
Compressed SQuAD 2.0 Model With BERT
CS 224N Final Report - Winter 2020

Default Project (Alternative Goal)

(Opt-out of grading)

Andrew Deng
andrewde@stanford.edu

Wenli Looi
wlooi@stanford.edu

Abstract

The goal of our project is to design and train a SQuAD 2.0 model based on BERT that
achieves reasonable performance with the smallest possible model size and limited training
resources. While context-aware language models like BERT have achieved state-of-the-art
performance on many NLP tasks, including SQuAD, their large size makes it difficult to host
them in resource-constrained environments like mobile and edge devices for offline question
answering. Starting from BERTBASE, we implemented several size reduction techniques.
Our final models achieve 96% of the original performance with 90% reduction in storage
space, or 92% of the original performance with 95% reduction in storage space. Unlike
many other compressed BERT-like models with high training costs, our models can be
fine-tuned from BERT in a few hours on a single GPU, making it more accessible and useful
to people and organizations who do not have access to large computational resources.

1 Introduction

The goal of our project is to design and train a SQuAD 2.0 model based on BERT [1] that achieves reasonable
performance with the smallest possible model size and limited training resources.

While context-aware language models like BERT have achieved state-of-the-art performance on many NLP
tasks, including SQuAD, their large size makes it difficult to host them in resource-constrained environments
like mobile and edge devices. The smaller of the two models presented in the original BERT paper, BERTBASE,
has 110 million parameters with a total model size of 440 megabytes. A smaller model would be more ideal to
avoid wasting limited storage space.

Unlike many other compressed models, we designed our model to be trainable with limited resources starting
from the pre-trained BERT model. As described in the Related Work section, smaller sized BERT-like models
have been designed by other authors but they often have a high training cost, even when using pre-trained
BERT as a starting point. In particular, the training costs are far out of reach of a CS224n student with $150
of Azure credits. Models like ours with smaller training cost are more accessible and useful to people and
organizations who do not have access to large computational resources.

A SQuAD model that fits on a mobile or edge device could have many possible applications. It could be
used to provide offline question answering on e-books and documents stored on the device. This would be
useful when the user does not have access to an internet connection. Even when the user does have an internet
connection, an offline approach allows users to preserve their privacy when they do not wish to share their
documents or questions with a third-party service. While we are choosing to focus in the SQuAD task, the
techniques we use for size reduction may also be applicable to other NLP tasks that are assisted by BERT.

2 Related Work

Recent state-of-the-art NLP performance has been achieved through language model pre-training. One of the
most prominent models is BERT [1], which is based on the Transformer [2] architecture and developed by
Google.

Many papers have been published regarding size reduction of neural models. A summary can be found in this
survey paper [3]. Techniques include quantization, parameter sharing, matrix compression, and knowledge
distillation. These are all techniques that we explore.

Since BERT was published, various authors have attempted to train similar but smaller models that achieve
comparable performance.

One such model is DistilBERT [4], developed by Hugging Face. On various tasks, the authors show that
DistilBERT achieves about 97% of BERTBASE performance with 6 layers instead of 12 and about half the
parameters. They trained DistilBERT by knowledge distillation from BERTBASE on 8 16GB V100 GPUs for
approximately 90 hours.

ALBERT [5], a “lite” version of BERT developed by Google. ALBERTBASE achieves similar performance to
BERTBASE while having about 90% fewer parameters because all 12 layers share the same weights. ALBERT
was trained from scratch on 64 to 512 Cloud TPUs.

Another group from Google developed a model [6] that achieves similar performance to BERTBASE on various
tasks while having 60x fewer weights. They train their model by knowledge distillation from BERTBASE and
through a reduced “optimal” WordPiece vocabulary. This model was distilled on 32 Cloud TPUs in 2-4 days.

While the above approaches have been successful in training smaller models, one thing in common to all of
them is the large amount of compute power required. In particular, they all require compute far in excess of
$150 of Azure credits provided to CS224n students. This motives the main goal of this project, which is to
train a compressed SQuAD 2.0 model based on BERT that achieves reasonable performance with the smallest
possible model size and limited training resources.

3 Approach

We trained baselines and then implemented several techniques to compress the BERT SQuAD 2.0 model.

3.1 Baselines

Baselines were established by fine-tuning pre-trained BERTBASE and DistilBERT models. This fine-tuning
was done with code provided by the Transformers library [7] from Hugging Face.

To answer SQuAD 2.0 questions, the method from the original BERT [1] paper is used. The question and
answer are passed as a single input to BERT, separated by the [SEP] token. For each word with final hidden
vector Ti, the probability that it is the start of the answer is computed as Pi =

eS·Ti∑
j eS·Tj

where S is a newly

introduced “start” vector. Similarly, we compute the probability that each word is the end vector using a newly
introduced “end” vector E. Training loss during fine-tuning is the log-likelihood of the correct start and end
positions. The model predicts “no-answer” by considering the span that just includes the [CLS] token which
is always present at the start of the input.

2

3.2 Cross-layer parameter sharing

We implemented our own novel cross-layer parameter sharing technique, similar to ALBERT but trained from
BERT with much fewer resources. The overall process is shown in Figure 1. Rather than train a new model
from scratch, we first started from BERTBASE and fine-tuned the model on SQuAD 2.0 to get a 12-layer fine
tuned model. We then forced parameter sharing between adjacent layers where the higher numbered layer
replaces the lower numbered layer. For example, layers 3 and 4 both share the parameters of layer 4, and
layer 3’s old parameters are discarded. (Based on some informal experiments, using the upper layer performs
better than the lower layer.) This model is then fine-tuned again, and the process is repeated to get smaller and
smaller models.

The idea behind this method is that adjacent layers in the model should be similar, and that slowly merging
layers with fine-tuning should allow the model to gradually learn to share the weights. This allows us to get
parameter sharing without re-training a whole new model like ALBERT.

BERT-base
110M params

1

2

3

4

5

6

7

8

9

10

11

12

Fine tuning

12-layer model
110M params

1

2

3

4

5

6

7

8

9

10

11

12

Fine tuning

6-layer model
67M params

2

2

4

4

6

6

8

8

10

10

12

12

Fine tuning

3-layer model
46M params

4

4

4

4

8

8

8

8

12

12

12

12

Fine tuning

2-layer model
39M params

8

8

8

8

8

8

12

12

12

12

12

12

Fine tuning

1-layer model
32M params

12

12

12

12

12

12

12

12

12

12

12

12

Teacher-student loss

Teacher-student loss

Teacher-student loss

Teacher-student loss

Figure 1: Cross-layer parameter sharing training procedure

3.3 Knowledge distillation during fine-tuning

Although knowledge distillation from scratch would probably have been too expensive to perform in a
CS224n project, we found that the model performance is improved by adding a teacher-student loss to the
fine-tuning procedure. This is inspired by the technique used in the original DistilBERT paper to achieve better
performance on SQuAD 1.1. As shown in Figure 1, the initial model fine-tuned from BERTBASE is always
used as the teacher. The teacher-student loss is computed as

∑
i ti log si where ti and si are the probabilities

computed by the teacher and student respectively. We sum the loss for both the start-answer and end-answer
probabilities, then average this with the regular fine-tuning loss (described above) to get the overall loss.

3.4 Reduced WordPiece vocabulary

Inspired by [6], we also reduced the WordPiece vocabulary used by BERT by removing the least common
WordPieces. The original embedding table of 30K WordPiece tokens accounts for over 21% of the BERTBASE
model size, so this results in a noticeable model size decrease. Note that a reduced WordPiece vocabulary is
still capable of tokenizing all text, but it may require a greater number of tokens. The reduction in WordPiece
vocabulary is only done at test time, as we were unable to get good results by fine-tuning with a reduced
vocabulary. More exploration could be done in the future to see if fine-tuning with the reduced vocabulary can
produce better results, perhaps with some tuning of hyper-parameters.

3

3.5 Linear quantization of tensors

We wrote our own code to perform simple linear quantization of all PyTorch tensors in the model. This allows
the floating-point values to be scaled from 32-bit full precision to arbitrary-bit precision for storage. When the
model is loaded, the compressed values from disk are then re-converted back to 32-bit for execution.

All values in a single tensor are scaled in the same way. We first compute minv and maxv, the mini-
mum and maximum values in the tensor. Each value x in the tensor is compressed to a b-bit integer as
round

(
x−minv

maxv−minv ×
(
2b − 1

))
. This results in an integer in the range [0, 2b − 1]. When stored to disk, the

compressed tensor needs to be stored together with minv and maxv (stored as 32-bit floats). Decompressing a
compressed integer y tensor back to 32-bit floats is computed as y × maxv−minv

2b−1 +minv.

3.6 Random sketching of matrices

Another method for reducing the number of parameters is randomized sketching applied to the weight matrices,
which has been previously applied to simple fully-connected and convolutional networks [8]. The concept
of randomized sketching involves taking a high dimensional matrix and randomly projecting it to a lower
dimensional matrix that preserves certain properties of original linear transformation. For example, given a
weight matrix W ∈ Rd×n and an input x ∈ Rn, if n is large we can produce a sketching matrix S ∈ Rm×n

such that (WST)(Sx) ≈Wx. Then we could store weight as only (WST) ∈ Rd×m and S. We choose S as
a matrix with Rademacher random entries, i.e. each entry is ±1 with probability 1

2 , and scale it by 1√
m

since
this means that E[STS] = I . Additionally, storing such a matrix would be very cheap because each entry
requires only one bit. We implement this operation as a custom PyTorch module that can replace any existing
torch.nn.Linear layer.

4 Experimental Results

4.1 Data

We used the SQuAD 2.0 dataset provided for the CS224n project, which is different from the official SQuAD
2.0 dataset. Note that this means our results for SQuAD 2.0 are comparable with other CS224n projects but
not most published papers.

4.2 Evaluation method

Our models are evaluated on the standard SQuAD 2.0 metrics, F1 and EM (exact match). F1 measures
the harmonic mean of precision and recall between the predicted answer and ground-truth answer when
considering them as a bag of words. EM measures the percentage of predicted answers that exactly match the
ground truth.

4.3 Experimental details

All fine-tuning was done on the SQuAD 2.0 training set for two epochs. This took around 3 hours on an Nvidia
P100 GPU. We used a batch size of 12, learning rate of 3× 10−5 with the Adam optimizer. All F1/EM scores
presented are for the CS224n dev set.

4

4.4 Results

We first obtained baselines by performing the above training procedure on pre-trained BERTBASE and Distil-
BERT. The results are shown in Table 1. DistilBERT (D) refers to DistilBERT fine-tuned with a teacher-student
loss from the BERTBASE model, as described in the original paper and in the section above on knowledge
distillation during fine-tuning. This improved the performance slightly.

BERTBASE DistilBERT DistilBERT (D)
Params 110M 66M 66M
Size 440 MB 264 MB 264 MB
F1/EM 76.4/73.3 69.3/66.4 70.7/67.8

Table 1: SQuAD v2.0 baseline results

Next, we fine-tuned the BERTBASE model using our novel cross-layer parameter sharing technique shown
in Figure 1. The results are shown in Table 2. As you can see, the model was able to maintain relatively
good performance (>95% of original) with the 3-layer model while having a 58% reduction in the number of
parameters. In particular, our models achieve higher performance than the DistilBERT baselines with fewer
parameters. However, further reductions to the 2-layer and 1-layer model result in poor performance. Thus,
we chose to proceed with the 3-layer model and apply the further size reduction techniques.

12-layer 6-layer 3-layer 2-layer 1-layer
model model model model model

Params 110M 67M 46M 39M 32M
Size 440 MB 268 MB 184 MB 156 MB 128 MB
% Smaller
than BERTBASE 0% 39% 58% 65% 71%
F1/EM 76.4/73.3 76.8/72.6 72.7/69.7 57.8/54.4 50.3/46.1

Table 2: SQuAD v2.0 cross-layer parameter sharing results

Starting from the 3-layer model, we then proceeded to reduce the WordPiece vocabulary. The results are
shown in Table 3. Since each vocabulary word requires a 768-dimensional embedding vector, this results in
significant savings in the number of paramteters. Note that 4928 was the number of WordPiece tokens used
in [6], which is why we decided to try it out specifically. The performance appears to sharply drop when
less than 25% of the vocabulary is used, so we have chosen to proceed with the model with 7630 WordPiece
tokens. It still achieves comparable performance to the DistilBERT baselines while having considerably fewer
parameters.

WordPiece 30522 16251 7630 4928 3052
tokens (100%) (50%) (25%) (16.1%) (10%)
Params 46M 35M 28M 26M 25M
Size 184 MB 140 MB 112 MB 104 MB 100 MB
% Smaller
than BERTBASE 58% 68% 75% 76% 77%
F1/EM 72.7/69.7 71.7/68.6 70.2/67.0 66.8/63.3 60.7/57.9

Table 3: SQuAD v2.0 WordPiece vocabulary reduction results

The next step we did is linear quantization. Starting from the model above with 7630 WordPiece tokens, we
applied varying levels of quantization and the results are shown in Table 4. 16-bit quantization did not affect
the performance. Surprisingly, 10-bit quantization actually increases the performance slightly compared with
the full 32-bit model, although examining the predictions, this appear to be a random effect and should be
interpreted as the quantization does not affect the performance. At 6-bit and lower, the model performance
drops sharply. Thus we have chosen to proceed with the 10-bit quantization for later experiments.

5

Full Quantization
32-bit 16-bit 10-bit 8-bit 6-bit 4-bit

Params 28M 28M 28M 28M 28M 28M
Size 112 MB 56 MB 35 MB 28 MB 21 MB 14 MB
% Smaller
than BERTBASE 75% 87% 92% 94% 95% 97%
F1/EM 70.2/67.0 70.2/67.0 70.3/67.1 69.4/66.4 53.9/50.0 4.8/2.6

Table 4: SQuAD v2.0 linear quantization results

Finally, we tried applying the random sketching procedure to the model. The results are shown in Table 5.
Since we noticed that we achieved better performance by training on the full vocabulary and testing on the
reduced vocabulary, we started from our 3-layer model quantized to 10 bits and sketched each layer, then
tested it on both the full and reduced vocabulary. Inside each transformer block, we used sketching to reduce
the rank of the output layer to 512, reducing the 768× 3072 matrix to 768× 512. Additionally we sketched
each of the 4 linear layer within the attention modules to 256, reducing 768× 768 to 768× 256. This reduced
the total number of parameters by only about 9%, but many of the parameters remaining can be stored in 1 bit
since we use Rademacher sketch matrices. So the storage space reduction is a bit larger. We see that with
fine-tuning we can achieve essentially the same accuracy as before sketching.

Original Sketched Original Sketched
Full Vocab Full Vocab Reduced Vocab Reduced Vocab

Params 46M 42M 28M 24M
Size 58 MB 44 MB 35 MB 21 MB
% Smaller
than BERTBASE 87% 90% 92% 95%
F1/EM 72.7/69.7 72.3/69.1 70.2/67.0 70.3/66.9

Table 5: SQuAD v2.0 sketching results (all models with 10-bit quantization)

In our final test set submission, the sketched 3-layer model with 10 bit quantization using the full vocabulary
achieved an F1 score of 73.079 and an EM score of 69.839.

5 Analysis

From the methods we tried, it looks like it is possible to significantly reduce the space required for the
BERTBASE model while still retaining close to the original accuracy. We achieve a final reduction of 62% in
parameter count and 90% in storage space with an F1/EM drop of about 3 points (96% of original performance),
or a reduction of 74% in parameter count and 95% in storage space with an F1/EM drop of about 6 points
(92% of original performance). However, we note that even though we have reduced the amount of space
required, each inference still requires roughly the same amount of computation as the original BERTBASE since
we did not actually reduce the number of layers.

In our approach, we relied heavily on modifying the pre-trained weights from the original BERTBASE and
applying fine-tuning, which might have helped us achieve significantly better compression than the approaches
used in DistilBERT and ALBERT. ALBERT was initialized and trained from scratch, and DistilBERT used the
teacher weights as part of its initialization but also reduced the number of layers, which might have changed
the model structure enough to require full re-training. Starting from the already-trained weights and preserving
the same model structure seems to have allowed for fast convergence during the fine-tuning, whereas both of
the other models required significant amounts of training to reach the same accuracy.

Additionally, aside from the vocabulary reduction the methods we used are mostly generalizable to other types
of networks. The cross-layer parameter sharing might also be useful in other deep models that have multiple
copies of the same layer type, which are fairly common in deep learning. Knowledge distillation may be used
any time we have a fully trained original model, which is always the case in model compression. Quantization
can be applied universally, since it is just a reduction in precision. Random sketching can be applied in any
situation with matrix multiplication, which again is almost the entirety of deep learning.

6

6 Conclusion and Future Work

We implemented a variety of model compression techniques and were able to achieve F1 and EM scores
close to the original BERTBASE model accuracy with significantly smaller storage space requirements and
limited training resources. This suggests that even on such a complex model and task, there are still many
redundant parameters that can be eliminated for a more lightweight model. The same likely applies to other
large models in deep learning, so these compression techniques could be very useful as a preprocessing
step before deploying any large model in a serious capacity. Our results also suggest that it is possible to
significantly reduce BERT’s model size without resorting to techniques with high training cost like those used
to train DistilBERT and ALBERT.

Future work might include extending the amount of time spent on fine-tuning or tweaking the hyper-parameters,
which we limited in this project due to time constraints. With further fine-tuning it might be possible to get
closer to or even match the accuracy of the original model, which would mean the compressed model is strictly
better than the original. It would be interesting to see if the compressed model shares the same expressiveness
as the original, or if something is lost during the process. Many other model compression techniques have been
described in the literature, such as in this survey paper [3], and those could be applied in the future. While we
already have done some ablation analysis to determine the effects of various techniques, more analysis could
be done on comparing the results of different models.

References
[1] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirec-

tional transformers for language understanding, 2018. arXiv:1810.04805.

[2] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need, 2017. arXiv:1706.03762.

[3] Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of model compression and acceleration for
deep neural networks, 2017. arXiv:1710.09282.

[4] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of bert:
smaller, faster, cheaper and lighter, 2019. arXiv:1910.01108.

[5] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Soricut.
Albert: A lite bert for self-supervised learning of language representations, 2019. arXiv:1909.11942.

[6] Sanqiang Zhao, Raghav Gupta, Yang Song, and Denny Zhou. Extreme language model compression with
optimal subwords and shared projections, 2019. arXiv:1909.11687.

[7] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, R’emi Louf, Morgan Funtowicz, and Jamie Brew. Huggingface’s transformers:
State-of-the-art natural language processing. ArXiv, abs/1910.03771, 2019.

[8] Shiva Prasad Kasiviswanathan, Nina Narodytska, and Hongxia Jin. Deep neural network approximation
using tensor sketching, 2017. arXiv:1710.07850.

7

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1710.09282
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1909.11942
http://arxiv.org/abs/1909.11687
http://arxiv.org/abs/1710.07850

	Introduction
	Related Work
	Approach
	Baselines
	Cross-layer parameter sharing
	Knowledge distillation during fine-tuning
	Reduced WordPiece vocabulary
	Linear quantization of tensors
	Random sketching of matrices

	Experimental Results
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion and Future Work

