
Improving Language Generation with Sentence
Coherence Objective

Stanford CS224N Custom Project

Ruixiao Sun, Jie Yang, Mehrdad Yousefzadeh
ruixiaos@stanford.edu, jy0829@stanford.edu, mehrdady@stanford.edu

Abstract

Conditional story generation and contextual text continuation have become in-
creasingly popular topics in NLP community. Existing models are often prone to
output paragraphs of texts that gradually diverge from the given prompt. Although
the generated text may have a reasonable perplexity and diversity, it could easily
be identified by human as gibberish. The goal of our project is to improve the
coherence and consistency across sentences in a language-generation model. We
aim to solve this issue by first training a sentence pair coherence classifier with
GPT-2 pretrained model, and then co-train the GPT-2 language model with this
new coherence objective using a method analogous to the REINFORCE algorithm.
This fine-tuned language model is able to generate lengthy paragraph conditioned
on a given topic without diverging too much. The simplicity of this model allows
it to be applicable to a variety of underlying language model architecture since it
only modifies the final layer of the pre-trained model.

1 Key Information to include

• Mentor (for custom project): Reid Pryzant, Dan Iter

• We would like this report to be graded.

2 Introduction

Conditional story generation and contextual text continuation have become increasingly popular
topics in NLP community. The problem setup usually consists of a user-provided prompt sentence,
and the story generation model is required to generate text that revolve around the prompt’s topic.
This problem is different from language modeling in the sense that we are not only interested in
predicting the next word given the previous words, but also the coherence between the generated text
and the given prompt.

Large pretrained transformer-based models such as BERT [1] and GPT-2 [2] have reached state-of-
the-art result on many common NLP tasks. GPT-2 model is a casual language model that predicts the
next word conditioned on all the previous words. Naturally, one would be tempted to use this model
to make conditional story generation. Indeed, the authors showed some good examples in the original
paper. However, from our experience, the generated text still exhibit some degree of incoherence,
that is, drifting off the topic for long paragraph of text. See Fig.1 for an example.

Our idea is to leverage the existing architecture of the pretrained transformer-based language model
such as GPT-2, and turn it into a conditional story generation model without having too much
modification. Compared to other models specifically targeting at story generation [3], our model
is faster to training because of the pretraining, and the contextual representation allows it to model
longer term dependency.

Stanford CS224N Natural Language Processing with Deep Learning



Figure 1: Example of a GPT-2 text generation output, underlined text shows sentences drifting off
topic

3 Related Work

Seq2seq RNN models have been traditionally used to generate conditional stories [4]. More recently,
a hierarchical architecture of RNN models proposed by Fan, et al [3] has achieved great performance
on conditional story telling by first generate a premise and then the story. The advance of large-scale
pretrained transformer models such as GPT-2 [2] has revolutionized lots of NLP tasks including
language modeling. Its ability to extract long-distance contextual information leads to its great
success in generating text with great semantic and syntactic coherence. GPT-2 has been applied to
conditional language generation and image captioned in an encoder-agnostic setting by Ziegler, et
al[5]. In this paper, we would like our language model to conform to a new objective that takes into
account the correlation between generated text and the prompt text. But this auxiliary objective is
non-deterministic with respect to the model parameters since the story is randomly generated from a
distribution that depends on the model parameters.

For models where the dependency between the objective function and model parameters are non-
deterministic, or models where the objective is of discrete value thus non-differentiable, researchers
often resorts to techniques used in Reinforcement Learning community. A specific set of algorithms
are categorized as REINFORCE algorithm [6]. Co-training a generation model with auxiliary
discrete objective functions has been applied to the field of music generation using Reinforcement
Learning techniques, in which the objective consists of a music generation objective and a reward
based on music theory [7]. REINFORCE algorithm has been applied in a similar context to text
auto-completion system by Lee, et al[8].

4 Approach

To train a language model with an additional coherence objective, we have to first make predictions
or evaluate whether two sentences followed a coherent topic. In the first step, we are training a
coherence classifier on top of GPT-2 model. This allows us to (1) generate a sentence embedding
for the prompt sentence (2) rank the coherence between two sentences. And in the second step, we
co-train a modified language model that takes in the prompt sentence embedding as a "shortcut" or
"guidance", with an additional coherence objective forcing the generated text to be aligned with the
prompt’s topic.

Sentence Coherence Prediction: We implemented our own coherence prediction model using
GPT-2 as our underlying pretrained transformer and fine-tune it to predict the sentence coherence.

The basic idea is that, if two sentences appear in the same paragraph in our training set, they must
have a common underlying topic. The model proposed here will be analogous to the sentence
embedding approach first proposed by Kiros, et al [9] and extended by Oord, et al [10]. We encode
each sentence by adding [CLS] token to the last position, and feed the hidden state of this token to a
double dot-product regression model. The final output is from a logistic regression predicting if the
two sentences come from the same paragraph or not. The binary classification problem is formulated
as the following:

pcoherence(e1, e2) = σ(eT1We2 + b) (1)

where e1 and e2 are embeddings for sentence 1 and setence 2 respectively and σ is the sigmoid
function. Aside from fine-tuning the parameters of the transformer model, we have new trainable

2



parameters, including: weight matrix W , bias b, weights for the [CLS] token. The architecture is
shown in Fig.2

Figure 2: Architecture of the coherence-prediction model

The training step involves:

• Preprocess the dataset. One dataset contains adjacent sentences from the same paragraph,
and one dataset contains random sentences from the entire training set.

• Load GPT-2 model with pretrained weights for known word pieces. Add an additional
token [CLS] with randomly initialized weights. The hidden state of this [CLS] token will be
considered as the sentence embedding. Then we create another double dot-product classifier
with random initial weights, which takes as input the two sentence embeddings and predict
if they should be adjacent.

• Train the model with a mixed objective: L = Llm + λLcoherence. Where Llm is the
casual language model objective with cross-entropy loss, i.e. Llm = −log exp(x[label])∑

i exp(x[i])
. And

Lcoherence is the binary cross-entropy loss for coherence prediction, which is Lcoherence =
ylog(σ(x)) + (1− y)log(1− σ(x)). Label 1 indicates that two sentences come from the
same paragraph. λ is a weighting factor for the coherence objective. For each iteration we
have one positive sample and one negative sample picked randomly from the training set.

• Evaluate the model on validation set. We have 50% positive samples and 50% negative
samples randomly chosen from validation set. The ultimate criterion is the percentage of
accuracy on the test set.

Note that if we concatenate two sentences together, separated by [SEP] token, we could take the last
hidden state of [CLS] token and feed it into logistic regression. This proves to be highly efficient and
accurate because the two sentences could attend to each other, which is recommended in the original
OpenAI GPT paper [11]. However, this approach is infeasible for our problem, because in language
generation model, each word is generated on the fly as opposed to given a-priori. We will compare
the prediction accuracy of the sentence embedding approach with this cross-attention approach in the
following section.

Text Generation Model: In order to generate the text we used Conditional text generation using the
auto-regressive models of the GPT-2[2]. GPT-2 is a large transformer-based language model trained
on a dataset of 8 million web pages. GPT-2 is trained with a casual language modeling objective, that
is: given all of the previous words within some text, predict the probability of the next word[11]. The
probability of a sentence in this sense can be written as: p(x) = Πn

i=1p(si|s1, s2, ..., si−1)

The original implementation of the conditioned text generation model we used
comes from pretrained GPT-2 small model from "Huggingface Transformers"
(https://huggingface.co/transformers/model_doc/gpt2.html). It was trained on 12-layer,
768-hidden, 12-heads, 117M parameters. We fine-tuned the model on Wikipedia dataset
(https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/)

Co-training objective: in a casual language model, the next token is conditionally dependent on all
previous tokens, which is what the original GPT and GPT-2 model does. In our model, however, we

3



also want our model to be more conforming to the given prompt without diverting to another topic.
To achieve this, we added a feed-forward neural network for each hidden state before deciding the
output token. The layer takes as input the concatenation of the original hidden state and the sentence
embedding, and output a hidden state of the same size as the original hidden state. The scores of each
token are then calculated by multiply it to the vocabulary embedding matrix. Written in terms of
equations:

H1 = W1[ep;hi] + b1
H2 = W2 · tanh(H1) + b2

Scores = V H2

(2)

See figure.3 for an illustration. The size of the layer H2 is the same as the output hidden state hi,
because in this way, the vocabulary embedding matrix V can be initialized as the input embedding
matrix without any modification. The prompt sentence embedding here is acting as a "shortcut" for
the next-token prediction, with the hope that this will force the next token to be more aligned to the
given prompt. In the result section, we also compared this architecture with one with linear projection
instead of nonlinear layers. And it showed that linear projection could lead to degenerated text.

Figure 3: Architecture of the text-generation model

Correspondingly, we have an enhanced language modeling objective. Aside from the cross-entropy
loss for next-token-prediction, there is another loss measuring the coherence and similarity between
the generated text and the prompt text. Since we used logistic regression in the previous task to classify
if two sentences are from the same topic, a natural choice for this loss is the negative of the logit for that
classification model. The total loss can be written as L = Llm + λ2Lsimilarity . The same as before,
Llm is the casual language model objective with cross-entropy loss, i.e. Llm = −log exp(x[label])∑

i exp(x[i])
.

Note that the language model loss Llm is per-word based and the similarity loss Lsimilarity is
per-sentence based. We calculate the similarity loss after the model generated a complete paragraph.

During this step, the only parameters we are training are W1, b1,W2, b2. The functional relationship
between Lsimilarity and the parameters are indirect: we have to generate a whole sentence before
plugging it into the coherence prediction model. But the text is sampled from a distribution instead
of a deterministic relationship with respect to the model parameters. Considering this difficulty, we
decided to use a variant of the REINFORCE algorithm [6] to approximate the gradient w.r.t. the
parameters. Written in terms of equations:

Lsimilarity = −E[
∑

CrossEntropy · (R− R̄)]

∇Lsimilarity = −E[
∑
∇CrossEntropy · (R− R̄)]

R = eTWep + b

R̄ = αRcurrent + (1− α)Rprevious

(3)

where R is the reward function calculated for each generated text, and R̄ is a running exponential
average of previous rewards with parameter α. The term

∑
∇CrossEntropy is the sum of the

cross-entropy loss for each of the generated token. The true lables for this cross-entropy loss is set to
be the generated text itself. Finally, we perform stochastic gradient descent with this approximated
gradient, using a weighting factor λ2. The rationale behind this is: if a piece of generated text

4



received high rewards, meaning a coherent sentence w.r.t. the prompt, we will update the weights
such that it generate more sentences like this. And vice versa. Note that the gradient calculation using
REINFORCE is noisy and does not converge as quickly as normal gradient descent.

The training procedure involves the following steps

• Preprocess the dataset. Segment the corpus into pieces of sentences of length about 200
tokens.

• Load GPT-2 model with pretrained weights as well as the trained binary classifier.

• Co-train the language model with a coherence objective: L = Llm + λ2Lsimilarity. For
each training step, we first train it using casual language model with cross-entropy loss
Llm. Secondly, we take the next sentence as the prompt sentence, let the model generate a
complete paragraph of text. We then calculate the coherence between the prompt sentence
and generated text using our binary classifier. The score is fed into the REINFORCE
algorithm 3 to calculate the approximated gradient.

Baselines: Since our tasks are divided into two parts: coherence prediction and text generation,
we have different baselines for them. For the coherence prediction problem, we compare sentence
embedding approach with cross-attention approach and human evaluation. For text generation, the
baseline is the vanilla GPT-2 model without any modification. We are evaluating the consistency of
generated text manually to see if there is any jump in topic.

5 Experiments

The training and evaluation are divided into two steps: sentence coherence model and text generation
model. Both of them shared the same data set: Wikipedia dataset [12] is applied for training and
fine-tuning the model. Currently we trained the model on raw character level dataset WikiText-2.

5.1 Sentence Coherence Model

Data: To train the coherence classification model, we have to randomly choose positive samples and
negative samples from the data set. Positive samples come from the same paragraph as the anchor
text, negative samples are randomly picked from the entire training set.

Evaluation method: We evaluate the accuracy in percentage on the test set. The accuracy is
defined as the number of correctly predicted labels divided by the total number of input pairs (true
positive). As describe in the previous section, we will compare the prediction accuracy of the sentence
embedding approach with this cross-attention approach. We also compared the results with human
performance using 50 sentences, in which 25 of them are positive sample and 25 negative. The human
evaluator correctly predicted 46 samples, as well as 3 false positive samples and 1 false negative
samples.

Experimental details: In our experiment, hyperparameters are set as follows: weighting factor of
the coherence objective is 0.05, the learning rate of Adam optimizer being 5e-5, the adam epsilon
being 1e-8, number of training epoch being 4, batch size per GPU/CPU for training/evaluation being
2.

Results: The accuracy results are shown in Table.1 and the training process shown in Fig.4. We can
see that the coherence classification model achieves human-level performance, and the performance
is close the cross-attention classifier. Since the accuracy is near 95%, we can assume that the classifier
is a good indicator of the coherence between two sentences, and the underlying sentence embedding
is a decent summary of its content.

Methods Accuracy (%)

Sentence embedding 94.21
Cross-attention 94.52

Human performance 92
Table 1: Accuracy of coherence prediction on the test set

5



Figure 4: Coherence prediction accuracy and perplexity vs. iteration number on the validation set,
visualized using TensorBoard with smoothing=0.6

5.2 Text generation model

Data: We take random sentences of length 300-500 from the training set to train the language model.
As for the auxiliary coherence objective, we take a random piece of text of length 100 tokens from the
training set as the prompt sentence, generate a 500-token long passage of text, and then do parameter
update using REINFORCE algorithm.

Evaluation methods: We will manually check the consistency of the output. An example of text
generation output with a prompt input is presented in Fig.1, from which we notice the generated
sentences becomes incoherent (the underline part) to the input sentence.

Experimental details: hyperparameters are set as follows: weighting factor of the auxiliary objective
is 1, the learning rate of Adam optimizer being 5e-5, the adam epsilon being 1e-8, number of training
epoch being 4, batch size per GPU/CPU for training/evaluation being 4. The auxiliary objective is
active after the second epoch, this is because for the first epoch, the language model is not yet tuned,
resulting in an unphysical coherence objective.

Results: The training procedure is illustrated in Fig.5, in which the coherence loss is calculated
based on Eq.3. Lower value means better consistency. As can be seen, the coherence loss is very
noisy, because: (1) the generated text is randomly sampled (2) the REINFORCE algorithm computed
a noisy approximation of the gradient. But the general trend indicates that the coherence loss goes
down over time. The perplexity value on the validation set converges to 15.

Figure 5: Left: Coherence loss vs. iteration number during training, Right: perplexity value on the
validation set during training, visualized using TensorBoard with smoothing=0.8

To compare with the original GPT-2 model, we can look at an example of a generated piece of text
from our model, using the same input prompt as Fig.1. We argue that the output from our model is
significantly more consistent, and more closely aligned to the prompt sentence’s underlying topic. To
see more examples and comparison, please refer to the appendix.

6



Figure 6: Example of a text generation output using our model

6 Analysis

Our language generation model co-trained with an auxiliary coherence objective is able to produce
long paragraph of text that is aligned with the underlying topic of the prompt sentence. Pure language
models such as GPT-2 will prone to drift off the topic over time. We have tried linear projection and
nonlinear transformation of the prompt sentence embedding onto the next word prediction, results
indicate that linear transformation often leads to degenerated text with repetitions, whereas nonlinear
models have great performance (See appendix for an example). The reinforcement learning loss does
not monotonically decrease with time. But over a longer period, the average loss does get lower.

Although the generated text from our model is able to stick to the prompt sentence’s topic, the
wording and grammar are sometimes not as natural as the pure GPT-2 language model. We believe
this is a price to pay when we force each generated word to align with a given topic.

7 Conclusion

In this work, we have introduced the problem of text incoherence when applying a pure language
model to a conditional story-generation problem. We proposed a new conditional language generation
model following two steps. The first step involves training a sentence coherence classifier, which also
enables us to generate a sentence embedding for each prompt sentence. The second step involves
co-training a conditional language model with an auxiliary coherence objective. This new objective
is optimized using REINFORCE algorithm. After some experiments, we found out that our model is
able to produce long text without diverging from the main topic. However, the wording and grammar
are sometimes not as natural as the pure GPT-2 language model. Future work will be focused on how
to improve the fluency of the output while still maintaining the coherence between generated text and
the prompt.

References
[1] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of

deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[2] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. OpenAI Blog, 1(8):9, 2019.

7



[3] Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. arXiv
preprint arXiv:1805.04833, 2018.

[4] Melissa Roemmele. Writing stories with help from recurrent neural networks. In Thirtieth
AAAI Conference on Artificial Intelligence, 2016.

[5] Zachary M Ziegler, Luke Melas-Kyriazi, Sebastian Gehrmann, and Alexander M Rush. Encoder-
agnostic adaptation for conditional language generation. arXiv preprint arXiv:1908.06938,
2019.

[6] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3-4):229–256, 1992.

[7] Natasha Jaques, Shixiang Gu, Richard E Turner, and Douglas Eck. Generating music by
fine-tuning recurrent neural networks with reinforcement learning. 2016.

[8] Mina Lee, Tatsunori B Hashimoto, and Percy Liang. Learning autocomplete systems as a
communication game. arXiv preprint arXiv:1911.06964, 2019.

[9] Ryan Kiros, Yukun Zhu, Russ R Salakhutdinov, Richard Zemel, Raquel Urtasun, Antonio
Torralba, and Sanja Fidler. Skip-thought vectors. In Advances in neural information processing
systems, pages 3294–3302, 2015.

[10] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748, 2018.

[11] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language
understanding by generative pre-training. URL https://s3-us-west-2. amazonaws. com/openai-
assets/researchcovers/languageunsupervised/language understanding paper. pdf, 2018.

[12] Stephen Merity. The wikitext long term dependency language modeling dataset. Salesforce
Metamind, 9, 2016.

A Appendix

In the following, we are going to show the conditional story generated from 3 models: our proposed
model, original GPT-2 model, and a model with linear projection from sentence embedding to the
output (see experiment section for more details). All 3 examples followed the same prompt sentence,
which described a new gaming console called Playstation 5.

Similar to out previous findings, the proposed model is able to generate long passage of text without
drifting off the topic, whereas GPT-2 model gradually diverge from the given prompt topic. Linear
model does not have a good performance and is prone to stuck in self-repetition.

8



Figure 7: Example of a text generated using our proposed model

9



Figure 8: Example of a text generated from the original GPT-2 model. Underlined text shows the
portion of text diverging from the given topic

10



Figure 9: Example of a text generation output using a linear model. Notice the repetition in the last
paragraph

11


	Key Information to include
	Introduction
	Related Work
	Approach
	Experiments
	Sentence Coherence Model
	Text generation model

	Analysis
	Conclusion
	Appendix

