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1 Introduction and Related Work

A word embedding is a map that takes a word from some (usually fixed) vocabulary to a point
(vector) in an embedding space, usually taken to be a high-dimensional Euclidean space Rd. Word
embeddings are essential in most of NLP problems and usually serve as a first stage in neural models
for named-entity recognition [1], sentiment analysis [2], language modeling [3], text summarization
[4] and question answering [5], word-level machine translation [6], coreference resolution [7]. The
main assumption underlying the algorithms for word embedding construction is that the word’s sense
is captured by surrounding words within the text. So, even though all word embeddings use the
context at training time, some of the models, such as word2vec [8] and GloVe [9] output the same
vector for a word regardless of its context (we call these embeddings non-contextual), and others
require the context (usually a sentence in which a word occurs) to produce a vector in the embedding
space. These contextual methods are ELMo [10] and BERT [11].

Apart from being extremely useful in practice, word embeddings can be a subject of study in their own
right. Understanding the nature of the embedding space would be a step towards more interpretable
and traceable neural models for NLP. One of the first phenomena discovered was “word vector
arithmetic” [12] that showed that word2vec can capture semantic relations of English language.
Other studies continued using local approaches, such as examining linear algebraic structure of word
vectors [13] to show that embeddings for polysemous words correspond to linear combinations for
“virtual” vectors for each word sense. In [14], the authors concentrated on studying the neighborhood
of a word vector with a goal of solving word sense disambiguation. Of course, many papers, such as
[15], concentrated on practical aspects such as determining the best loss function and dimensionality
to optimize training and reduce overfitting. In is important to notice that all of these papers work with
non-contextual embeddings.

Any attempt to manually inspect the embedding space is obstructed by the high number of dimensions
(usually 50 ≤ d ≤ 768) and the fact that any dimensionality reduction method, such as MDS, PCA,
SVD, t-SNE, U-MAP, etc., necessarily distorts the picture and loses some information.

In this paper, we propose to take a global approach to studying word embeddings, one that would
apply to any particular embedding algorithm and be invariant with respect to the dimensionality of
the embedding space. We attempt to extract topological summaries and interpret them in the light of
known results.

We are following the paradigm of Topological Data Analysis (TDA), a relatively young field that tries
to apply methods of algebraic topology to real world data. TDA was introduced by Gunnar Carlsson,
a professor of mathematics at Stanford University [16, 17]. The reason for the development of TDA
was the nature of real world data: in most cases, the data we have is in the form of a point cloud in
a high-dimensional space, the data is noisy, the metrics and coordinates used are not natural (in a
sense that thay rarely carry intrinsic meaning). Using toplogical methods allows us to, first of all,
extract both quantitative and qualitative insights into the dataset and then incorporate topological
information into statistical and machine learning pipelines. TDA was successfully applied in virology
[18] and medicine [19] to infer evolutionary patterns and identify subsets of data of particular interest,
in image analysis [20] and imaging in physics [21], materials science [22], etc. The challenge in
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many of these works is to provide a good interpretation of the topological invariants in the context of
a particular application. We discuss questions of interpretation below.

2 Approach

Given some text (corpus), word embedding models produce a point cloud in an embedding space
Rd, with one point for each token of the text. We then interpret this point cloud as a (possibly noisy)
sample from some underlying subspace of Rd and thus reduce the study of the text embedding to
studying the topology of the (hypothetical) underlying space.

Our main computational approach is persistent homology. We define persistent homology rigorously
in the next subsection, but, intuitively, it counts the number of “holes” in different dimensions
(connected components in dimension 0, loops or tunnels in dimension 1, voids in dimension 2 and
so on) at varying level of resolution. In mathematics, more “holes” in more dimensions is naturally
associated with increased complexity, as simplest most understood spaces such as balls do not have
any “holes” and are contractible.

Computing persistent homology over a range of text allows us to (mostly qualitatively) measure of
the extent of nonhomogeneity of the embedding space. Nonuniformity of the embedding space must
reflect the internal structure and “power” of the embedding mechanism, the amount of information
contained in a word vector. This is because a random choice of word vectors – the least powerful
method – would produce uniform embeddings with no internal structure. This connection between
topological complexity as outputted by our computations and intrinsic power of word embeddings is
the basis for all of the interpretations that follow.

In particular, we concentrated on the following questions:

(a) It is well known that models based on contextual embeddings outperform those using
non-contextual ones. Do we see this on the level of topology, thathis, does the topological
complexity differ between the two groups of methods?

(b) Does the topological complexity differ across different categories of texts: we consider
different writing styles (poetry, prose, news articles, and scientific papers) and different
readability levels (as measured by Dale-Chall readability scale).

(c) What are the dynamics of large-scale topology of the text embedding as it is processed by a
contextual embedding model?

As usual, we begin with definitions.

2.1 Persistent Homology

Persistent homology is based on simplicial homology, and a concise definition is in Appendix A.
There we also provide a small pictorial example of simplicial homology calculation.

The crucial step in TDA is to convert the data point cloud into a simplicial complex. This is achieved
by a construction called a Vietoris-Rips complex.

Definition 1 For a set of points V = {v1, . . . , vn} ∈ Rn and a fixed positive number r > 0,
a Vietoris-Rips (VR) complex at scale r VRr(V ) is defined as having V as a set of vertices (0-
simplices) and a k-simplex for each set of k vertices of v of diameter less than r. That is, for each set
of k vertices such that each pairwise distance is less than r.

In applications, the dimensions of the complex is limited. We consider simplices of dimension at
most 3.

Notice that when r is increasing, new simplices can appear but existing ones can not disappear:
VRr1(V ) ⊆ VRr2(V ) if r1 ≤ r2. This way, for some set of points V = {vi} ∈ Rd and a
sequence of scales 0 < r1 < · · · < rl we can form a filtered simplicial Vietoris-Rips complex
VR(V ) = {VRri(V ) | i = 1, . . . , l}.
Figure 1a shows an example of a filtered VR complex. It is important to notice that some of the
holes are “noise”, artifacts that depend on the sample, and some correspond to the actual shape of the
annulus
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(a) (b)

Figure 1: (a) Vietoris-Rips simplicial complex at various scales for a sample of points representing
an annulus. [17, Figure 3] (b) An example of barcode plots for the VR complex for a sample from an
annulus. We can obtain Betti numbers by considering “vertical slices” at a particular scale, counting
the number of intervals that intersect them. [17, Figure 4].

The homology of the filtered complex is now a sequence of homology groups Hk(VRri , R) at each
scale ri. The collection of homology groups of a filtered complex in every dimension is called
persistent homology.

2.2 Persistence Diagrams

We can extract numerical data from persistent homology of data. It is usually called a persistence
barcode.

Definition 2 Persistence barcode for dimension k is a multiset of intervals that mark births and
deaths of k-dimensional holes detected by kth homology group as the scale r of the filtration increases.

One can view these intervals as tracking how Betti numbers (Definition 8) change as the scale grows.

The set of barcodes for every dimension can be either plotted as a set on horizontal intervals with
the x-axis being the filtration scale – a barcode plot, or as a set of points on a rectangular plot where
the x-axis is the time of birth of the hole (beginning point of the interval) and the y-axis is the time
of death (endpoint of the interval) – a persistence diagram. The structure of these plots becomes
more clear with some examples on Figure 1b. In what follows we present persistence diagram which
incorporated data for all dimensions with points of different colors. Appendix B shows another
example of persistent homology computation and compares barcode plots with persistence diagrams.

2.3 Distances

Persistence barcodes can be quantified and compared. First of all, there are naive measures such
as the number of intervals in each dimensions and their mean lifetime. But, there are also distance
metrics on the space of barcodes. Theoretically, for two persistence barcodes X and Y , a metric d on
R2 and p ∈ [1,∞], one considers Wasserstein distance [23] – an infimum over all partial bijections φ
from X to Y :

Wp[d](X,Y ) = inf
φ:X→Y

[∑
x∈X

d(x, φ(x))p

]1/p

, p ∈ [1,∞)] (1)

Wp[d](X,Y ) = inf
φ:X→Y

sup
x∈X

d(x, φ(x)), p∞] (2)

In practice, we consider computable values of parameters: bottleneck distance W∞[L∞] and sliced
Wasserstein distance [24] which is an approximation of W2[d] for d a standard Euclidean metric on
R2.
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2.4 Computations

Our computations follow the pipeline in [23]. We use the Ripser Python package [25] and produce
the plots using persim Python package.

2.5 Baseline

As a baseline, we consider clustering methods and silhouette scores [26] that measure the extent
to which the data fits its clusters. Zeroth homology group “counts” the number of connected
components akin to clustering, however, we claim that using persistent homology calculations gives
us significantly more information than just clustering: it allows us to work with connected data and
make finer distinctions of shape than just number of “groups” or “lumps” of data. However, we can
try to make a fair comparison by computing silhouette scores for a varying number of clusters, similar
to how we vary the scale of the filtration of a VR complex.

2.6 Texts and Embeddings

General descriptions of word2vec, GloVe, ELMo, and BERT algorithms can be found in correspond-
ing references. We use pretrained models available online: 300-dimensional word2vec vectors trained
on the Google News dataset1, 256-dimensional ELMo model available from AllenNLP [27], Base
BERT (768-dimensional), uncased, available from Huggingface Transformers package [28].

GloVe embeddings [9] were used in two versions with different vocabulary sizes: with 400K word
vocabulary trained on Wikipedia and Gigaword 5, and with 2.2M vocabulary size trained on the
Common Crawl dataset, both 300-dimensional. This is done to assess the effect of vocabulary size
on the topology of the embedding space.

We limit the text length at around 1000 word for computational reasons.

3 Experiments

3.1 Data

We conduct silhouette and persistent homology analysis on several small text corpora of ~1000 words
described in Appendix C. These corpora correspond to science, news, and literature, in addition to
several texts with varying Dale-Chall readability scores [29].

We also compare the results of silhouette and persistent homology analysis on Shakespeare’s Antony
and Cleopatra [30]. We conduct these analysis on both the full text as well as the text with the last
scene of the last act removed.

We perform these computations for the embeddings described in Section 2.6. We perform persistent
homology computations up to dimesion 3. For computational reasons, we replace our embedding for
the above step with a representative subsample of 300 points selected using greedy permutation [31].
We also perform silhouette calculations for up to 100 clusters generated by k-means.

Additionally, we perform silhouette and persistent homology analysis on 6,950 corpora, consisting of
articles in the 20 News Group dataset [32] and poems on the Poetry Foundation [33].

On this larger set of corpora, for computational reasons, we only compute 20 silhouette scores
corresponding to the 20 values of k ∈ {2, 7, 12, . . . , 97}.

3.2 A Motivating Example: Plot Holes

Given that persistent homology roughly measures the number of n dimensional “holes" in an
embedding, it is enlightening to examine the effect of artificially creating a hole in the embedding
of a corpus. We compare the persistent homology of the embeddings of Shakespeare’s Antony
and Cleopatra with and without the last scene to see if the “plot hole" created by its removal is
topologically significant.

1Google News word2vec link.
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Figure 2: Comparison of persistent homology of embeddings of Shakespeare’s Antony and Cleopatra:
full text (top) and text with last scene removed (bottom).

Discussion Indeed, adding the “plot hole" causes numerous 2 dimensional holes to appear in the
persistent homology plots. In particular, the contextual embeddings show long-lived 2-cycles when
the “plot hole" is added that were previously absent.

3.3 Homology Lifetimes

We compare the mean liftime of n-cycles in the persistent homology of various word embeddings for
the text corpora in Appendix C.
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Figure 3: Comparison of average lifetime of n-cycles by embedding type, varying the dimension n.

Discussion Dimensionality of cycles is inversely related to their lifespan. The lifespans are similar
for all embeddings for dimensions 2 and 3. For dimension 1, the contextual embeddings (ELMo,
BERT) have the longest cycle lifespan, suggesting the contextual embeddings have the most complex
1-dimesional structure.
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3.4 Analysis of Dale-Chall Readability

In this section, we analyze three particular corpora: readability_1, readability_2, and
readability_3, corresponding to sample school essays with Dale-Chall readability scores of
~5.9, ~7.3, and ~8.7 respectively. The plots are presented in Appendix D.

Discussion Under visual inspection, the silhouette plots for the readability corpora are similar,
with the exception of the ELMo embedding for readability_2. Across embeddings, the overall
contour of the silhouette plots is similar, increasing after a steep decline and tapering off near 100.

Meanwhile, the persistent homology plots show much more complicated structure for the contextual
embeddings (ELMo, BERT) relative to the other methods, with many more nontrivial 3-cycles and
1-cycles/2-cycles that persist much longer. Further, readability_2 and readability_3, which
have much higher Dale-Chall readability scores than readability_1, show more complex structure
in their noncontextual embeddings (word2vec and GloVe), with many more 2-cycles appearing and
1-cycles that persist for a longer period of time than in readability_1.

3.5 Homology and Text Category
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Figure 4: Bottleneck distance between persistent homology of texts in Appendix C with BERT and
GloVe embeddings.
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Figure 5: Wasserstein metric between silhouette scores of texts in Appendix C with BERT and
GloVe embeddings.

We compare the pairwise bottleneck distances between persistent homology computations (dimen-
sions 1 and 2) on the texts in Appendix C, as well as the pairwise Wasserstein distance between their
silhouette score plots, all on the BERT and GloVe embedding schemes. The plots do not show clear
evidence that diagrams of the texts of the same category are “clustered together”. However, when we
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compute the ratio of the average within-topic and between-topic distances (again, averaged over H1

and H2 for both types of distance metrics), for the Sliced Wasserstein metric it equal to ≈ 0.90 for
both GloVe and BERT embeddings. Similarly, for the Wasserstein distance between silhouette score
distribution, the average within-topic and between-topic distance ratio is equal to 0.86 for GloVe
embeddings and 0.92 for BERT.

This suggests that persistent homology and silhouette scores can discriminate between different
categories of texts, and to assess this more thoroughly, we train a classifier, as discussed in the next
section.

3.6 Classifying Texts by Homology

We measure the relative importance of different persistent homology groups by looking at the accuracy
of a text classifier, trained to distinguish between the articles and poems discribed in 3.1 based on
a single nth persistent homology group, parametrized as a time-series of the Betti numbers. As a
baseline, we also train the classifier on silhouette scores.

We encode nth persistent homology as a tensor counting the number of n cycles present at each time
step discretized to 100 time steps, and enocde silhouette scores for the 20 values of k.

Our classifier is implemented using a deep 1D convolutional architecture (Figure 6). We use a
learning rate of 5 · 10−4 with an Adam optimizer [34] and `2 regularization with λ = 10−3, with a
cross entropy loss function.

For persistent homology of the Elmo embeddings for dimensions 0, 1, and 2 as well as silhouette
scores, we train the classifier to distinguish news articles and poems (described in Section 3.1). We
set aside 20% of the data for validation and 20% for testing, training on 60%. We train until the
exponentially weighted average of the past 20 epochs’ validation loss is less than that of the past 10
epochs, meaning the validation loss is increasing.

Figure 6: Architecture
Figure 7: Training and validation loss: silhouette
data (top left), H0 (top right), H1 (bottom left), H2

(bottom right).

Discussion We compute the accuracy of the final trained models on the test dataset (Figure ??). All
models for persistent homology achieve greater than 50% accuracy indicating a relationship between
topological structure and genre of text (news or poem). Persistent homology in dimension 2 is the
strongest predictor of genre. However, silhouette scores had the strongest relationship, indicating that
simple cluster analysis is at least as strong a predictor of genre as persistent homology.

Analysis Test Accuracy
H0 57.27%
H1 56.91%
H2 59.57%

silhouette 68.06%
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3.7 Topology of Internal Embedding States

We present persistent homology computations on the press_2 corpus for the BERT and ELMo
embeddings (Figure 8, Figure 9).
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Figure 8: Bert hidden state persistent homology.

0 5 10 15 20
Birth

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

De
at

h

ELMo, hidden state 1

H0
H1
H2
H3

0 2 4 6 8 10 12 14
Birth

0

2

4

6

8

10

12

14

De
at

h

ELMo, hidden state 2

H0
H1
H2
H3

0 5 10 15 20 25 30
Birth

0

5

10

15

20

25

30

De
at

h

ELMo, hidden state 3

H0
H1
H2
H3

Figure 9: Elmo hidden state persistent homology.

Discussion The later hidden states show more complex topological structure for both embedding
schemes. In particular, they begin to exhibit 3 dimensional structure. This can be interpreted as
topological evidence for the well-known fact that as information is processed by a neural model, it
moves from extracting low-level features to more high-level, more general ones.

4 Conclusion

Persistent homology computations intuitively find n dimensional holes in embeddings. We find that
these computations reveal nontrivial topological structure in the word embeddings of corpora drawn
from short texts, particularly for contextual word embeddings. The intuitive definition of persistent
homology is consistent with its behavior on word embeddings—persistent homology can detect the
addition of an artificial “plot hole" to a text by removing a key section.

For low dimensions, we demonstrate that deep models can differentiate between texts of different
genres solely based on persistent homology. Thus, persistent homology computations capture
structural information about texts. However, simpler methods of cluster analysis, such as silhouette
scores, predict genre with a deep model at least as well as persistent homology. This result suggests
that persistent homology does not capture strictly more structural information about texts (that is
relevant to determining their genre) than simpler cluster analysis methods.
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Instead, we can frame the advantages of using persistent homology as useful in qualitative assesment
of embeddings. Above, using this method, we have demonstrated evidence for many “famous” results,
such as: presence of high-level structure in embedding spaces that captures information about word
meaning and semantics; contextual embeddings being condsiderably different and more poswerful
models; increase in high-level structure of embeddings as is is processed by layers of the neural
model, etc. This suggests that in the future the use of TDA methods in studying neural models may
bring novel results or just serve an auxilliary method to confirm hypotheses obtained through usual
and more common methods.
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A Simplicial Homology

First, we define simplicial homology following [35].

Definition 3 A k-simplex is a k-dimensional polytope that is a convex hull of its (k + 1) vertices. A
standard k-simplex is a set S = {(t1, . . . , tk+1) ∈ Rk+1 |

∑
i ti = 1, ti > 0}.

Definition 4 A face of a k-simplex is a (k − 1)-simplex that is a complex hull of any k − 1 of the
original vertices.

Definition 5 A simplicial complex is a set of simplices K such that every face of a simplex in K is
also in K, and if two simplices σa, σb ∈ K have a non-empty intersection, σa ∩ σb is a face of both
σa and sigma b.

Intuitively, one should imagine a collection of simplies glued together. One can define a simplicial
complex by listing the vertices {v0, . . . vm} of K and then defining k-simplices as ordered k-tuples,
e.g. (v0, . . . , vk). The ith face is then denoted as (v0, . . . , vi−1, vi+1, . . . , vk), and this is often
abbreviated as (v0, . . . , v̂i, . . . , vk).

Definition 6 For a simplicial complex K, a k-chain c is a formal finite linear combination

c =

N∑
i=1

aiσ
k
i

where σi ∈ K are k-simplices and ai are called coefficients and are elements of a some ring, usually
Z or a field like F2.

Notice that k-chains naturally form an abelian group under addition.

Definition 7 A boundary map is a map dk from a k-chain to a (k − 1)-chain defined on simplices as

d((v1, . . . , vk)) =

k∑
i=0

(−1)i(v0, . . . , v̂i, . . . , vk).

and extended by linearity to chains. An elementary computation shows that dk ◦ dk+1 = 0 for any
(k + 1)-chain.

Now we are ready to define simplicial homology groups of a simplicial complex S. Fix a ring of
coefficients R for the chains. Let Zk(R) = ker dk, that is, a subgroup of all of the k-chains of S
that are taken to zero by dk, and let Bk(R) = im dk+1, that is, the image of all (k + 1)-chains of S
under the map dk+1. Then, kth simplicial homology group of S with coefficients in R is defined as a
quotient Hk(S;R) = Zk(R)/Bk(R). Notice that if the coefficients of chains were integers, R = Z,
Hk(S;Z) is an abelian group, and if the coefficient ring is a field, for example R = F2, Hk(S;F2) is
a vector space.

Definition 8 In a special case of field coefficients, kth Betti number βk(S) is defined as the dimension
of Hk(S).
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(a)

(b)

Figure 10: (a) A simple simplicial complex, [23, Figure 3]. (b) Computation of simplicial homology
for the complex in (a) with coefficients in a field F2, [23, Figure 4].
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B Persistence Diagram (Additional Example)

This example from [23, Figure 5] illustrates the computation for a small VR complex. (a) shows the
filtration steps for the complex. (b) shows the barcode plots for dimensios 1 and 2 with each hole
labeled by corresponding simplices that generate it. (c) shows the same barcode plot in a conventional
way with arrows indicating intervals that persist until the last filtration step. (d) shows the same
information as a persistence diagram. Note that the two plots in (d) can be combined.
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C Descriptions of Corpora

• poem_1 — The Lady of Shalott by Alfred, Lord Tennyson, 980 words, obtained from
poetryfoundation

• poem_2 — The Waste Land by T. S. Eliot, first two parts, 1016 words, obtained from
poetryfoundation

• poem_3 — The Highwayman by Alfred Noyles, 1011 words, obtained from poetryfoundation
• press_1 — How we came to live in “cursed” times from Newyorker, part, 1010 words
• press_2 — F.B.I. Opened Inquiry Into Whether Trump Was Secretly Working on Behalf of

Russia from New York Times, part, 1022 words
• press_3 — Three years of misery inside Google, the happiest company in tech from The

Wired, part, 1033 words
• science_1 — The Conley index, gauge theory, and triangulations by Ciprian Manolescu,

obtained from his homepage, part, 975 words
• science_2 — Attention Is All You Need by Vaswani et al., obtained from arxiv, part, 1004

words
• science_3 — Deep learning: new computational modelling techniques for genomics by

Eraslan et al., from Nature Reviews Genetics, part, 1010 words
• prose_1 — Pride and Prejudice by Jane Austen, obtained from Project Gutenberg, part,

1005 words
• prose_2 — The Great Gatsby by F. Scott Fitzgerald, obtained from Progect Gutenberg

Australia, part, 1001 words
• prose_3 — The Hobbit by J. R. R. Tolkien, obtained from Internet Archive, part, 1024

words
• readability_1 — a sample school essay obtained from Thoughtful Learning, 487 words,

Dale-Chall readability score ~5.9
• readability_2 — a sample school essay obtained from Thoughtful Learning, 1018 words,

Dale-Chall readability score ~7.3
• readability_3 — an entry on Moral Relativism from Stanford Plato, 1007 words, Dale-

Chall readability score 8.7

14

https://www.poetryfoundation.org/poems/45360/the-lady-of-shalott-1842
https://www.poetryfoundation.org/poems/47311/the-waste-land
https://www.poetryfoundation.org/poems/43187/the-highwayman
https://www.newyorker.com/culture/cultural-comment/how-we-came-to-live-in-cursed-times
https://www.nytimes.com/2019/01/11/us/politics/fbi-trump-russia-inquiry.html
https://www.wired.com/story/inside-google-three-years-misery-happiest-company-tech
https://www.wired.com/story/inside-google-three-years-misery-happiest-company-tech
http://www.math.ucla.edu/~cm/conley.pdf
https://arxiv.org/pdf/1706.03762.pdf
https://www.nature.com/articles/s41576-019-0122-6
https://www.gutenberg.org/files/1342/1342-h/1342-h.htm
http://gutenberg.net.au/ebooks02/0200041h.html
http://gutenberg.net.au/ebooks02/0200041h.html
https://archive.org/stream/TheHobbitByJRRTolkienEBOOK/The%20Hobbit%20byJ%20%20RR%20Tolkien%20EBOOK_djvu.txt
https://k12.thoughtfullearning.com/resources/studentmodels
https://k12.thoughtfullearning.com/resources/studentmodels
https://plato.stanford.edu/entries/moral-relativism/


D Readability Scale Plots
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E Other Persistent Homology Plots
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F Other Silhouette Score Plots
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