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Abstract

Generating fabricated facts has been a long-standing problem of abstractive sum-
marization models, and has significantly limited their applicability in practice.
Previous works about improving factual correctness only rely on human evalua-
tions, which weakens the transparency and reproducibility. In this work, we aim
to examine how to evaluate factual correctness. We start with a human study to
thoroughly understand what affects factual correctness evaluations, and we further
assess whether current automatic factual evaluation metrics are able to capture
factual errors. Our experiments demonstrate that the attributes of models and
datasets can drastically affect the evaluation of factual correctness, and how to
design an accurate, model- and data-agnostic evaluation metrics still remains a
challenge to the NLP community.

1 Introduction

Abstractive summarization aims to distill essential information from the source document but not
necessarily preserve original expressions [1]]. While recent progress on abstractive summarization can
successfully produce fluent and informative summaries [2, |3 4], they are not optimized for a critical
aspect — factual correctness. According to Kryscinski et al. [S]], around 30% of summaries generated
by neural abstractive models contain factual errors, which severely limits further applications of
summarization systems. Table [I|shows an example of the generated summary with factual errors.

Doc | Kevin Patrick Dawes , 33 , was abducted in 2012 as he entered Syria . US officials told the
Washington Post that the Syrian government never acknowledged detaining Mr Dawes , but
they believe the government or an affiliated group was holding him . The State Department
said Mr Dawes was turned over to Russian authorities ...... He appeared blindfolded in a
video a month after his abduction but has not been heard from since .

Gen | The US president of the United Arab Emirates ( State ) has been abducted in Syria , US
officials say .

Table 1: Example of the generated summary with factual errors. Summaries are generated by PGC [2]
on XSum (6] dataset. We highlight false facts in red and true facts in blue. In the generated summary,
neither US president nor United Arab Emirates ( State ) is mentioned in the document.

While some recent works have explored several different ways to improve factual correctness of gener-
ated summaries via fact-aware decoding [7], reranking [8]], or reinforcement learning [9], only relying
on human evaluations weakens their transparencies and reproducibility. As it is important guidance
to design faithful models, how to accurately detect these factual errors and reliably evaluate factual
consistencies become increasingly non-negligible. However, existing commonly-used summarization
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evaluation metrics such as ROUGE [10]] and BERTScore [11] simply measure word overlaps between
generated summary and human reference summary, and whether they can reflect factual alignments
remains unstudied. Only limited works have focused on factual correctness evaluations [12} 13 [14].

In this work, we aim to thoroughly examine how to evaluate factual correctness, and what properties
should satisfy for factual evaluation metrics. We start with a human study to thoroughly understand
how humans judge factual correctness, which has never been addressed in previous works to the
best of our knowledge. We demonstrate that attributes of summarization models and datasets can
drastically affect the factual correctness of generated summaries. We find that, on CNNDM [[15]
dataset, allowing the model to directly copy words from source document [2f] significantly reduces
factual error rates, and factual consistencies can be simply evaluated by word overlaps [[10]. However,
these conclusions no longer hold when moving to XSum [6] dataset, where summaries are more
abstractive and highly-paraphrased. We also find that while the reference summary is often used as
the gold standard for evaluating summary quality, it can not provide enough information for checking
factual consistencies.

We further assess whether current automatic factual evaluation metrics can capture factual errors.
We use FactCCX [13]] as our benchmark, a state-of-the-art BERT-based [[L6] factual consistency
checking model that can identify conflicts between documents and claims. As there is no existing
training data for fact checking, FactCCX is trained in a weakly-supervised fashion, where training
data are automatically generated through several rule-based semantical transformations (e.g., back-
translation, negation, entity swap). Our experiments demonstrate that FactCCX is intrinsically fragile.
It only works well on easy examples and examples which mostly require direct copying from the
context, and can not generalize well to abstractive summarization datasets. We also observe that
FactCCX may overfit to bias in training data (e.g., translationese).

Our work reveals the difficulties of evaluating factual correctness, and suggests that designing an
accurate, model- and data-agnostic evaluation metrics remains a challenge for the NLP community.
Nonetheless, we hope this work can raise attention and shed light on future research about factual
correctness evaluations.

2 Human Evaluation of Factual Correctness

Understanding how humans evaluate factual correctness can provide important guidance to correctly
design factual correctness evaluation metrics. In this section, we manually annotate the correctness
of summaries generated from different systems and datasets and perform a thorough analysis.

2.1 Data

We focus on two summarization benchmark datasets: CNNDM [15] and XSum [6]. These two
datasets are both curated from online articles from news providers (i.e., CNNDM from CNN and
DailyMail, XSum from BBC). All these news providers supplement their documents with a single
(for XSum) or several (for CNNDM) introductory sentences summarizing key information contained
in the document.

While CNNDM is widely used for abstractive summarization, the high ratio of word overlaps between
the source document and reference summary favors extractive strategies too much. For example, even
the lead-3 baseline (i.e., simply using the lead three sentences as the generated summary) is on par
with state-of-the-art neural abstractive models under ROUGE evaluations [2]].

As evidenced by the significantly lower extractive oracle ROUGE, the upper-bound performance
for summary generated by only extracting words from the source document, reference summaries in
the XSum dataset are highly-paraphrased (Table[2)). The abstractive nature of reference summaries
challenges neural models’ capacity to understand and paraphrase languages.

2.2 Model

Summaries are generated by three systems on CNNDM and XSum dataset. PGC [2] enables the
model to directly copy words from the source document, addressing the out-of-vocabulary issue. An
additional coverage mechanism also reduces repetitive words in generated summaries. FAS [17] first
selects salient sentences from the source document and then compresses and paraphrases them to



Dataset Data Split Average Length Extractive Oracle
Train Dev Test Source Reference | R-1 R-2 R-L
CNNDM | 287,227 13,368 11,490 664 54 54.67 30.36 50.80
XSum | 204,045 11,332 11,334 431 23 29.79  8.81 22.65

Table 2: Statistics of CNNDM and XSum dataset. Reference summaries in the XSum dataset are
highly-paraphrased, as evidenced by the significantly lower extractive oracle ROUGE.
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Figure 1: Correlations of ROUGE with human-annotated factual score. Left: CNNDM. Right: XSum.
X-axis: ROUGE-L Score. Y-axis: Annotated Factual Score.

generate a concise overall summary. BUS [4] adds a content selector to first determine phrases in a
source document that should be part of the summary. Readers can refer to original papers for more
details.

2.3 Experiment

While there are many evaluation metrics to measure the overall quality of the generated summary,
whether they can reflect factual consistencies between generated summaries and reference summaries
still remains a question. We randomly sample 50 summaries generated by PGC on CNNDM and
XSum dataset, respectively, and measure factual alignments with 5-scale likert score (e.g., no factual
alignment, only minor alignment, somewhat alignment, only minor misalignment, completely aligned)
by comparing generated summaries with human reference summaries. Two annotators conduct this
experiment.

We compute the correlations of three evaluation metrics with humans annotations: ROUGE,
BERTScore, and FACTScore. ROUGE [10]] is the standard evaluation metric for summarization,
which measures n-gram overlap between generated summaries and reference summaries. Instead of
only considering n-gram hard-match, BERTScore [11] measures word soft-match using contextual-
ized word embedding generated by BERT [16]]. While ROUGE and BERTScore provide word-level
evaluations for summarization, FACTScore [[14] evaluates summaries at fact-level. Facts are first
extracted from generated summaries and reference summaries using open information extraction
systems and then encoded to vectors by sentence encoder. The final score is computed by averaging
cosine similarities between each fact pair. Note that FACTScore is an evaluation metric, while human-
annotated facutal score is the 5-scale likert score. Table [3|summarizes the correlations of different
evaluation metrics with human-annotated factual score and inter-annotator agreements. Figure [I]
shows the correlations of ROUGE with human-annotated factual scores.

Dataset Metric Correlation Inter-Annotator Agreement
ROUGE BERTScore FACTScore
CNNDM 0.81 0.84 0.69 0.91
XSum 0.36 0.32 0.30 0.60

Table 3: Correlations of different evaluation metrics with annotated factual alignment score and
inter-annotator agreements. Results on CNNDM and XSum dataset vary significantly.

We further target at finding factual errors by comparing 1) generated summaries with reference
summaries; 2) generated summaries with source documents; 3) reference summaries with source



documents, respectively. Note that human-annotated factual score aims to measure that to what extent
facts conveyed from the generated summary align with facts conveyed from the reference summary,
and whether current evaluation metrics can capture this alignment, while factual errors particularly
refer to fabricated facts that are not entailed from the given context. Still, two annotators conduct
these experiments. Table [4] shows the proportions of summaries with factual errors of different neural
abstractive summarization models on CNNDM and XSum datasets.

Dataset | Svstem System Performance Factual Error Rate
y R-1 R-2 R-L | GEN-SRC GEN-REF REF-SRC
PGC | 3949 1724 36.35 8%* 6%

CNNDM | FAS | 40.88 17.80 38.53 26%* - 0%
BUS | 41.52 18.76 38.60 25%%* -

XSum | PGC | 2687 793 2138 | 100% 23% 30%

Table 4: System performance and factual error rates of summaries generated by different systems on
CNNDM and XSum dataset. * indicates results reported in [8]].

2.4 Analysis

Evaluation metrics fail to capture factual alignments on abstractive datasets. On the CNNDM
dataset, the ROUGE correlates with the annotated factual score surprisingly well (0.81), and the
inter-annotator agreement is pretty high (0.91). We observe different results on the XSum dataset
with the same experimental settings (0.36 and 0.60 shown in Table[3)). This can be interpreted as the
high word overlaps between reference summaries and source documents for the CNNDM dataset,
where models learn to copy too much from context, and measuring word overlaps can capture factual
alignments.

ROUGE reflects instance-level factual alignments better than system-level. While the correla-
tion of ROUGE and annotated factual score on CNNDM is 0.81, demonstrating that ROUGE reflects
instance-level factual alignment well, ROUGE can not distinguish which system generally produces
less factual errors. As shown in Table ] PGC generates the least factual errors (8%) but receives the
least ROUGE (36.35), while BUS receives the highest ROUGE (38.60) but generates considerably
more errors (25%).

Factual error rates vary significantly among systems. From Table ] we find that summaries
generated by PGC [2] contain remarkably less factual errors (§8%) on the CNNDM dataset [[15]], even
compared to models that were later considered significantly better (BUS [4] (25%) and FAS [17]]).
This may be interpreted as the copy mechanism allows PGC to copy too much from the source
document and degrade to extractive models.

Factual error rates vary drastically among datasets. PGC is trained on CNNDM and XSum
dataset with almost the same settings. However, nearly all summaries generated by the PGC model
contain factual errors when comparing generated summaries with source documents on the XSum
dataset, which is drastically different from 8% on the CNNDM dataset. The highly-abstractive
nature of the XSum dataset challenges the model’s capacity to understand the language and learn to
paraphrase.

Factual consistency checking should compare generated summaries with source documents
instead of the reference summaries. While the reference summary is often used as the gold
standard for evaluating summary quality, it can not provide enough information for checking factual
consistencies. The gap of factual error rates become much larger when shifting from CNNDM to
XSum (100% vs. 30% shown in Table E]), which can be interpreted as much less information can be
inferred from references as evidenced by the significantly lower ROUGE that the model can achieve.

Even reference summaries may contain factual misalignments. When comparing reference
summaries with source documents, we find around 30% reference summaries in the XSum dataset



contain facts that are not entailed in source documents. This raises concerns about the quality of the
XSum dataset.

3 Automatic Fact Checking

In this section, we explore the limitations of FactCCX [13]], the only available automatic fact checking
tool.

3.1 Method

We utilize pretrained FactCCX [13] for fact checking. The overview of FactCCX is shown in Figurem
Based on BERT [[16], FactCCX consumes a source document and a claim, and concatenates them
as one sentence for factual correctness classification (i.e., <CLS> <SOURCE> <SEP> <CLAIM>
<SEP>, where <CLS> and <SEP> are special tokens for BERT). Besides the binary label output
from the model (i.e., CORRECT and INCORRECT), FactCCX also finds supporting / conflicted spans
from source document and claim. As BERT only accepts sentences within 512 tokens, the source
document will be truncated if the concatenated sentence exceeds the limit. This innate deficiency
significantly weakens the reliability of FactCCX, as a fair amount of sentences in both CNNDM and
XSum dataset exceeds this limit as shown in Table[2]

Kevin Patrick Dawes , 33, was
abducted in 2012 as he entered
Syria . US officials told the
Washington Post that the Syrian
government never acknowledged
detaining Mr Dawes , but they
believe the government or an
affiliated group was holding him ...

The US president of the
United Arab Emirates ( State
) has been abducted in Syria
. US officials say .

Figure 2: Overview of FactCCX. FactCCX predicts CORRECT for this example (should be INCOR-
RECT).

As there is no supervised data to directly train a fact checking mode Kryscinski et al. proposed to
train FactCCX using the weakly supervised learning strategy, where the training data are automatically
generated from several rule-based semantically-variant or semantically-invariant transformations.

Specifically, one claim is randomly sampled from sentences in the source document, and its back-
translated form (i.e., translate the claim to an intermediate language and then translate back to its
original language) and itself are used as positive examples, as we suppose back-translation preserve
semantics but paraphrase the sentence. These two positive examples are further processed by four
types of rule-based transformations (i.e., negation, entity swap, number swap, pronoun swap) to
generate negative examples, as sentence semantics are no longer preserved after these transformations.
For each claim randomly sampled from the source document, at most 10 document-claim pairs will
be generated (i.e., 2 positive examples and 8 negative examples if verb / entity / number / pronoun all
can be found in the claim). These pairs generated from the CNNDM dataset are further split to train

2Credit: https://github.com/salesforce/factCC

3While there are a large amount of training data for natural language inference (NLI) 18| [19], for fact
checking, the source is a whole document and is much longer than the claim, which makes model trained on
NLI data does not generalize well [8].
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Figure 3: Average ranks of different claims based on FactCCX, ROUGE and BERTScore.
claim (Origin) and back-translated claim (Backtrans) are semantically-invariant, they are expected to
rank at the top 1. Left: CNNDM. Right: XSum. X-axis: Category. Y-axis: Average rank (1-10).

and evaluate FactCCX. As claims are sampled from source documents and the data are generated by

rules, we name this dataset as Generated Doc-Doc CNNDM.

3.2 Data
As we focus on exploring the strengths and limitations of FactCCX, we directly use the model

pretrained on Generated Doc-Doc CNNDM for further evaluations. Besides Generated Doc-Doc
CNNDM, Kryscinski et al. [13]] also provided a small human-annotated dataset, where each claim is
the real output from a list of state-of-the-art summarization models and label is annotated by humans.

We name it as Annotated Doc-Gen CNNDM.
Admittedly, Annotated Doc-Gen CNNDM is the best testbed for FactCCX, as claims are the real
outputs from summarization models and labels are annotated by humans. However, we observe that
the extractive oracle ROUGE on Annotated Doc-Gen CNNDM is as high as ROUGE on Generated
Doc-Doc CNNDM (Table[5). While it is easy to understand the extremely high extractive oracle

ROUGE on Generated Doc-Doc CNNDM as claims are directly sampled from sentences in the
source documents, the comparably high ROUGE on Annotated Doc-Gen CNNDM highlights that

models trained on CNNDM dataset learn to copy too much from the source. We further prove our
hypothesis by manually inspecting examples in Annotated Doc-Gen CNNDM. This is consistent with

the conclusion that CNNDM favors extractive strategies too much.
From the human evaluation of factual correctness, we find no factual errors can be found from

reference summaries in the CNNDM dataset (Table [, so claims sampled from sentences in the
reference summaries can also be treated as positive examples. We make a minor modification for

data generation strategy by sampling claims from reference summaries instead of source documents
In this way, we generated another dataset and name it as Generated Doc-Ref CNNDM. With the same

settings on the XSum dataset, Generated Doc-Ref XSum is also generated for comparison, though

factual errors can be found from reference summaries in XSum dataset.

3.3 Experiment
We use the FactCCX pretrained on Generated Doc-Doc CNNDM training set and evaluate it on these
4 test sets: Generated Doc-Doc CNNDM, Annotated Doc-Gen CNNDM, Generated Doc-Ref CNNDM,

and Generated Doc-Ref XSum. We report accuracy (ACC), balanced accuracy (BACC), precision (P),
recall (R), and F-measure (F1) in Table @ We use BACC as the performance indicator to address data

imbalances, which simply averages the accuracy on positive examples and the accuracy on negative
examples. Note that for a random guess baseline (i.e., randomly label CORRECT / INCORRECT),

BACC should be equal to 50.

We further collect all the examples with 10 document-claim pairs from Generated Doc-Ref CNNDM
and Generated Doc-Ref XSum, and use the probability of correctness predicted by FactCCX to
rank these 10 claims. We also rank them based on extractive oracle ROUGE and BERTScores for

comparison. We report the average ranking for each category in Figure[3]



Dataset Metrics Ext Oracle
ACC BACC P R F1 R-L R-2 R-1
Generated Doc-Doc CNNDM | 9743 9742 9744 9742 97.42 | 75.38 63.71 77.45
Annotated Doc-Gen CNNDM | 86.48 72.88 69.71 72.88 71.09 | 72.69 69.00 73.23
Generated Doc-Ref CNNDM | 79.28 73.22 81.81 73.22 7479 | 39.71 2636 43.81
Generated Doc-Ref XSum 7747 6643 7686 6643 68.10 | 22.65 8.81 29.79

Table 5: FactCCX performance on fact checking datasets as well as extractive oracle ROUGE for the
datasets.

3.4 Analysis

FactCCX only works well on easy examples. We categorize document-claim pairs from Anno-
tated Doc-Gen CNNDM based on their extractive oracle ROUGE, which measures to what extent
n-grams in claims overlap with n-grams in documents. From Figure 4] we observe consistent and sig-
nificant improvements as extractive oracle ROUGE increases (ROUGE-1, ROUGE-2 and ROUGE-L).
While it achieves over 90% accuracy on examples with 0.8-1.0 ROUGE, its performance drops to
70% on examples with 0.0-0.4 ROUGE. Note that a random-guess baseline can achieve 50% accuracy.
Therefore, we argue that FactCCX only works well on easy examples, and actually identifying
factual errors for these easy examples becomes trivial — the high n-gram overlaps make it extremely
easy to directly retrieve the claim from the document and check whether there are factual errors via
word-by-word comparisons.

FactCCX does not generalize well to abstractive summaries. While FactCCX achieves 97.42%
balanced accuracy (BACC) on Generated Doc-Doc CNNDM, its performance significantly drops
when evaluating on Generated Doc-Ref CNNDM (73.22% BACC) and Generated Doc-Ref XSum
(66.43% BACC) (Table [5). Again note a random-guess baseline can achieve 50% accuracy. The
reason is clear to us as n-gram overlaps become drastically lower (evidenced by extractive oracle
ROUGE). It further strengthens our argument — FactCCX only learns to pick the sentence that is
most similar to the claim and compare it word by word. When there is no enough signal for FactCCX
to retrieve the sentence from the document, it fails to perform fact checking.

FactCCX does not generalize well to real data. While extractive oracle ROUGE on Annotated
Doc-Gen CNNDM is comparable to ROUGE on Generated Doc-Doc CNNDM, enabling FactCCX to
easily retrieve the sentence that best resembles the claim, there is a large discrepancy between the
balanced accuracy (97.42% vs 72.88% shown in Table[5). This indicates error checking learned from
weakly supervised learning can not generalize well to real scenarios, where errors might be much
more complex than errors induced through several rule-based transformations.

FactCCX may overfit to bias in training data, such as translationese. We rank all the examples
with 10 document-claim pairs based on the probability of correctness predicted by FactCCX , as
well as ROUGE and BERTScore. As original claim (Origin) and back-translated claim (Backtrans)
are semantically-invariant, they are expected to rank at the top. As shown in Figure[3] the average
ranks for Origin and Backtrans are around 2 and 3 on CNNDM and XSum dataset, respectively.
Though outperforming ROUGE and BERTScore, FactCCX still fails to rank them as the top for many
cases. However, we observe that back-translated claims always receive lower ranks than original
claims, no matter semantically-invariant or semantically-variant examples (e.g., compare Origin and
Backtrans, Origin+EntSwap and Backtrans+EntSwap, etc.). This may indicate FactCCX overfit to
bias in training data, such as translationese [20].

Other issues of FactCCX. We also find other issues with FactCCX. 1) Probabilities of correct-
ness predicted by FactCCX are strongly centered at O and 1, where extractive oracle ROUGE and
BERTScore are normally distributed (Figure [5). This raises concerns about using FactCCX to rank
examples. 2) BERT only accepts sentences within 512 tokens; many cases are truncated, and key
information is lost for fact checking. 3) FactCCX relies on a simple binary classification mechanism
to identify supporting / conflicted spans, which does not work for almost all cases.
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4 Related Work

Neural Summarization Models Two main approaches are used to generate summaries: extractive
summarization and abstractive summarization. While extractive summarization simply copies words
from the source document, abstractive summarization aims to paraphrase the source document and
can generate new phrases. Rush et al. first proposed to use sequence-to-sequence (seq2seq) network
for abstractive summarization [1]]. Based on seq2seq, many works improve the quality of generated
summaries via different mechanisms. See et al. proposed to allow the model to directly copy words
from the source document [2]]. Chen et al. proposed to first select salient sentences and then compress
to a concise summary [17]. Gehrmann et al. add a content selector to determine phrases in a source
document that should be part of the summary [4]]. Recently, pretraining-based summary generation
makes significant progress, but it requires significant computational resources [21]].

Evaluating Factual Correctness in Summarization Goodrich et al. first proposed to evaluate the
factual accuracy by comparing facts extracted from different information extraction systems [[12].
Kryscinski et al. proposed to check factual consistencies in the generated summaries using a BERT-
based fact verification model trained via weakly-supervised learning [13]. Zhang et al. proposed to
evaluate factual correctness by comparing facts extracted from generated summaries and reference
summaries using open information extraction systems [14].

Improving Factual Correctness in Summarization Cao et al. first proposed to improve the
faithfulness of abstractive summarization via fact-aware decoding, where the decoder attends to fact
triples extracted from the source document using open information extraction systems [7]]. Falke
et al. proposed to improve the factual correctness by reranking generated summaries based on
entailment scores predicted by natural language inference systems [8]]. Zhang et al. proposed to use
reinforcement learning on fact accuracy to improve the factual correctness of summarizing radiology
reports [9)]. Zhu et al. proposed to build a knowledge graph from source document and integrate it
into the summary generation process via neural graph computation [22].

5 Conclusion

Factual correctness is an important but missing aspect for evaluating abstractive summarization.
Previous works mostly only evaluate factual correctness by humans, which weakens the transparency
and reproducibility of their works. In this work, we first analyze what affects factual correctness
through human studies. We find factual error rates and relevant evaluation metrics are significantly
affected by attributes of summarization models and datasets. We further reveal the weaknesses of
current automatic factual evaluation metrics, FactCCX, which is far from accurately identifying
factual errors. We hope this work can inspire future works about designing factual evaluation metrics.

For future work, we plan to re-train FactCCX on our generated datasets and re-evaluate its perfor-
mance. Moreover, we will evaluate the state-of-the-art summarization models pretrained on a large
corpus once the pretrained models are released.
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