
Predicting ICD-9 Codes from Medical Notes – Does the Magic of
BERT Applies Here?

Stanford CS224N Custom Project (Option 3)

Yiyun Chen
SCPD

Stanford University
starchen@stanford.edu

Abstract

Coding diagnosis and procedures in medical records is tedious and labor intensive, but this
process is essential for accurate billings in the current medical system. In this paper, I report
the performance of a natural language processing model (BERT) that maps patient discharge
notes to ICD codes. Previous studies have demonstrated that deep learning models such as
CNN and LSTM perform better at such mapping when compared to conventional machine
learning models. Therefore, I employed a transformer-based pretrained model: BERT on the
largest emergency department clinical notes dataset MIMIC-III to select for the top-50 ICD
codes. The model suffers from the drawback of only allowing the first 510 tokens of a note to
be fed into the model so its performance inevitably suffers due to this drawback, especially
compare to CNN based methods. Yet somewhat surprisingly, it still outperforms some other
baseline models including GRU and ULMFiT which can handle arbitrary length of sequence.
For the ICD code prediction, a CNN based model may be a better direction to pursue, but the
study still offers some valuable insights on applying BERT-based model to MIMIC-III dataset.

1 Introduction

Assigning International Classification of Diseases (ICD) codes to each patient encounter by
medical coders is a tedious process. In the midst of the rise of deep learning, a decent amount
of effort have been devoted into creating an automatic mapping between the medical notes and
ICD codes. The deep learning methods typically achieve better performance than classical
natural language processing (NLP) techniques [1-5]. Most of these studies were conducted
before the BERT-era. As one of the recent break-through in NLP, BERT (Bidirectional
Encoder Representations from Transformers) is often considered a swiss army knife of NLP
that’s useful for almost any task due to its pre-training step on a large text corpus [6]. The fine-
tuning of BERT is relatively inexpensive and efficient, but its usability hasn’t yet been put into
test on ICD-code tagging. This study aims to put BERT into inspection regarding its
performance on ICD prediction by finetuning a pre-trained BERT model on clinical notes
associated with a patients’ discharge.

2 Method
ICD-9 code prediction is treated as a multilabel text classification problem. Suppose we have n
total number of training examples, and d number of labels. If we let ℒ be the set of ICD-9
codes, and let 𝑌	𝜖	{0,1) be the set of labels, the prediction is to find a map between each input
𝑥! 	to its associated class 𝑦" , 𝑤ℎ𝑒𝑟𝑒	i = 1, 2, …, n and j = 1, 2, …, d. In a trained classifier, a
probability can be associated with each one of the d labels.

2.1 Fine-tuning a pretrained BERT model
A pretrained BERT model was used to predict such a mapping. A BERT model uses a special
classification token ([CLS]) concatenated to the beginning of each sequence of training tokens,
and use the final hidden state corresponding to this token as the aggregate sequence
representation for classification task. The model structure of BERT features a stack of
Transformer blocks with self-attention mechanism that allows each token to be associated with
any other tokens in the sequence at any point of time. BERT was introduced with two different
sizes: BERTBASE features 12-layer transformer stacks with 12 attention heads and 110M total
parameters; BERTLARGE doubles the number of stacks with 16 attention heads and 340M total
parameters.
BERT was pretrained for masked language modeling, and for next sentence prediction, where a
sentence pair was fed into the model at each time. When using the model for down-stream task
like sequence tagging, the input degenerate into a text-𝛷 pair. The [CLS] representation at the
last layer of the transformer stack is fed into an output layer (feed-forward network plus non-
linearity) for classification (Figure 1). The output of [CLS] (i.e. 𝑂[$%&]) is a vector of size 768
from BERTBASE and size 1024 from BERTLARGE. It was the only input for the classification
layer. Because a patient can be associated with multiple labels, a sigmoid non-linearity was
applied to generate independent probability of each label: 𝑦ℓ2 = 𝜎(𝛽ℓ)𝑂[*+,] + 𝑏ℓ). The loss
function to minimize is the sum of binary cross-entropy loss over each label: 𝐿𝑜𝑠𝑠-*.(𝑋, 𝑦) =
−∑ (𝑦ℓℒ

ℓ01 log(𝑦ℓ2) + (1 − 𝑦ℓ) log(1 − 𝑦ℓ2))

Figure 1 BERT for multi-label sequence classification

There are studies which trained a BERTBASE on clinical data (ClinicalBERT, BioBERT, etc.)
[REF]. I have compared the performance of using ClinicalBERT/BioBERT versus using the
original BERTBASE weight as the starting point for finetuning on a subset of sample. The
difference is minimal, so I ended up using the original weight of BERTBASE to make the results
more comparable to BERTLARGE. The original authors of BERT have suggested a set of hyper-
parameter values to choose from. For this study, we picked a learning rate of 2e-5, a batch size
of 64 for BERTBASE or 16 for BERTLARGE on 8 P100 GPUs. The number of batch_size dropped
from BERTBASE to BERTLARGE because the latter requires much larger memory space to store

its 340M parameters as compared to 110M parameters of BERTLARGE. The BERTBASE model
was trained for 6 epochs and BERTLARGE for 3 epochs.

2.2 Data
Medical Information Mart for Intensive Care (MIMIC) database is an open-access healthcare
data of patients admitted to critical care units of a large tertiary care hospital [7]. The database
was developed by the Massachusetts Institute of Technology (MIT) containing deidentified
Electronic health records (EHR) with both structured and unstructured data including
diagnostics and laboratory results, medications, and discharge summaries. Each admission is
tagged by human coders with 8,921 unique ICD-9 codes (6,918 diagnosis code and 2,003
procedure codes). I used the same data splitting as in Mullenbach et al. where 47,724 discharge
summaries from 36,998 patients for training, 1,632 summaries for validation and 3,372
summaries for testing [4]. Mullenbach tested the model for both the full set of ICD-9 codes,
and for the 50 most frequent codes. Given the time limitation, I restricted the scope of study by
only focusing on the 50 most frequent codes just to speed things up. And similar to
Mullenbach, a smaller testing set was also constructed following Shi et al. (2017) where the
test set was filtered down to instances that have at least one of the top 50 most frequent codes,
resulting in 8,067 summaries for training, 1,574 for validation, and 1,730 for testing [8]. This is
done to make the results comparable across different studies.

2.3 Challenge and Study Re-purpose
A major challenge that appeared during exploratory analysis is that most of the discharge notes
are much longer than the 510, which is the maximum token length that BERT can take at each
time during training (Figure 2). In fact only 11.67% of discharge summaries have a length of
tokens shorter than 510, so except for the first “bump” (in Figure 2) of discharge summaries
which falls below the 510 length requirement, for the rest 90% of the data, only a proportion of
the discharge note can be fed into the model, making BERT a bad modeling choice for this
particular problem. However, the first 510 tokens still contain meaningful description of
symptoms and diagnosis, and there is a new study showing that a simple text truncation (i.e.
head+tail) works the best on IMDB data than hierarchical model that stack LSTM or attention
on top of BERT to connect different sections of paragraphs [9]. There is also a study that
shows breaking the long paragraphs into different samples works well enough for predicting
hospital readmission [5]. Given the convenience of the fine-tuning approach and the nature of
the project as a fun course project, it may still be of interest to try out BERT and evaluate its
performance with tweaks to the data preprocessing, and pin-down the component that might

improve the model performance on ICD code prediction.

Figure 2 Distribution of the Total Number of Tokens Per Discharge Note

2.4 Preprocesing
Two preprocessing approaches were used, one following Mullenbach and one following
Huang. In Mullenbach’s study which the researchers used convolutional neural network with
attention mechanism, the tokens were “cleaner” in the way that all punctuation marks are
removed, along with special characters, and tokens that has no alphabetic characters (e.g.,
removing “500” but keeping “250mg”). In Ke’s study, only special characters are removed and
everything else is retained. Both studies use lower-cased tokens. The first approach will make
the data directly comparable to previous study results, and also allow the 510-length input to
include more “meaningful” word tokens than using the second approach. However, the second
approach of preprocessing is also considered because BERT is pretrained on a vocabulary that
contains both alphabetic characters and punctuation marks. Although punctuation marks may
seem meaningless for convolutional network which is the model Mullenbach used, they may
have “meanings” in language modeling and certainly have values to humans such that they
help people process information better. It is therefore of interest to see how well the model
performs on both types of input data.

2.5 Evaluation Metrics
To facilitate comparison with prior work, I reported both the macro- and micro-averaged area
under the ROC curve (AUC) and F1 score. Micro-averaged values are calculated by treating
each (text, code) pair as a separate prediction. Macro=averaged values are calculated by
averaging metrics computed per-label.

3. Results

As expected, the BERT model’s performance is inferior to all the convolutional neural network
models which are known to work well for concept extraction tasks over arbitrarily long text
sequence (Table 1). Yet although BERT was trained on only on the first chunk of the input
sequence, its performance still exceeds Bi-GRU and ULMFiT which presumably should be
able to handle text with arbitrary length better than a model that can only take fixed length of
data.

Table 1 Comparison of BERT’s results to previous studies

 AUC F1
Model Macro Micro Macro Micro
C-MemNN (Prakash et al., 2017)
[condensed memory neural network]

0.833 N/A N/A N/A

Shi et al. (2017) [neural language model] N/A 0.9 N/A 0.532
Logistic Regression (Mullenbach, et
al.,2018)

0.829 0.864 0.477 0.533

CNN (Mullenbach, et al.,2018) 0.876 0.907 0.576 0.625
Bi-GRU ((Mullenbach, et al.,2018) 0.828 0.868 0.484 0.549
CAML (Mullenbach, et al.,2018) 0.875 0.909 0.532 0.614
DR-CAML((Mullenbach, et al.,2018) 0.884 0.916 0.576 0.633
ULMFiT (Nuthakki et al., 2019) N/A N/A N/A 0.55*

0.48*
BERT-Large 0.858 0.889 0.531 0.605

* F-1 score is computed for diagnosis and procedure codes separately.

When comparing within the current studies on different BERT models with two types of
preprocessing, BERTLARGE yields better performance than BERTBASE (Table 2). One
interesting contrast is also revealed when comparing across the two preprocessing approaches.
When the model is smaller (BERTBASE), cleaning the input more aggressively by removing all
punctuations helps improving the model performance by about 1% on the AUC or F1. Yet after
upgrading to BERTLARGE the difference was gone or even reversed, where input data with
punctuation marks performs even better than BERTBASE on the small test set that contains
instances with at least one of the top 50 most frequent codes.

Table 2 Results on MIMIC-III, 50 labels, within study comparison
 Test on the same subset as
Shi et al. (2017) (N=1,730) AUC F1

 Macro Micro Macro Micro
With Puncs
 Bert-base-uncased 0.822 0.864 0.468 0.555
 Bert-large-uncased 0.858 0.889 0.531 0.605
Without Puncs
 Bert-base-uncased_512 0.832 0.870 0.476 0.568
 Bert-large-uncased_512 0.848 0.883 0.522 0.594
Test on the full test set 50
labels (N=3,372) AUC F1
 Macro Micro Macro Micro
With Puncs
 Bert-base-uncased 0.822 0.864 0.464 0.553
 Bert-large-uncased 0.852 0.885 0.519 0.591
Without Puncs
 Bert-base-uncased_512 0.837 0.873 0.472 0.564
 Bert-large-uncased_512 0.853 0.886 0.518 0.590

The truncation does appear to affect model performance (Table 3). I compare the frequency of
the ICD codes with highest and those with lowest AUC scores on the frequency of the code as
well as the key-word (i.e. terms related to the name of the ICD code) frequency in the token

set. Because these ICD codes are already the top-50 most frequent codes, so the frequency of
the codes is not too different. The top predicted codes show up 40% or 1.4 times more than the
bottom predicted codes. If the entire sequence of discharge notes can be included in the model,
we may expect a similar ratio for key-word frequency. Yet when comparing the frequency at
the key-word or token level, the frequency of key terminology is 400% or 4.27 times more than
the bottom predicted codes. The top predicted codes have more key terminology being
included in the first 520 tokens of the discharge notes. Additionally, procedure codes are easier
to predict than diagnosis codes.

Table 3 Comparison of ICD codes with top-10 and bottom-10 AUC by frequency of ICD codes and key-word tokens

Code AUC Name of the ICD code Type

Code
Frequency
(N=52,726)

Key-word
Frequency in
the first 520

Tokens

Top10-ranked
Total:
51,282

Total:
278,614

36.15 0.9947 Coronary artery bypass Procedure 3981 76682

39.61 0.9922
Extracorporeal circulation
auxiliary Procedure 6141 339

88.56 0.9661 Coronary arteriography Procedure 4625 2904
39.95 0.9583 Hemodialysis Procedure 2889 2366
414.01 0.9536 Coronary atherosclerosis Diagnosis 10990 27875
37.22 0.9499 Left heart catheterization Procedure 2861 46814

37.23 0.9491
heart cardiac
catheterization Procedure 2465 79678

V45.81 0.9455 Aortocoronary bypass Diagnosis 2650 12149
427.31 0.9195 Atrial fibrillation Diagnosis 11329 25134
995.92 0.9152 Severe sepsis Diagnosis 3351 4673

Bottom10-ranked
Total:
36,549

Total:
65,231

276.2 0.7557 Acidosis Diagnosis 3799 1078
99.04 0.743 Transfusion of packed cells Procedure 6944 7902
599 0.7364 Urinary tract infection, Diagnosis 5766 5868

276.1 0.7344
Hyposmolality and/or
hyponatremia Diagnosis 2566 971

287.5 0.7337 Thrombocytopenia Diagnosis 2602 1188
511.9 0.7331 Unspecified pleural effusion Diagnosis 2413 17945

V15.82 0.7227
 Personal history of
tobacco use Diagnosis 2251 15089

305.1 0.7045 Tobacco use disorder Diagnosis 2775 15089
311 0.7017 Depressive disorder Diagnosis 2819 101
285.9 0.6659 Anemia, unspecified Diagnosis 4614 0

4. Discussion

BERT does not seem to be an ideal modeling choice for predicting ICD codes from medical
notes due to its ability to handle sequence of fixed length. But its performance still exceeds
some of the baseline models which were fed the entire corpus of notes. This may prove that
pretrained BERT or transformer stacks having better text feature extraction ability which
makes it work better than model with inferior extraction ability despite of shortage of data. It
might be of interest for future researchers to modify the structure of BERT to allow some
recurrence to handle longer sequence of input. But for this particular task – ICD code

prediction – it may actually be more valuable to improve upon a CNN type of model than a
BERT based model given the former is lighter, requires no pretraining, and works well.

I also experimented with splitting the notes into pieces and feed into the model (results not
presented). But the model performance actually dropped a bit by doing so. This is not too
surprising as each chunk of 510 token may only contain pieces of information related to part of
the ICD codes, which actually introduced more “noises” to the model than “information”. I did
not end up running models on the “head-tail” truncation due to time limitation on this project.
But a closer look at the discharge notes reveals that the last part is typically about recovery,
while the beginning section is typically symptom description, so the first 510 tokens may be
more relevant for reflecting the diagnosis of a patient than the combination of first 255and the
last 255 tokens. Yet it is just an assumption. The other things that deterred me from trying is
because although various types of truncation may work for certain data, an approach that’s too
dependent on data-structure may be less robust to a structure-neural model, and could be
difficult of scale up when moving from one dataset to another where the data structure or
format of discharge notes changes.

For previous studies, the number of outcome classes is typically small, and hence a simple
truncation works well enough. But for a task that needs to predict labels over 50 different
categories or even thousands of categories in a full ICD code set, missing one sentence could
potentially mean the information related to one or several classes are gone forever. This
explains why the magic of BERT no longer works for this particular down-stream task. It is
actually somewhat surprising to see that the model still have some predictive power despite
that 90% of the discharge notes are truncated. This potentially reflects that the first chunk of
discharge notes may have contained a decent amount of diagnostic or procedural information.

All prior studies which repeat the pretraining process of BERT on MIMIC-III dataset have
only adopted BERTBASE (cite biobert and clinicalberts). Yet it turns out BERTLARGE, despite of
its ‘ridiculously’ large size, which makes it appear susceptible to over-fitting on a relatively
smaller MIMIC dataset, it actually ends up performing much better than BERTBASE for
medical text classification and requires less data preprocessing, thanks to the boosted number
of parameters which are pretrained. Future researchers interested in pretraining BERT model
on clinical dataset may consider size up the model to BERTLARGE.

Reference

1. Liendo, Z., G. De Roo, and A. Karmakar. Classifying medical notes into standard disease codes.
2018; Available from: https://arxiv.org/pdf/1802.00382.pdf.

2. Nuthakki, S., et al., Natural language processing of MIMIC-III clinical notes for identifying
diagnosis and procedures with neural networks. arXiv:1912.12397, 2019.

3. Huang, J., C. O’sorio, and L. Wicent Sy, An empirical evaluation of deep learning for ICD-9 code
assignment using MIMIC-III clinical notes. Computer Methods and Programs in Biomedicine,
2019. 177: p. 141-153.

4. Mullenbach, J., et al. Explainable Prediction of Medical Codes from Clinical Text. in NAACL-HLT
2018. 2018.

5. Huang, K., J. Altosaar, and R. Ranganath, ClinicalBERT: Modeling CLinical Notes and Predicting
Hospital Readmission. arXiv:1904.05342, 2019.

6. Devlin, J., et al. BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding. in NAACL-HLT 2019. 2019.

7. Alistair E.W. Johnson, et al., MIMIC-III, a freely accessible critical care database. Scientific data
3, 2016.

8. Black, S., et al., Efficacy, safety and immunogenicity of heptavalent pneumococcal conjugate
vaccine in children. Northern California Kaiser Permanente Vaccine Study Center Group.
Pediatr Infect Dis J, 2000. 19(3): p. 187-95.

9. Chi Sun, et al., How to Fine-Tune BERT for Text Classification? arXiv, 2020. 1505.04597 [cs.CV].

