbitrary length of sequence. 
For the ICD code prediction, a CNN based model may be a better direction to pursue, but the 
study still offers some valuable insights on applying BERT-based model to MIMIC-III dataset. 
 
1 Introduction 
 
Assigning International Classification of Diseases (ICD) codes to each patient encounter by 
medical coders is a tedious process. In the midst of the rise of deep learning, a decent amount 
of effort have been devoted into creating an automatic mapping between the medical notes and 
ICD codes. The deep learning methods typically achieve better performance than classical 
natural language processing (NLP) techniques [1-5]. Most of these studies were conducted 
before the BERT-era. As one of the recent break-through in NLP, BERT (Bidirectional 
Encoder Representations from Transformers) is often considered a swiss army knife of NLP 
that’s useful for almost any task due to its pre-training step on a large text corpus [6]. The fine-
tuning of BERT is relatively inexpensive and efficient, but its usability hasn’t yet been put into 
test on ICD-code tagging. This study aims to put BERT into inspection regarding its 
performance on ICD prediction by finetuning a pre-trained BERT model on clinical notes 
associated with a patients’ discharge. 
 
2 Method 
ICD-9 code prediction is treated as a multilabel text classification problem. Suppose we have n 
total number of training examples, and d number of labels. If we let ℒ be the set of ICD-9 
codes, and let 𝑌	𝜖	{0,1) be the set of labels, the prediction is to find a map between each input 
𝑥! 	to its associated class 𝑦" , 𝑤ℎ𝑒𝑟𝑒	i = 1, 2, …, n and j = 1, 2, …, d. In a trained classifier, a 
probability can be associated with each one of the d labels.  



 
2.1 Fine-tuning a pretrained BERT model 
A pretrained BERT model was used to predict such a mapping. A BERT model uses a special 
classification token ([CLS]) concatenated to the beginning of each sequence of training tokens, 
and use the final hidden state corresponding to this token as the aggregate sequence 
representation for classification task. The model structure of BERT features a stack of 
Transformer blocks with self-attention mechanism that allows each token to be associated with 
any other tokens in the sequence at any point of time. BERT was introduced with two different 
sizes: BERTBASE features 12-layer transformer stacks with 12 attention heads and 110M total 
parameters; BERTLARGE doubles the number of stacks with 16 attention heads and 340M total 
parameters.  
BERT was pretrained for masked language modeling, and for next sentence prediction, where a 
sentence pair was fed into the model at each time. When using the model for down-stream task 
like sequence tagging, the input degenerate into a text-𝛷 pair. The [CLS] representation at the 
last layer of the transformer stack is fed into an output layer (feed-forward network plus non-
linearity) for classification (Figure 1). The output of [CLS] (i.e. 𝑂[$%&]) is a vector of size 768 
from BERTBASE  and size 1024 from BERTLARGE. It was the only input for the classification 
layer. Because a patient can be associated with multiple labels, a sigmoid non-linearity was 
applied to generate independent probability of each label: 𝑦ℓ2 = 𝜎(𝛽ℓ)𝑂[*+,] + 𝑏ℓ). The loss 
function to minimize is the sum of binary cross-entropy loss over each label: 𝐿𝑜𝑠𝑠-*.(𝑋, 𝑦) =
−∑ (𝑦ℓℒ

ℓ01 log(𝑦ℓ2 ) + (1 − 𝑦ℓ) log(1 − 𝑦ℓ2 )) 
 
 

 
Figure 1 BERT for multi-label sequence classification 

 
There are studies which trained a BERTBASE on clinical data (ClinicalBERT, BioBERT, etc.) 
[REF]. I have compared the performance of using ClinicalBERT/BioBERT versus using the 
original BERTBASE weight as the starting point for finetuning on a subset of sample. The 
difference is minimal, so I ended up using the original weight of BERTBASE to make the results 
more comparable to BERTLARGE. The original authors of BERT have suggested a set of hyper-
parameter values to choose from. For this study, we picked a learning rate of 2e-5, a batch size 
of 64 for BERTBASE or 16 for BERTLARGE on 8 P100 GPUs. The number of batch_size dropped 
from BERTBASE to BERTLARGE because the latter requires much larger memory space to store 



its 340M parameters as compared to 110M parameters of BERTLARGE. The BERTBASE model 
was trained for 6 epochs and BERTLARGE for 3 epochs. 
 
2.2 Data 
Medical Information Mart for Intensive Care (MIMIC) database is an open-access healthcare 
data of patients admitted to critical care units of a large tertiary care hospital [7]. The database 
was developed by the Massachusetts Institute of Technology (MIT) containing deidentified 
Electronic health records (EHR) with both structured and unstructured data including 
diagnostics and laboratory results, medications, and discharge summaries. Each admission is 
tagged by human coders with 8,921 unique ICD-9 codes (6,918 diagnosis code and 2,003 
procedure codes). I used the same data splitting as in Mullenbach et al. where 47,724 discharge 
summaries from 36,998 patients for training, 1,632 summaries for validation and 3,372 
summaries for testing [4]. Mullenbach tested the model for both the full set of ICD-9 codes, 
and for the 50 most frequent codes. Given the time limitation, I restricted the scope of study by 
only focusing on the 50 most frequent codes just to speed things up. And similar to 
Mullenbach, a smaller testing set was also constructed following Shi et al. (2017) where the 
test set was filtered down to instances that have at least one of the top 50 most frequent codes, 
resulting in 8,067 summaries for training, 1,574 for validation, and 1,730 for testing [8]. This is 
done to make the results comparable across different studies. 
 
2.3 Challenge and Study Re-purpose 
A major challenge that appeared during exploratory analysis is that most of the discharge notes 
are much longer than the 510, which is the maximum token length that BERT can take at each 
time during training (Figure 2). In fact only 11.67% of discharge summaries have a length of 
tokens shorter than 510, so except for the first “bump” (in Figure 2) of discharge summaries 
which falls below the 510 length requirement, for the rest 90% of the data, only a proportion of 
the discharge note can be fed into the model, making BERT a bad modeling choice for this 
particular problem. However, the first 510 tokens still contain meaningful description of 
symptoms and diagnosis, and there is a new study showing that a simple text truncation (i.e. 
head+tail) works the best on IMDB data than hierarchical model that stack LSTM or attention 
on top of BERT to connect different sections of paragraphs [9]. There is also a study that 
shows breaking the long paragraphs into different samples works well enough for predicting 
hospital readmission [5]. Given the convenience of the fine-tuning approach and the nature of 
the project as a fun course project, it may still be of interest to try out BERT and evaluate its 
performance with tweaks to the data preprocessing, and pin-down the component that might 



improve the model performance on ICD code prediction. 

 
Figure 2 Distribution of the Total Number of Tokens Per Discharge Note 
 
2.4 Preprocesing 
Two preprocessing approaches were used, one following Mullenbach and one following 
Huang. In Mullenbach’s study which the researchers used convolutional neural network with 
attention mechanism, the tokens were “cleaner” in the way that all punctuation marks are 
removed, along with special characters, and tokens that has no alphabetic characters (e.g., 
removing “500” but keeping “250mg”). In Ke’s study, only special characters are removed and 
everything else is retained. Both studies use lower-cased tokens. The first approach will make 
the data directly comparable to previous study results, and also allow the 510-length input to 
include more “meaningful” word tokens than using the second approach.  However, the second 
approach of preprocessing is also considered because BERT is pretrained on a vocabulary that 
contains both alphabetic characters and punctuation marks. Although punctuation marks may 
seem meaningless for convolutional network which is the model Mullenbach used, they may 
have “meanings” in language modeling and certainly have values to humans such that they 
help people process information better. It is therefore of interest to see how well the model 
performs on both types of input data. 
 
2.5 Evaluation Metrics 
To facilitate comparison with prior work, I reported both the macro- and micro-averaged area 
under the ROC curve (AUC) and F1 score. Micro-averaged values are calculated by treating 
each (text, code) pair as a separate prediction. Macro=averaged values are calculated by 
averaging metrics computed per-label. 
 
3. Results 
 
As expected, the BERT model’s performance is inferior to all the convolutional neural network 
models which are known to work well for concept extraction tasks over arbitrarily long text 
sequence (Table 1). Yet although BERT was trained on only on the first chunk of the input 
sequence, its performance still exceeds Bi-GRU and ULMFiT which presumably should be 
able to handle text with arbitrary length better than a model that can only take fixed length of 
data.  



 
Table 1 Comparison of BERT’s results to previous studies 

   

  AUC F1 
Model Macro Micro Macro Micro 
C-MemNN (Prakash et al., 2017) 
[condensed memory neural network] 

0.833 N/A N/A N/A 

Shi et al. (2017) [neural language model] N/A 0.9 N/A 0.532      
Logistic Regression (Mullenbach, et 
al.,2018) 

0.829 0.864 0.477 0.533 

CNN (Mullenbach, et al.,2018) 0.876 0.907 0.576 0.625 
Bi-GRU ((Mullenbach, et al.,2018) 0.828 0.868 0.484 0.549 
CAML (Mullenbach, et al.,2018) 0.875 0.909 0.532 0.614 
DR-CAML((Mullenbach, et al.,2018) 0.884 0.916 0.576 0.633      
ULMFiT (Nuthakki et al., 2019)  N/A N/A N/A 0.55*  

0.48*  
BERT-Large 0.858 0.889 0.531 0.605 

* F-1 score is computed for diagnosis and procedure codes separately. 
 

 
 
When comparing within the current studies on different BERT models with two types of 
preprocessing, BERTLARGE yields better performance than BERTBASE (Table 2). One 
interesting contrast is also revealed when comparing across the two preprocessing approaches. 
When the model is smaller (BERTBASE), cleaning the input more aggressively by removing all 
punctuations helps improving the model performance by about 1% on the AUC or F1. Yet after 
upgrading to BERTLARGE the difference was gone or even reversed, where input data with 
punctuation marks performs even better than BERTBASE on the small test set that contains 
instances with at least one of the top 50 most frequent codes.   
 
 

Table 2 Results on MIMIC-III, 50 labels, within study comparison 
 Test on the same subset as 
Shi et al. (2017) (N=1,730) AUC F1 

 Macro Micro Macro Micro 
With Puncs     
    Bert-base-uncased 0.822 0.864 0.468 0.555 
    Bert-large-uncased 0.858 0.889 0.531 0.605 
Without Puncs     
    Bert-base-uncased_512 0.832 0.870 0.476 0.568 
    Bert-large-uncased_512 0.848 0.883 0.522 0.594 
Test on the full test set 50 
labels (N=3,372) AUC F1 
  Macro Micro Macro Micro 
With Puncs     
    Bert-base-uncased 0.822 0.864 0.464 0.553 
    Bert-large-uncased 0.852 0.885 0.519 0.591 
Without Puncs     
    Bert-base-uncased_512 0.837 0.873 0.472 0.564 
    Bert-large-uncased_512 0.853 0.886 0.518 0.590 

 
 
The truncation does appear to affect model performance (Table 3). I compare the frequency of 
the ICD codes with highest and those with lowest AUC scores on the frequency of the code as 
well as the key-word (i.e. terms related to the name of the ICD code) frequency in the token 



set. Because these ICD codes are already the top-50 most frequent codes, so the frequency of 
the codes is not too different. The top predicted codes show up 40% or 1.4 times more than the 
bottom predicted codes. If the entire sequence of discharge notes can be included in the model, 
we may expect a similar ratio for key-word frequency. Yet when comparing the frequency at 
the key-word or token level, the frequency of key terminology is 400% or 4.27 times more than 
the bottom predicted codes. The top predicted codes have more key terminology being 
included in the first 520 tokens of the discharge notes. Additionally, procedure codes are easier 
to predict than diagnosis codes. 

 
Table 3 Comparison of ICD codes with top-10 and bottom-10 AUC by frequency of ICD codes and key-word tokens 

Code AUC Name of the ICD code Type 

Code 
Frequency 
(N=52,726) 

Key-word 
Frequency in 
the first 520 

Tokens         

Top10-ranked    
Total: 
51,282 

Total: 
278,614 

36.15 0.9947 Coronary artery bypass Procedure 3981 76682 

39.61 0.9922 
Extracorporeal circulation 
auxiliary Procedure 6141 339 

88.56 0.9661 Coronary arteriography Procedure 4625 2904 
39.95 0.9583 Hemodialysis Procedure 2889 2366 
414.01 0.9536 Coronary atherosclerosis Diagnosis 10990 27875 
37.22 0.9499 Left heart catheterization Procedure 2861 46814 

37.23 0.9491 
heart cardiac 
catheterization Procedure 2465 79678 

V45.81  0.9455 Aortocoronary bypass Diagnosis 2650 12149 
427.31 0.9195 Atrial fibrillation Diagnosis 11329 25134 
995.92 0.9152 Severe sepsis Diagnosis 3351 4673       

Bottom10-ranked    
Total: 
36,549 

Total: 
65,231 

276.2 0.7557 Acidosis Diagnosis 3799 1078 
99.04 0.743 Transfusion of packed cells Procedure 6944 7902 
599 0.7364 Urinary tract infection, Diagnosis 5766 5868 

276.1 0.7344 
Hyposmolality and/or 
hyponatremia Diagnosis 2566 971 

287.5 0.7337 Thrombocytopenia Diagnosis 2602 1188 
511.9 0.7331 Unspecified pleural effusion Diagnosis 2413 17945 

V15.82  0.7227 
 Personal history of 
tobacco use Diagnosis 2251 15089 

305.1 0.7045 Tobacco use disorder Diagnosis 2775 15089 
311 0.7017 Depressive disorder Diagnosis 2819 101 
285.9 0.6659 Anemia, unspecified Diagnosis 4614 0 

 
 
4. Discussion 
 
BERT does not seem to be an ideal modeling choice for predicting ICD codes from medical 
notes due to its ability to handle sequence of fixed length. But its performance still exceeds 
some of the baseline models which were fed the entire corpus of notes. This may prove that 
pretrained BERT or transformer stacks having better text feature extraction ability which 
makes it work better than model with inferior extraction ability despite of shortage of data. It 
might be of interest for future researchers to modify the structure of BERT to allow some 
recurrence to handle longer sequence of input. But for this particular task – ICD code 



prediction – it may actually be more valuable to improve upon a CNN type of model than a 
BERT based model given the former is lighter, requires no pretraining, and works well. 
 
I also experimented with splitting the notes into pieces and feed into the model (results not 
presented). But the model performance actually dropped a bit by doing so. This is not too 
surprising as each chunk of 510 token may only contain pieces of information related to part of 
the ICD codes, which actually introduced more “noises” to the model than “information”. I did 
not end up running models on the “head-tail” truncation due to time limitation on this project. 
But a closer look at the discharge notes reveals that the last part is typically about recovery, 
while the beginning section is typically symptom description, so the first 510 tokens may be 
more relevant for reflecting the diagnosis of a patient than the combination of first 255and the 
last 255 tokens. Yet it is just an assumption. The other things that deterred me from trying is 
because although various types of truncation may work for certain data, an approach that’s too 
dependent on data-structure may be less robust to a structure-neural model, and could be 
difficult of scale up when moving from one dataset to another where the data structure or 
format of discharge notes changes. 
 
For previous studies, the number of outcome classes is typically small, and hence a simple 
truncation works well enough. But for a task that needs to predict labels over 50 different 
categories or even thousands of categories in a full ICD code set, missing one sentence could 
potentially mean the information related to one or several classes are gone forever. This 
explains why the magic of BERT no longer works for this particular down-stream task. It is 
actually somewhat surprising to see that the model still have some predictive power despite 
that 90% of the discharge notes are truncated. This potentially reflects that the first chunk of 
discharge notes may have contained a decent amount of diagnostic or procedural information.    
 
All prior studies which repeat the pretraining process of BERT on MIMIC-III dataset have 
only adopted BERTBASE (cite biobert and clinicalberts). Yet it turns out BERTLARGE,  despite of 
its ‘ridiculously’ large size, which makes it appear susceptible to over-fitting on a relatively 
smaller MIMIC dataset, it actually ends up performing much better than BERTBASE  for 
medical text classification and requires less data preprocessing, thanks to the boosted number 
of parameters which are pretrained. Future researchers interested in pretraining BERT model 
on clinical dataset may consider size up the model to BERTLARGE.  
 

  



Reference 
 

1. Liendo, Z., G. De Roo, and A. Karmakar. Classifying medical notes into standard disease codes. 
2018; Available from: https://arxiv.org/pdf/1802.00382.pdf. 

2. Nuthakki, S., et al., Natural language processing of MIMIC-III clinical notes for identifying 
diagnosis and procedures with neural networks. arXiv:1912.12397, 2019. 

3. Huang, J., C. O’sorio, and L. Wicent Sy, An empirical evaluation of deep learning for ICD-9 code 
assignment using MIMIC-III clinical notes. Computer Methods and Programs in Biomedicine, 
2019. 177: p. 141-153. 

4. Mullenbach, J., et al. Explainable Prediction of Medical Codes from Clinical Text. in NAACL-HLT 
2018. 2018. 

5. Huang, K., J. Altosaar, and R. Ranganath, ClinicalBERT: Modeling CLinical Notes and Predicting 
Hospital Readmission. arXiv:1904.05342, 2019. 

6. Devlin, J., et al. BERT: Pre-training of Deep Bidirectional Transformers for Language 
Understanding. in NAACL-HLT 2019. 2019. 

7. Alistair E.W. Johnson, et al., MIMIC-III, a freely accessible critical care database. Scientific data 
3, 2016. 

8. Black, S., et al., Efficacy, safety and immunogenicity of heptavalent pneumococcal conjugate 
vaccine in children. Northern California Kaiser Permanente Vaccine Study Center Group. 
Pediatr Infect Dis J, 2000. 19(3): p. 187-95. 

9. Chi Sun, et al., How to Fine-Tune BERT for Text Classification? arXiv, 2020. 1505.04597 [cs.CV]. 
 


