NLP and Society: Towards Socially Responsible NLP

Vinodkumar Prabhakaran

Research Scientist

What's in this lecture

- Motivation for Fairness research in NLP
- How and why NLP models may be unfair
- Various types of NLP fairness issues and mitigation approaches
- What can/should we do?

What's **NOT** in this lecture

- Definitive answers to fairness/ethical questions
- Prescriptive solutions to fix ML/NLP (un)fairness
- Focus on research done by myself, my team, or Google.
- ...

With help from...

Andrew Zaldivar

Emily Denton

Simone Wu

Parker Barnes

Lucy Vasserman

Ben Hutchinson

Elena Spitzer

Deb Tin Raji

Timnit Gebru

Adrian Benton

Brian Zhang

Dirk Hovy

Josh Lovejoy

Alex Beutel

Blake Lemoine

Hee Jung Ryu

Hartwig Adam

Blaise Agüera y Arcas

Bananas

- Bananas
- Stickers

- Bananas
- Stickers
- Dole Bananas

- Bananas
- Stickers
- Dole Bananas
- Bananas at a store

- Bananas
- Stickers
- Dole Bananas
- Bananas at a store
- Bananas on shelves

- Bananas
- Stickers
- Dole Bananas
- Bananas at a store
- Bananas on shelves
- Bunches of bananas

- Bananas
- Stickers
- Dole Bananas
- Bananas at a store
- Bananas on shelves
- Bunches of bananas

...We don't tend to say

Yellow Bananas

Green Bananas

Unripe Bananas

Ripe Bananas

Bananas with spots

Yellow Bananas

Yellow is prototypical for bananas

Prototype Theory

One purpose of categorization is to **reduce the infinite differences** among stimuli **to** behaviourally and **cognitively usable proportions**

There may be some central, prototypical notions of items that arise from stored typical properties for an object category (Rosch, 1975)

May also store exemplars (Wu & Barsalou, 2009)

Fruit

Bananas
"Basic Level"

A man and his son are in a terrible accident and are rushed to the hospital in critical care.

The doctor looks at the boy and exclaims "I can't operate on this boy, he's my son!"

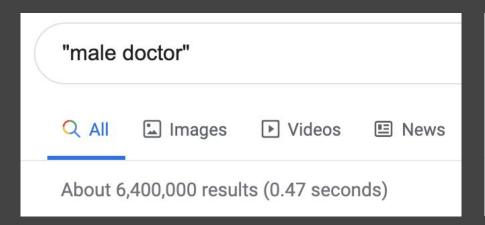
How could this be?

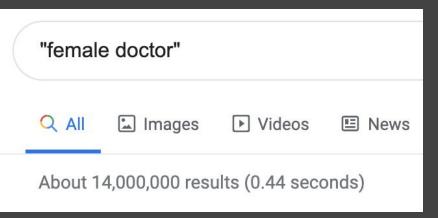
A man and his son are in a terrible accident and are rushed to the hospital in critical care.

The doctor looks at the boy and exclaims "I can't operate on this boy, he's my son!"

How could this be?

A man and his son are in a terrible accident and are rushed to the hospital in critical care.


The doctor looks at the boy and exclaims "I can't operate on this boy, he's my son!"


How could this be?

Prototype Theory in Action

Also, found in a study by Wapman & Belle, Boston University (2014)

The majority of test subjects overlooked the possibility that the doctor is a she - including men, women, and self-described feminists.

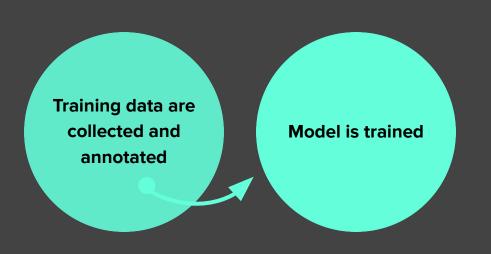
Wapman & Belle, Boston University

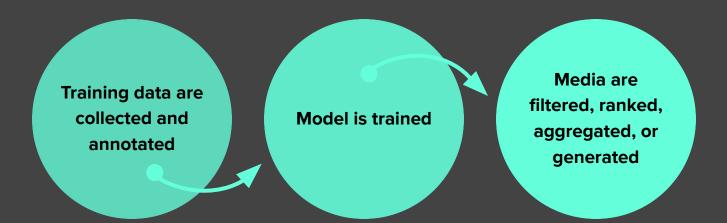
World learning from text

Gordon and Van Durme, 2013

Word	Frequency in corpus
"spoke"	11,577,917
"laughed"	3,904,519
"murdered"	2,834,529
"inhaled"	984,613
"breathed"	725,034
"hugged"	610,040
"blinked"	390,692
"exhale"	168,985

World learning from text


Gordon and Van Durme, 2013


Word	Frequency in corpus
"spoke"	11,577,917
"laughed"	3,904,519
"murdered"	2,834,529
"inhaled"	984,613
"breathed"	725,034
"hugged"	610,040
"blinked"	390,692
"exhale"	168,985

Human Reporting Bias

The **frequency** with which **people write** about actions, outcomes, or properties is **not a reflection of real-world frequencies** or the degree to which a property is characteristic of a class of individuals

Training data are collected and annotated

Training data are collected and annotated

Model is trained

Media are filtered, ranked, aggregated, or generated

People see output

Human Biases in Data

Reporting bias

Selection bias

Overgeneralization

Out-group homogeneity bias

Stereotypical bias

Historical unfairness

Implicit associations

Implicit stereotypes

Prejudice

Group attribution error

Halo effect

Training data are collected and annotated

Human Biases in Data

Reporting bias

Stereotypical bias

Group attribution error

Selection bias

Historical unfairness

Implicit associations

Halo effect

Overgeneralization

Out-group homogeneity bias

Implicit stereotypes

Prejudice

Training data are collected and annotated

Human Biases in Collection and Annotation

Sampling error

Bias blind spot

Neglect of probability

Non-sampling error

Confirmation bias Subjective validation **Anecdotal fallacy**

Insensitivity to sample size

Experimenter's bias

Illusion of validity

Correspondence bias

Choice-supportive bias

In-group bias

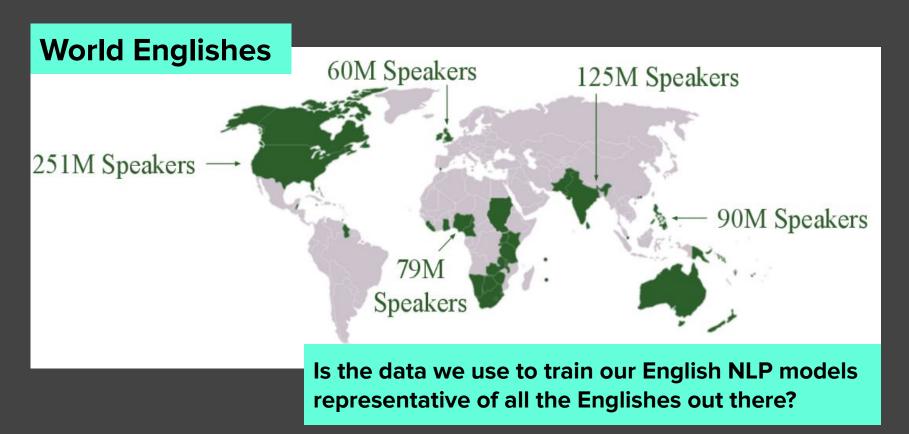
Reporting bias: What people share is not a reflection of real-world frequencies

Selection Bias: Selection does not reflect a random sample

Out-group homogeneity bias: People tend to see outgroup members as more alike than ingroup members when comparing attitudes, values, personality traits, and other characteristics

Confirmation bias: The tendency to search for, interpret, favor, and recall information in a way that confirms one's preexisting beliefs or hypotheses

Overgeneralization: Coming to conclusion based on information that is too general and/or not specific enough


Correlation fallacy: Confusing correlation with causation

Automation bias: Propensity for humans to favor suggestions from automated decision-making systems over contradictory information without automation

Biases in Data

Selection Bias: Selection does not reflect a random sample

Biases in Data

Selection Bias: Selection does not reflect a random sample

Men are over-represented in web-based news articles

(Jia, Lansdall-Welfare, and Cristianini 2015)

Men are over-represented in twitter conversations

(Garcia, Weber, and Garimella 2014)

Gender bias in Wikipedia and Britannica

(Reagle & Rhuee 2011)

Biases in Data

Selection Bias: Selection does not reflect a random sample

CREDIT

Biases in Data

Out-group homogeneity bias: Tendency to see outgroup

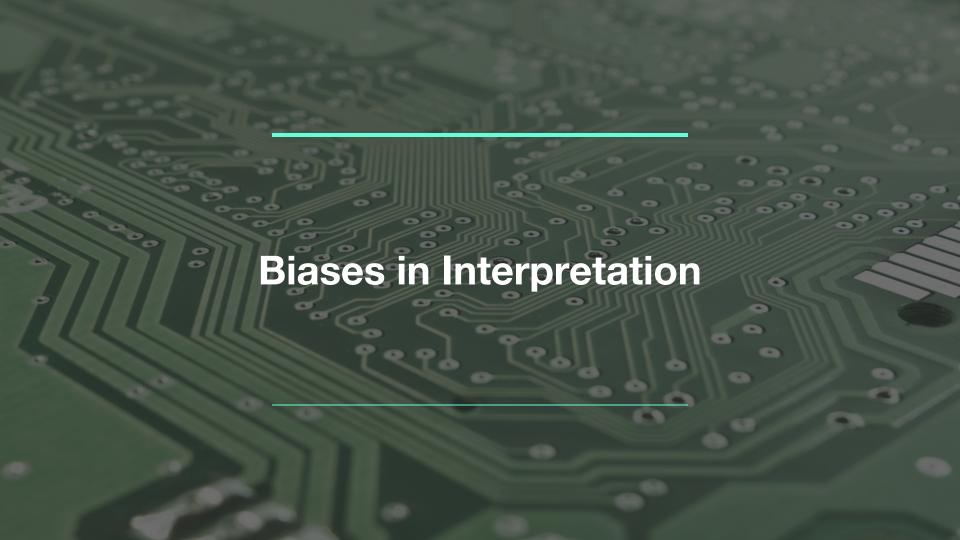
members as more alike than ingroup members

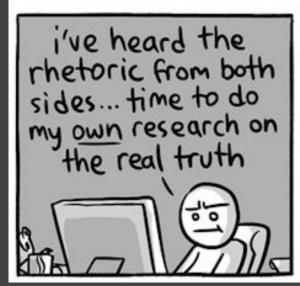
Biases in Data → **Biased Data Representation**

It's possible that you have an appropriate amount of data for every group you can think of but that some groups are represented less positively than others.

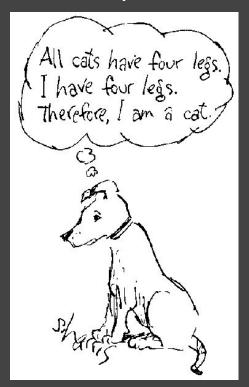
Biases in Data → **Biased Labels**

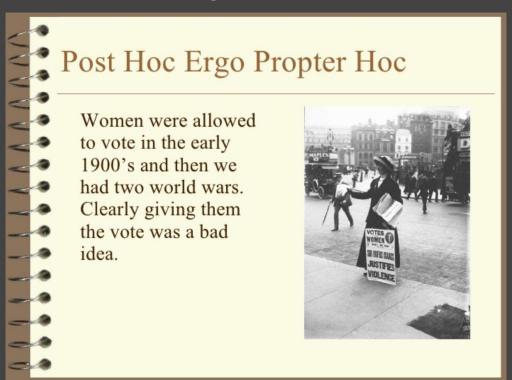
Annotations in your dataset will reflect the worldviews of your annotators.

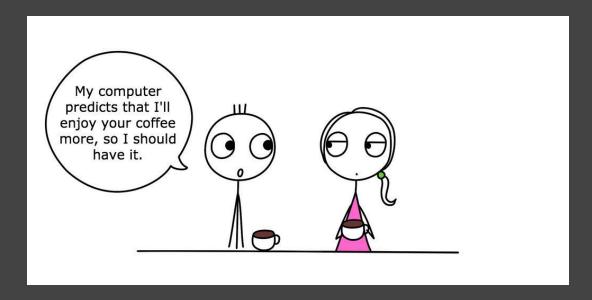

ceremony, wedding, bride, man, groom, woman, dress


ceremony, bride, wedding, man, groom, woman, dress

person, people


Confirmation bias: The tendency to search for, interpret, favor, recall information in a way that confirms preexisting beliefs




Overgeneralization: Coming to conclusion based on information that is too general and/or not specific enough (related: overfitting)

Correlation fallacy: Confusing correlation with causation

Automation bias: Propensity for humans to favor suggestions from automated decision-making systems over contradictory information without automation

Human Biases in Data

Reporting bias

Stereotypical bias

Group attribution error

Selection bias

Historical unfairness

Implicit associations

Halo effect

Overgeneralization

Out-group homogeneity bias

Implicit stereotypes

Prejudice

Training data are collected and annotated

Human Biases in Collection and Annotation

Sampling error

Bias blind spot

Neglect of probability

Non-sampling error

Confirmation bias Subjective validation **Anecdotal fallacy**

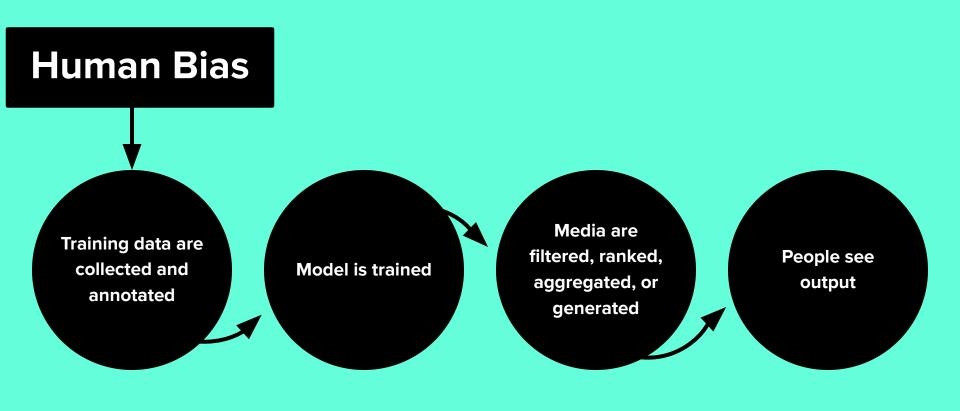
Insensitivity to sample size

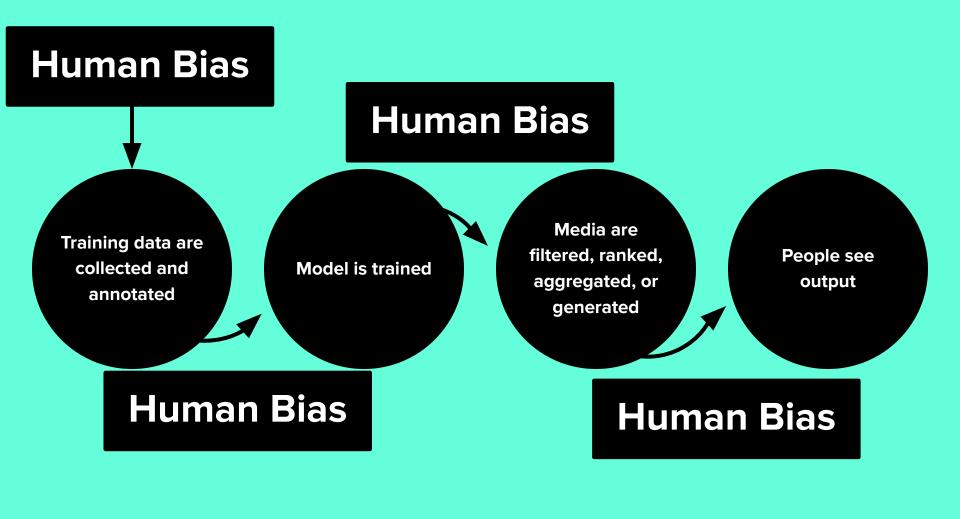
Experimenter's bias

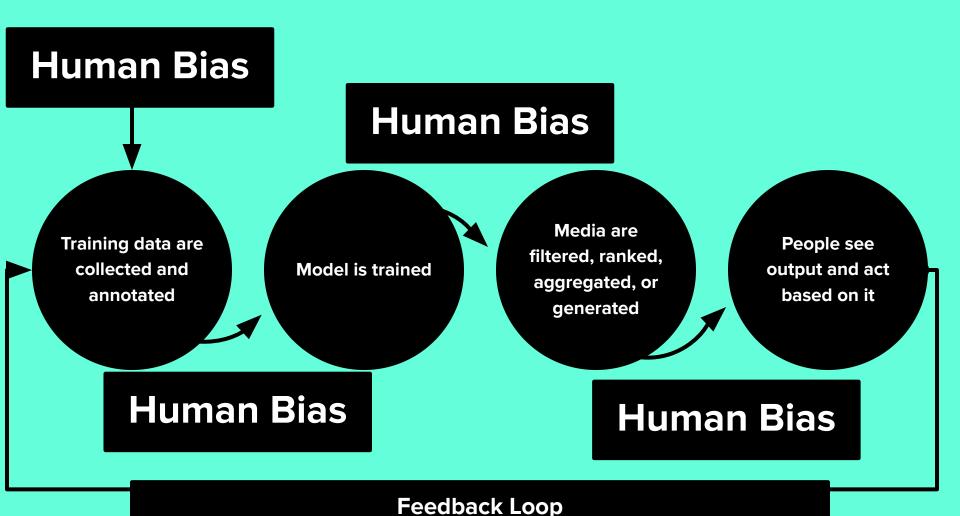
Illusion of validity

Correspondence bias

Choice-supportive bias


In-group bias


Training data are collected and annotated


Model is trained

Media are filtered, ranked, aggregated, or generated

People see output

Human data perpetuates human biases.

As ML learns from human data, the result is a bias network effect

"Bias Laundering"

"Bias" can be Good, Bad, Neutral

- Bias in statistics and ML
 - Bias of an estimator: Difference between the predictions and the correct values that we are trying to predict
 - \circ The "bias" term b (e.g., y = mx + b)
- Cognitive biases
 - Confirmation bias, Recency bias, Optimism bias
- Algorithmic bias
 - Unjust, unfair, or prejudicial treatment of people related to race, income, sexual orientation, religion, gender, and other characteristics historically associated with discrimination and marginalization, when and where they manifest in algorithmic systems or algorithmically aided decision-making

"Bias" can be Good, Bad, Neutral

- Bias in statistics and ML
 - Bias of an estimator: Difference between the predictions and the correct values that we are trying to predict
 - \circ The "bias" term b (e.g., y = mx + b)
- Cognitive biases
 - Confirmation bias, Recency bias, Optimism bias

Algorithmic bias

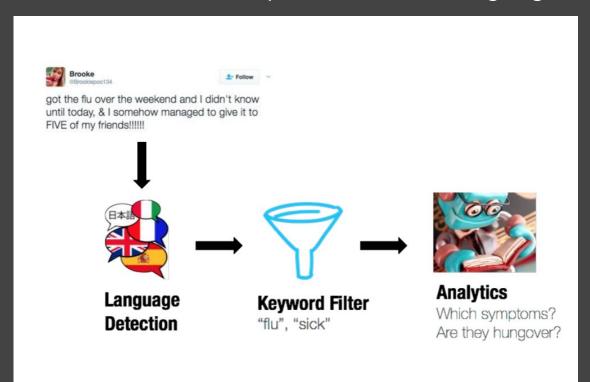
 Unjust, unfair, or prejudicial treatment of people related to race, income, sexual orientation, religion, gender, and other characteristics historically associated with discrimination and marginalization, when and where they manifest in algorithmic systems or algorithmically aided decision-making "Although neural networks might be said to write their own programs, they do so towards goals set by humans, using data collected for human purposes. If the data is skewed, even by accident, the computers will amplify injustice."

The Guardian

"Although neural networks might be said to write their own programs, they do so towards goals set by humans, using data collected for human purposes. If the data is skewed, even by accident, the computers will amplify injustice?"

The Guardian

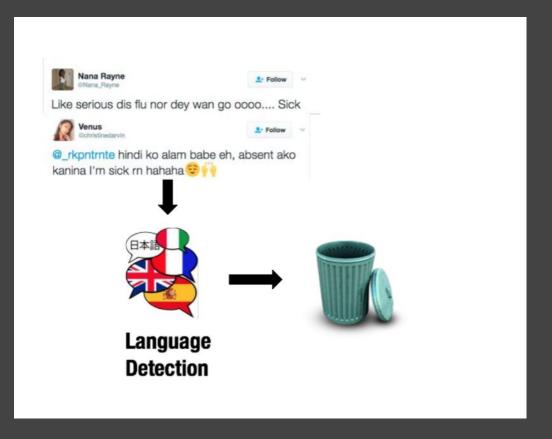
Fairness in Machine Learning A Few Case Studies


Language Identification

Most NLP models in practice has a Language Identification (LID) step

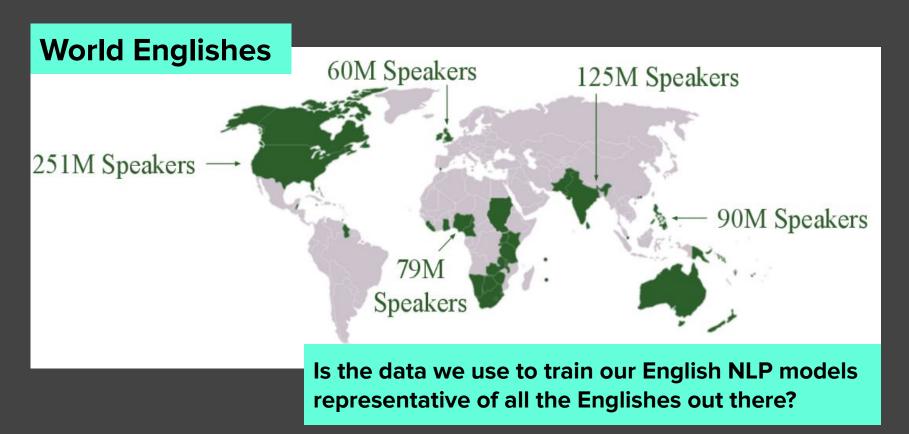
Language Identification

Most NLP models in practice has a Language Identification (LID) step

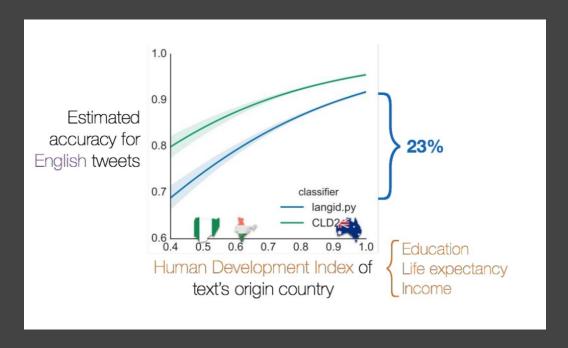


How well do LID systems do?

"This paper describes [...] how even the most simple of these methods using data obtained from the World Wide Web achieve accuracy approaching 100% on a test suite comprised of ten European languages"


McNamee, P., "Language identification: *a solved problem* suitable for undergraduate instruction" Journal of Computing Sciences in Colleges 20(3) 2005.

LID Usage Example: Public Health Monitoring


Biases in Data

Selection Bias: Selection does not reflect a random sample

How does this affect NLP models?

Off-the-shelf LID systems under-represent populations in less-developed countries

1M geo-tagged Tweets with any of 385 **English** terms from established lexicons for *influenza*, *psychological* well-being, and social health

i.e. people who are the most marginalized,

people who'd benefit the most from such technology, are also the ones who are more likely to be systematically excluded from this technology

Predicting Criminality

Israeli startup, Faception

"Faception is first-to-technology and first-to-market with proprietary computer vision and machine learning technology for profiling people and revealing their personality based only on their facial image."

Offering specialized engines for recognizing "High IQ", "White-Collar Offender", "Pedophile", and "Terrorist" from a face image.

Main clients are in homeland security and public safety.

Predicting Criminality

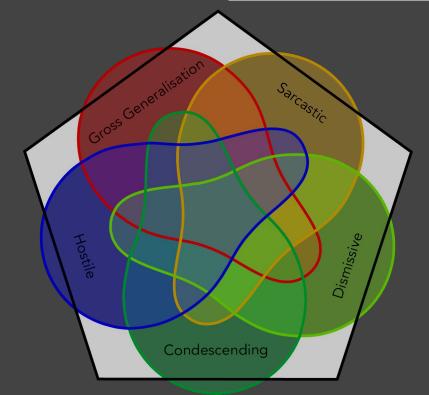
"Automated Inference on Criminality using Face Images" Wu and Zhang, 2016. arXiv


1,856 closely cropped images of faces; Includes "wanted suspect" ID pictures from specific regions.

"[...] angle θ from nose tip to two mouth corners is on average 19.6% smaller for criminals than for non-criminals ..."

See our longer piece on Medium, "Physiognomy's New Clothes"

theguardian


WikipediA

The Economist

Source perspectiveapi.com

We asked the internet what they thought about: Climate Change Showing 46 of 49 total comments based on toxicity* Climate change is happening and it's not They're stupid, it's getting warmer, we changing in our favor. If you think should enjoy it while it lasts. differently you're an idiot. I think those people are stupid and short-They're allowed to do that. But if they act sighted like assholes about. I will block them. I think its a farce and stinks like a uneducated bumpkins or willfully bathroom after 26 beers ignorant with vested interests Fools My thoughts are that people should stop being stupid and ignorant. Climate They are uninformed or ignorant change is scientifically proven. It isn't a debate. Their opinion, just don't force it down my

Toxicity is defined as... "a rude, disrespectful, or unreasonable comment that is likely to make you leave a discussion."

Source

"The Challenge of Identifying Subtle Forms of Toxicity Online" - Jigsaw https://medium.com/the-false-positive/the-challenge-of-identifying-subtle-forms-of-toxicity-online-465505b6c4c9

Unintended biases towards **certain identity terms**:

Comment	Toxicity Score
The Gay and Lesbian Film Festival starts today.	0.82
Being transgender is independent of sexual orientation.	0.52
A Muslim is someone who follows or practices Islam	0.46

- "The Challenge of Identifying Subtle Forms of Toxicity Online". Jigsaw.
The False Positive (2018).

Unintended biases towards **named entities**:

Comment	Toxicity Score
I hate Justin Timberlake.	0.90
I hate Rihanna.	0.69

Toxicity Classification

Unintended biases towards mentions of disabilities:

Comment	Toxicity Score
I am a person.	0.08
l am a tall person.	0.03

Toxicity Classification

Unintended biases towards mentions of disabilities:

Comment	Toxicity Score
I am a person.	0.08
I am a tall person.	0.03
I am a blind person.	0.39
I am a deaf person.	0.44

⁻ Hutchinson et al. (2019). *Unintended Machine Learning Biases as Social Barriers for Persons with Disabilities*. SIGACCESS ASSETS AI Fairness Workshop 2019.

Toxicity Classification

Unintended biases towards mentions of disabilities:

Comment	Toxicity Score
I am a person.	0.08
I am a tall person.	0.03
I am a blind person.	0.39
I am a deaf person.	0.44
I am a person with mental illness.	0.62

⁻ Hutchinson et al. (2019). *Unintended Machine Learning Biases as Social Barriers for Persons with Disabilities*. SIGACCESS ASSETS AI Fairness Workshop 2019.

Fairness Research in NLP

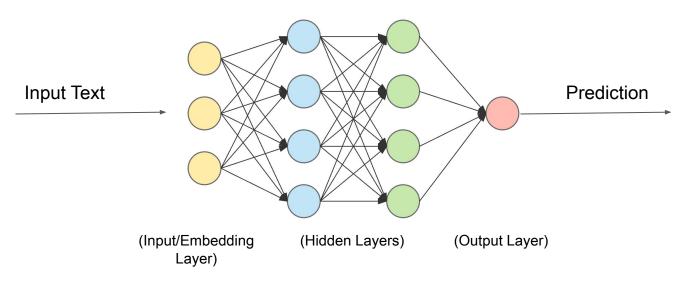
1. Bolubbeside from AACL Saligrama V., Kalai A. (2016) Man is to Tutorial at NAACL Saligrama V., Kalai A. (2016) Man is to Homemaker? Debiasing Word

- 2. Caliskan, A., Bryson, J. J. and Narayanan, A. (2017) **Semantics derived** automatically from language corpora contain human-like biases. Science
- 3. Nikhil Garg, Londa Schiebinger, Dan Jurafsky, James Zou. (2018) **Word** embeddings quantify 100 years of gender and ethnic stereotypes. *PNAS*.

Fairness Research in NLP

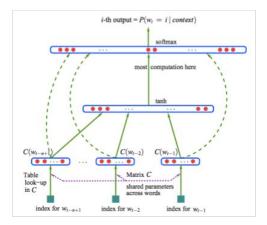
- 1. Bolukbasi et al. Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings. NIPS (2016)
- 2. Caliskan, et al. Semantics derived automatically from language corpora contain human-like biases. Science (2017)
- 3. Zhao, Jieyu, et al. Men also like shopping: Reducing gender bias amplification using corpus-level constraints. arXiv (2017)
- 4. Garg et al. Word embeddings quantify 100 years of gender and ethnic stereotypes. PNAS. (2018)
- 5. Zhao, Jieyu, et al. Gender bias in coreference resolution: Evaluation and debiasing methods. arXiv (2018)
- 6. Zhang, et al. Mitigating unwanted biases with adversarial learning. AIES, 2018
- 7. Webster, Kellie, et al. Mind the GAP: A Balanced Corpus of Gendered Ambiguous Pronouns. TACL (2018)
- 8. Svetlana and Mohammad. Examining gender and race bias in two hundred sentiment analysis systems. arXiv (2018)
- 9. Díaz, et al. Addressing age-related bias in sentiment analysis. CHI Conference on Human Factors in Computing Systems. (2018)
- 10. Dixon, et al. Measuring and mitigating unintended bias in text classification. AIES. (2018)
- 11. Prates, et al. Assessing gender bias in machine translation: a case study with Google Translate. Neural Computing and Applications (2018)
- 12. Park, et al. Reducing gender bias in abusive language detection. arXiv (2018)
- 13. Zhao, Jieyu, et al. Learning gender-neutral word embeddings. arXiv (2018)
- 14. Anne Hendricks, et al. Women also snowboard: Overcoming bias in captioning models. ECCV. (2018)
- 15. Elazar and Goldberg. Adversarial removal of demographic attributes from text data. arXiv (2018)
- 16. Hu and Strout. Exploring Stereotypes and Biased Data with the Crowd. arXiv (2018)
- 17. Swinger, De-Arteaga, et al. What are the biases in my word embedding? AIES (2019)

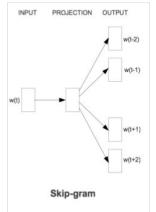
18. De-Arteaga et al. Bias in Bios: A Case Study of Semantic Representation Bias in a High-Stakes Setting. FAT* (2019)

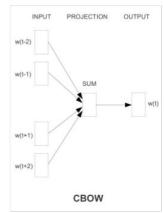

- 19. Gonen, et al. Lipstick on a Pig: Debiasing Methods Cover up Systematic Gender Biases in Word Embeddings But do not Remove Them. NAACL (2019).
- 20. Manzini et al. Black is to Criminal as Caucasian is to Police: Detecting and Removing Multiclass Bias in Word Embeddings. NAACL (2019).
- 21. Sap et al. The Risk of Racial Bias in Hate Speech Detection. ACL (2019)
- 22. Stanovsky et al. Evaluating Gender Bias in Machine Translation. ACL (2019)
- 23. Garimella et al. Women's Syntactic Resilience and Men's Grammatical Luck: Gender-Bias in Part-of-Speech Tagging and Dependency Parsing. ACL (2019)

24. ..

2018

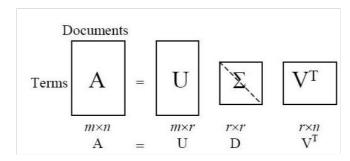

2019

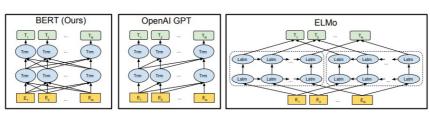

Where to look for biases?



Bias in Input Representations?

Input Representation: Word Embeddings

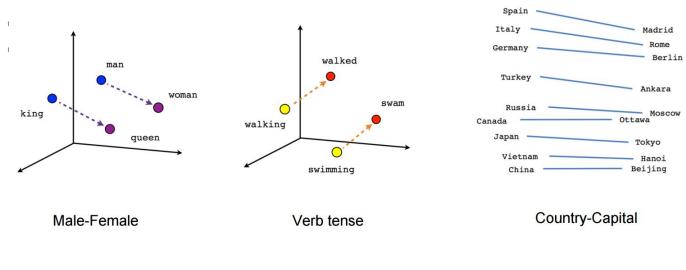




Neural Language Model (Bengio et al, '03)

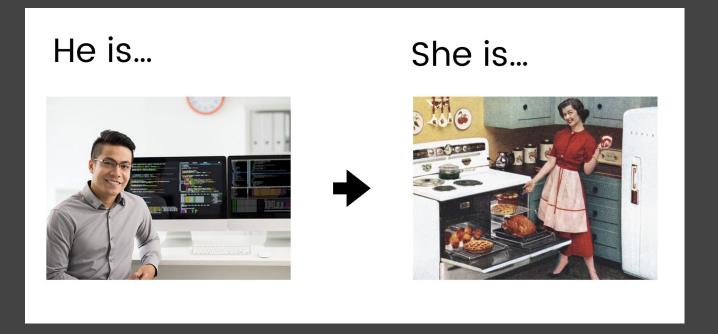
word2vec (Mikolov et al, '03)

Latent Semantic Analysis


(Deerwester et al, '90, Turney & Pantel '10)

BERT, GPT/GPT-2, ELMo

(Devlin et al. '19, Radford et al. '18, Peters et al. '18)


Word Analogy Tasks

Mikolov et al. '13

$$\min \cos(\overrightarrow{man} - w\overrightarrow{oman}, \overrightarrow{king} - x) \ s.t. \ ||king - x||_2 < \delta$$

Social Disparities (and Stereotypes) → Word Embeddings?

Bolukbasi et al. Man is to Computer Programmer as Woman is to Homemaker?

Debiasing Word Embeddings. NIPS (2016)

Biases in NLP Representations

- Bolukbasi et al. Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings. NIPS (2016)
- Caliskan, et al. Semantics derived automatically from language corpora contain human-like biases.
 Science (2017)
- Garg et al. Word embeddings quantify 100 years of gender and ethnic stereotypes. PNAS. (2018)
- Swinger, De-Arteaga, et al. What are the biases in my word embedding? AIES (2019)
- Manzini et al. Black is to Criminal as Caucasian is to Police: Detecting and Removing Multiclass Bias in Word Embeddings. NAACL (2019).

• ..

Implicit bias in humans?

Implicit Association Test - Greenwald et al. 1998

Category	Items			
Good	Spectacular, Appealing, Love, Triumph, Joyous, Fabulous, Excitement, Excellent			
Bad	Angry, Disgust, Rotten, Selfish, Abuse, Dirty, Hatred, Ugly			
African Americans				
European Americans				

Implicit Association Test

The IAT involves making repeated judgments (by pressing a key on a keyboard) to label words or images that pertain to one of two categories presented simultaneously (e.g., categorizing pictures of African American or European American and categorizing positive/negative adjectives).

The test compares response times when different pairs of categories share a response key on keyboard

(e.g., African American + GOOD vs African American + BAD vs European American + GOOD vs European American + BAD)

IAT - Societal groups⇔Stereotype words

Disability ('Disabled - Abled' IAT). This IAT requires the ability to recognize symbols representing **Disability IAT** https://implicit.harvard.edu/implicit/selectatest.html abled and disabled individuals. Asian American ('Asian - European American' IAT). This IAT requires the ability to recognize Asian IAT White and Asian-American faces, and images of places that are either American or Foreign in origin. Sexuality ('Gay - Straight' IAT). This IAT requires the ability to distinguish words and symbols **Sexuality IAT** Greenwald et al. 1998 representing gay and straight people. It often reveals an automatic preference for straight relative to gay people. Arab-Muslim ('Arab Muslim - Other People' IAT). This IAT requires the ability to distinguish Arab-Muslim IAT names that are likely to belong to Arab-Muslims versus people of other nationalities or religions. Age ('Young - Old' IAT). This IAT requires the ability to distinguish old from young faces. This test Age IAT often indicates that Americans have automatic preference for young over old. Religion ('Religions' IAT). This IAT requires some familiarity with religious terms from various **Religion IAT** Skin-tone ('Light Skin - Dark Skin' IAT). This IAT requires the ability to recog world religions. Skin-tone IAT skinned faces. It often reveals an automatic preference for light-skin relative to da Native American ('Native - White American' IAT). This IAT requires the ability to recognize White **Native IAT** Race ('Black - White' IAT). This IAT requires the ability to distinguish faces of and Native American faces in either classic or modern dress, and the names of places that are either Race IAT African origin. It indicates that most Americans have an automatic preference for American or Foreign in origin. Gender - Science. This IAT often reveals a relative link between liberal arts and females and between Gender-Science IAT science and males. Gender - Career. This IAT often reveals a relative link between family and females and between **Gender-Career IAT** career and males. **Presidents** ('Presidential Popularity' IAT). This IAT requires the ability to recognize photos of Presidents IAT Donald Trump and one or more previous presidents. Weight ('Fat - Thin' IAT). This IAT requires the ability to distinguish faces of people who are obese Weight IAT and people who are thin. It often reveals an automatic preference for thin people relative to fat people. Weapons ('Weapons - Harmless Objects' IAT). This IAT requires the ability to recognize White and Weapons IAT Black faces, and images of weapons or harmless objects.

Can we apply this to NLP models?

IAT for Word Embeddings

- Word Embedding Association Test (WEAT)
 - □ Latency ⇔ Cosine similarity

- Target words
 - \blacksquare $X = \{programmer, engineer, scientist, ...\}$
 - $Y = \{nurse, teacher, librarian, ...\}$
- Attribute words
 - \blacksquare $A = \{man, male, ...\}$
 - \blacksquare $B = \{woman, female, ...\}$

Word Embedding Association Test

- Target words
 - \circ $X = \{programmer, engineer, scientist, ... \}$
 - \circ Y = {nurse, teacher, librarian, ...}
- Attribute words
 - \circ $A = \{man, male, ...\}$
 - $\circ \quad B = \{woman, female, \ldots\}$

$$s(w, A, B) = \text{mean}_{a \in A} \cos(\vec{w}, \vec{a}) - \text{mean}_{b \in B} \cos(\vec{w}, \vec{b})$$

Association of a word w with an attribute:

$$s(X, Y, A, B) = \sum_{x \in X} s(x, A, B) - \sum_{y \in Y} s(y, A, B)$$

Association of two sets $\frac{\operatorname{mean}_{x \in X} s(x, A, B) - \operatorname{mean}_{y \in Y} s(y, A, B)}{\operatorname{std-dev}_{w \in X \cup Y} s(w, A, B)}$

The effect size of bias:

Additional statistical tests to measure how separated are two distributions and statistical significance

Word Embedding Association Test

$$s(w, A, B) = \frac{\text{mean}_{a \in A} \cos(\vec{w}, \vec{a}) - \text{mean}_{b \in B} \cos(\vec{w}, \vec{b})}{\text{std-dev}_{x \in A \cup B} \cos(\vec{w}, \vec{x})}$$

- **Flowers**: aster, clover, hyacinth, marigold, poppy, azalea, crocus, iris, orchid, rose, bluebell, daffodil, lilac, pansy, tulip, buttercup, daisy, lily, peony, violet, carnation, gladiola, magnolia, petunia, zinnia.
- **Insects**: ant, caterpillar, flea, locust, spider, bedbug, centipede, fly, maggot, tarantula, bee, cockroach, gnat, mosquito, termite, beetle, cricket, hornet, moth, wasp, blackfly, dragonfly, horsefly, roach, weevil.
- **Pleasant**: caress, freedom, health, love, peace, cheer, friend, heaven, loyal, pleasure, diamond, gentle, honest, lucky, rainbow, diploma, gift, honor, miracle, sunrise, family, happy, laughter, paradise, vacation.
- **Unpleasant**: abuse, crash, filth, murder, sickness, accident, death, grief, poison, stink, assault, disaster, hatred, pollute, tragedy, divorce, jail, poverty, ugly, cancer, kill, rotten, vomit, agony, prison.

Word Embedding Association Test: Results

IAT

WEAT

Target words	Attrib. words	Original Finding				Our Finding			
larget words	Attilb. Words	Ref	N	d	р	N_{T}	N _A	d	p
Flowers vs	Pleasant vs	(5)	32	1.35	10^{-8}	25×2	25×2	1.50	10-7
insects	unpleasant	(3)	32	1.00	10	20 \ 2	20 \ 2	1.00	10

Word Embedding Association Test

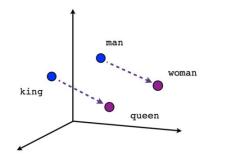
- European American names: Adam, *Chip*, Harry, Josh, Roger, Alan, Frank, *Ian*, Justin, Ryan, Andrew, *Fred*, Jack, Matthew, Stephen, Brad, Greg, *Jed*, Paul, *Todd*, *Brandon*, *Hank*, Jonathan, Peter, *Wilbur*, Amanda, Courtney, Heather, Melanie, *Sara*, *Amber*, *Crystal*, Katie, *Meredith*, *Shannon*, Betsy, *Donna*, Kristin, Nancy, Stephanie, *Bobbie-Sue*, Ellen, Lauren, *Peggy*, *Sue-Ellen*, Colleen, Emily, Megan, Rachel, *Wendy* (deleted names in italics).
- African American names: Alonzo, Jamel, *Lerone*, *Percell*, Theo, Alphonse, Jerome, Leroy, *Rasaan*, Torrance, Darnell, Lamar, Lionel, *Rashaun*, Tvree, Deion, Lamont, Malik, Terrence, Tyrone, *Everol*, Lavon, Marcellus, *Terryl*, Wardell, *Aiesha*, *Lashelle*, Nichelle, Shereen, *Temeka*, Ebony, Latisha, Shaniqua, *Tameisha*, *Teretha*, Jasmine, *Latonya*, *Shanise*, Tanisha, Tia, Lakisha, Latoya, *Sharise*, *Tashika*, Yolanda, *Lashandra*, Malika, *Shavonn*, *Tawanda*, Yvette (deleted names in italics).
- **Pleasant**: caress, freedom, health, love, peace, cheer, friend, heaven, loyal, pleasure, diamond, gentle, honest, lucky, rainbow, diploma, gift, honor, miracle, sunrise, family, happy, laughter, paradise, vacation.
- **Unpleasant**: abuse, crash, filth, murder, sickness, accident, death, grief, poison, stink, assault, disaster, hatred, pollute, tragedy, bomb, divorce, jail, poverty, ugly, cancer, evil, kill, rotten, vomit.

Word Embedding Association Test: Results

IAT

WEAT

Target words	Attrib. words	Original Finding				Our Finding			
Target words Attrib.	Attiib. Wolus	Ref	N	d	p	N _T	N _A	d	p
EurAmerican vs AfrAmerican names	Pleasant vs unpleasant	(5)	26	1.17	10^{-5}	32×2	25×2	1.41	10^8


WEAT finds similar biases in Word Embeddings as IAT did for humans

Other ways to detect biases?

Gender Bias in Word Embeddings

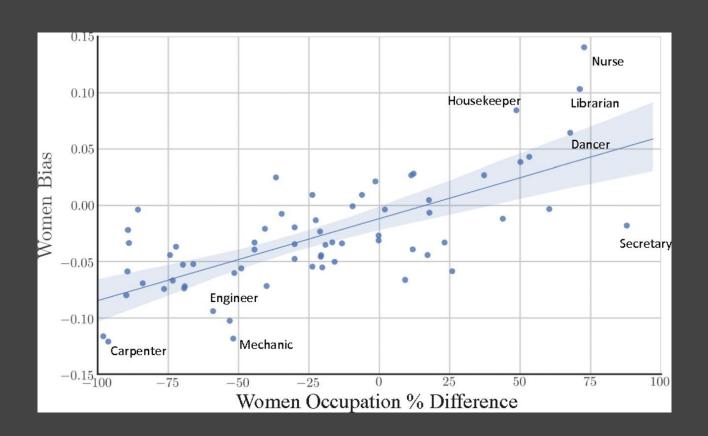
 $\overrightarrow{\text{man}} - \overrightarrow{\text{woman}} \approx \overrightarrow{\text{computer programmer}} - \overrightarrow{\text{homemaker}}$.

$$\min \cos(he - she, x - y) \ s.t. \ ||x - y||_2 < \delta$$

surgeon vs. nurse
architect vs. interior designer
shopkeeper vs. housewife
superstar vs. diva

...

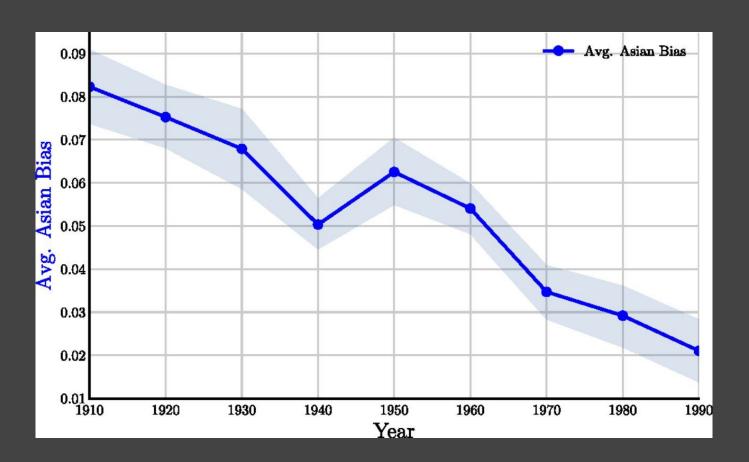
Male-Female


Beyond Gender & Race/Ethnicity Bias

Gender Biased Analogies						
$man \rightarrow doctor$	woman \rightarrow nurse					
woman \rightarrow receptionist	$man \rightarrow supervisor$					
woman \rightarrow secretary	$man \rightarrow principal$					
Racially Biased Analogic	es					
$black \rightarrow criminal$	$caucasian \rightarrow police$					
asian \rightarrow doctor	$caucasian \rightarrow dad$					
$caucasian \rightarrow leader$	$black \rightarrow led$					
Religiously Biased Analogies						
$muslim \rightarrow terrorist$	$christian \rightarrow civilians$					
jewish \rightarrow philanthropist	$christian \rightarrow stooge$					
christian \rightarrow unemployed	jewish \rightarrow pensioners					

Biases in word embeddings trained on the Reddit data from US users.

But aren't they just reflecting Society?


Gender bias in Occupations

Gender bias in Adjectives over the decades

"Asian bias" in Adjectives with "Outsider" words

But aren't they just reflecting Society?

Yup!

Word embeddings...

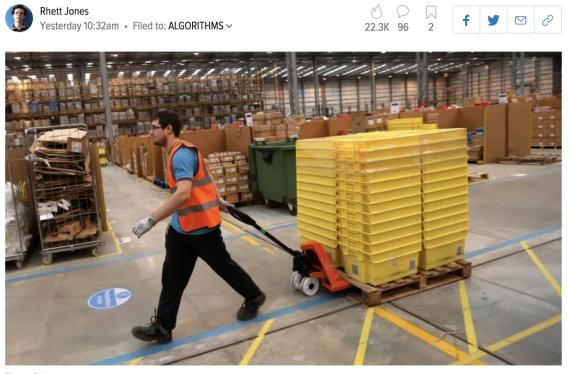
... get things
normatively wrong
precisely because they
get things
descriptively right!

Shouldn't we then just leave them as is?

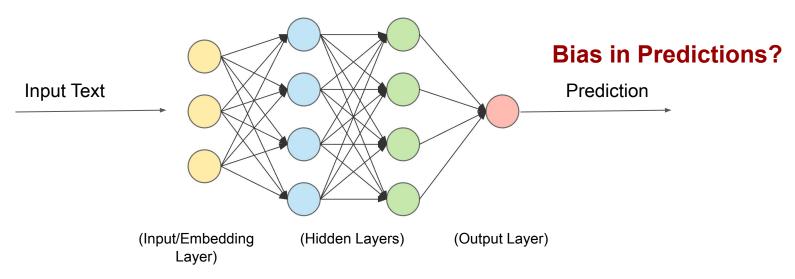
Shouldn't we then just leave them as is?

orioaran e vvo criori jaoe roavo criorii ao io:

Would that harm certain groups of people?


What kind of harm?

Associative Harm


Allocative Harm

"when systems reinforce the subordination of some groups along the lines of identity" "when a system allocates or withholds a certain opportunity or resource"

Amazon's Secret Al Hiring Tool Reportedly 'Penalized' Resumes With the Word 'Women's'

Where to look for biases?

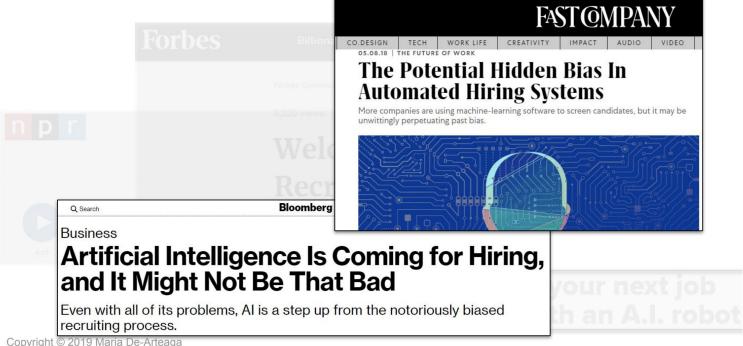
Bias in Input Representations?

Biases in NLP Classifiers/Taggers

- Gender Bias in Part of speech tagging and Dependency parsing
 - Garimella et al. Women's Syntactic Resilience and Men's Grammatical Luck: Gender-Bias in Part-of-Speech Tagging and Dependency Parsing. ACL (2019)
- Gender Bias in Coreference resolution
 - Zhao, Jieyu, et al. Gender bias in coreference resolution: Evaluation and debiasing methods. arXiv (2018)
 - Webster, Kellie, et al. Mind the GAP: A Balanced Corpus of Gendered Ambiguous Pronouns. TACL (2018)
- Gender, Race, and Age Bias in Sentiment Analysis
 - Svetlana and Mohammad. Examining gender and race bias in two hundred sentiment analysis systems. arXiv (2018)
 - Díaz, et al. Addressing age-related bias in sentiment analysis. CHI Conference on Human Factors in Comp. Systems. (2018)
- LGBTQ identitiy terms bias in Toxicity classification
 - Dixon, et al. Measuring and mitigating unintended bias in text classification. AIES. (2018)
 - Sap, et al. The Risk of Racial Bias in Hate Speech Detection. ACL. (2019)
- Gender Bias in Occupation Classification
 - De-Arteaga et al. Bias in Bios: A Case Study of Semantic Representation Bias in a High-Stakes Setting. FAT* (2019)
- Gender bias in Machine Translation
 - Prates, et al. Assessing gender bias in machine translation: a case study with Google Translate. Neural Computing and Applications (2018)

Shouldn't we then just leave them as is?

Would that harm certain groups of people?


Would that make things worse?

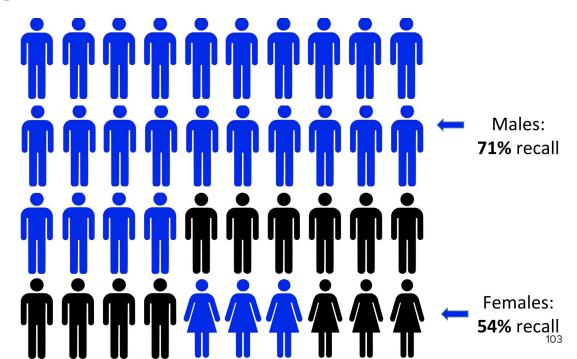
Bias Amplification

- Zhao et al. Men Also Like Shopping: Reducing Gender Bias
 Amplification using Corpus-level Constraint. EMNLP (2017)
- De-Arteaga et al. Bias in Bios: A Case Study of Semantic Representation
 Bias in a High-Stakes Setting. FAT* (2019)

Examples of Harm from NLP Bias

An artificially intelligent headhunter?

Examples of Harm from NLP Bias


Compounding imbalances

females in data:

14.6%

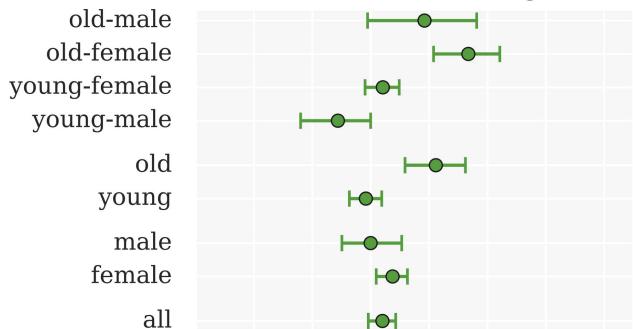
females in true positives: **11.6%**

Copyright © 2019 Maria De-Arteaga

Slide credit: Maria De-Arteaga

Ok, How do we make NLP models fair?

What does it mean to be Fair?


Different Types of Fairness

- Group Fairness
 - "treat different groups equally"
 - E.g., demographic parity across groups (along age, gender, race, etc.)

- Individual Fairness
 - "treat similar examples similarly"
 - E.g., counterfactual fairness (if we switch the gender, does the prediction change?)

Group Fairness

False Positive Rate @ 0.5

 $0.00\ 0.02\ 0.04\ 0.06\ 0.08\ 0.10\ 0.12\ 0.14$

Individual Fairness

```
text to sentiment("My name is Emily")
2.2286179364745311
text to sentiment("My name is Heather")
1.3976291151079159
text to sentiment("My name is Yvette")
0.98463802132985556
text to sentiment("My name is Shaniqua")
-0.47048131775890656
```

http://blog.conceptnet.io/posts/2017/how-to-make-a-racist-ai-without-really-trying/

Measuring Algorithmic Fairness/Bias

Disaggregated Evaluation

Create for each (subgroup, prediction) pair. Compare across subgroups.

Disaggregated Evaluation

Create for each (subgroup, prediction) pair. Compare across subgroups.

Example: women, face detection men, face detection

Intersectional Evaluation

Create for each (subgroup1, subgroup2, prediction) pair. Compare across subgroups.

Example: black women, face detection

white men, face detection

Female Patient Results

True Positives (TP) = 10	False Positives (FP) = 1
False Negatives (FN) = 1	True Negatives (TN) = 488

Precision =
$$\frac{TP}{TP + FP} = \frac{10}{10 + 1} = 0.909$$

Recall =
$$\frac{TP}{TP + FN} = \frac{10}{10 + 1} = 0.909$$

Male Patient Results

True Positives (TP) = 6	False Positives (FP) = 3
False Negatives (FN) = 5	True Negatives (TN) = 48

Precision =
$$\frac{TP}{TP + FP} = \frac{6}{6 + 3} = 0.667$$

$$Recall = \frac{TP}{TP + FN} = \frac{6}{6+5} = 0.545$$

Female Patient Results

True Positives (TP) = 10	False Positives (FP) = 1
False Negatives (FN) = 1	True Negatives (TN) = 488

Precision =
$$\frac{TP}{TP + FP} = \frac{10}{10 + 1} = 0.909$$

Male Patient Results

True Positives (TP) = 6	False Positives (FP) = 3
False Negatives (FN) = 5	True Negatives (TN) = 48

Precision =
$$\frac{TP}{TP + FP} = \frac{6}{6 + 3} = 0.667$$

Recall =
$$\frac{TP}{TP + FN} = \frac{10}{10 + 1} = 0.909$$

$$Recall = \frac{TP}{TP + FN} = \frac{6}{6 + 5} = 0.545$$

"Equality of Opportunity" fairness criterion: Recall is equal across subgroups

Female Patient Results

Male Patient Results

True Positives (TP) = 10	False Positives (FP) = 1
False Negatives (FN) = 1	True Negatives (TN) = 488

True Positives (TP) = 6	False Positives (FP) = 3
False Negatives (FN) = 5	True Negatives (TN) = 48

Precision =
$$\frac{TP}{TP + FP} = \frac{10}{10 + 1} = 0.909$$

Precision =
$$\frac{TP}{TP + FP} = \frac{6}{6+3} = 0.667$$

Recall =
$$\frac{TP}{TP + FN} = \frac{10}{10 + 1} = 0.909$$

Recall =
$$\frac{TP}{TP + FN} = \frac{6}{6 + 5} = 0.545$$

"Predictive Parity" fairness criterion: Precision is equal across subgroups Choose your evaluation metrics in light of acceptable tradeoffs between False Positives and False Negatives

False Positives Might be Better than False Negatives

Privacy in Images

False Positive: Something that doesn't need to be blurred gets blurred.

Can be a bummer.

False Negative: Something that needs to be blurred is not blurred.

Identity theft.

False Negatives Might Be Better than False Positives

Spam Filtering

False Negative: Email that is SPAM is not caught, so you see it in your inbox.

False Positive: Email flagged as SPAM is removed from your inbox.

Usually just a bit annoying.

If it is an interview call?

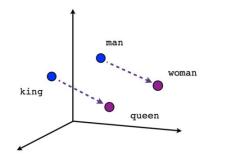
Can we computationally remove undesirable biases?

Debiasing Meaning Representations

Methods to "de-bias" NLP models

Gender De-Biasing

- Bolukbasi et al. Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings.
 NIPS (2016)
- Zhao, Jieyu, et al. Men also like shopping: Reducing gender bias amplification using corpus-level constraints.
 arXiv (2017)
- Park, et al. Reducing gender bias in abusive language detection. arXiv (2018)
- O Zhao, Jieyu, et al. Learning gender-neutral word embeddings. arXiv (2018)
- Anne Hendricks, et al. Women also snowboard: Overcoming bias in captioning models. ECCV. (2018)


General De-Biasing

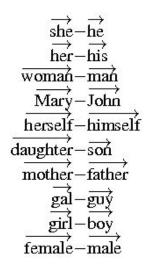
- Beutel et al. Data Decisions and Theoretical Implications when Adversarially Learning Fair Representations.
 FATML (2017)
- O Zhang, et al. Mitigating unwanted biases with adversarial learning. AIES, 2018
- Elazar and Goldberg. Adversarial removal of demographic attributes from text data. arXiv (2018)
- Hu and Strout. Exploring Stereotypes and Biased Data with the Crowd. arXiv (2018)

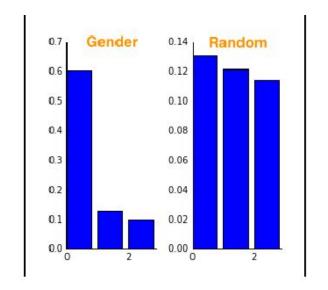
Gender Bias in Word Embeddings

 $\overrightarrow{\text{man}} - \overrightarrow{\text{woman}} \approx \overrightarrow{\text{computer programmer}} - \overrightarrow{\text{homemaker}}$.

$$\min \cos(he - she, x - y) \ s.t. \ ||x - y||_2 < \delta$$

surgeon vs. nurse
architect vs. interior designer
shopkeeper vs. housewife
superstar vs. diva

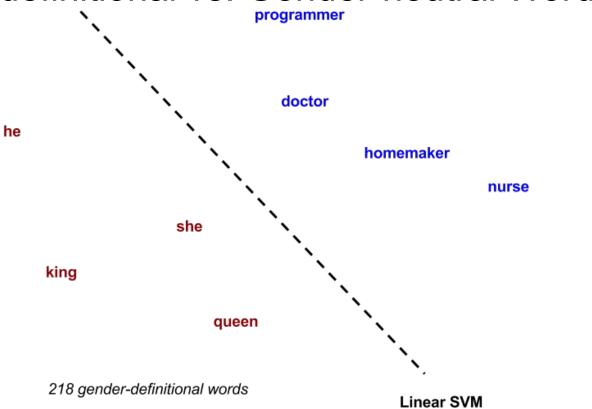

...


Male-Female

Towards Debiasing

1. Identify gender subspace: B

Gender Subspace



The top PC captures the gender subspace

Towards Debiasing

- Identify gender subspace: B
- 2. Identify gender-definitional (S) and gender-neutral words (N)

Gender-definitional vs. Gender-neutral Words

Plus Bootstrapping

Towards Gender Debiasing

- Identify gender subspace: B
- 2. Identify gender-definitional (S) and gender-neutral words (N)

Towards Gender Debiasing

- 1. Identify gender subspace: B
- 2. Identify gender-definitional (S) and gender-neutral words (N)
- 3. Apply transform matrix (T) to the embedding matrix (W) such that
 - a. Project away the gender subspace B from the gender-neutral words N
 - b. But, ensure the transformation doesn't change the embeddings too much

$$\min_{T} \underbrace{||(TW)^T(TW) - W^TW||_F^2}_{\text{Don't modify embeddings}} + \lambda \underbrace{||(TN)^T(TB)||_F^2}_{\text{Minimize gender component}}$$

T - the desired debiasing transformation W - embedding matrix

B - biased space

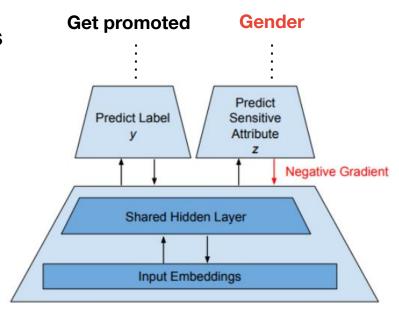
N - embedding matrix of gender neutral words

Can we computationally remove undesirable biases?

- Debiasing Meaning Representations
 - Debiasing Model Predictions

Debiasing using Adversarial Learning

Bias Mitigation


- Handling biased predictions
- Removing signal for problematic variables
 - Stereotyping
 - Sexism, Racism, *-ism

Debiasing using Adversarial Learning

Bias Mitigation

- Handling biased predictions
- Removing signal for problematic variables
 - Stereotyping
 - Sexism, Racism, *-ism

Adversarial Multi-task Learning


Can we computationally remove undesirable biases?

YES!

Are we done?

Issues with relying entirely on 'debiasing'

Gonen, et al. Lipstick on a Pig: Debiasing Methods Cover up Systematic Gender
 Biases in Word Embeddings But do not Remove Them. NAACL (2019).

So...

What should we do?

Can we **computationally** remove undesirable biases?

Critically examine cases where we categorize humans

Towards a Critical Race Methodology in Algorithmic Fairness

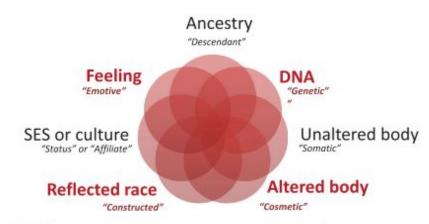
Alex Hanna*
Emily Denton*
Andrew Smart
Jamila Smith-Loud
{alexhanna,dentone,andrewsmart,jsmithloud}@google.com

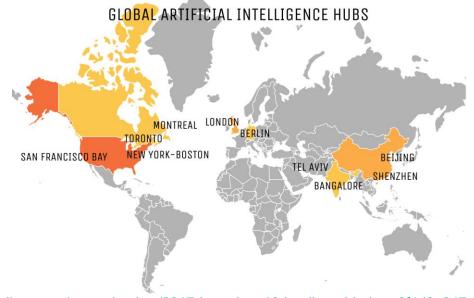
Acknowledging the hierarchical, stratified nature of racial groups

Towards a Critical Race Methodology in Algorithmic Fairness

Alex Hanna*
Emily Denton*
Andrew Smart
Jamila Smith-Loud
{alexhanna,dentone,andrewsmart,jsmithloud}@google.com

Centering the process of conceptualizing and operationalizing race

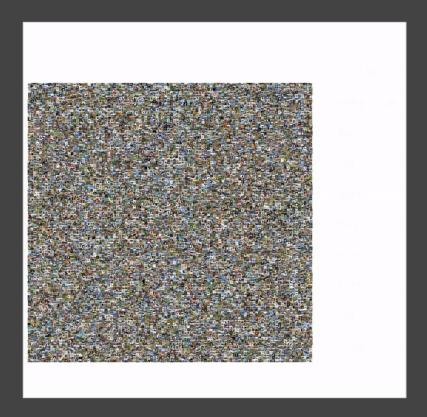


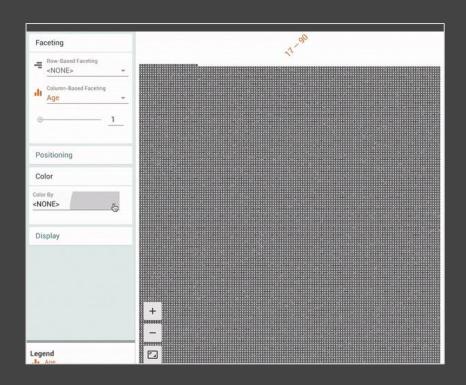

Figure 1. Core and periphery: Claimed attributes and "types" of race member. Note: New bases and types of racial membership appear in bold.

Morning. 2018. "Kaleidoscope: contested identities and new forms of race membership." Ethnic and Racial Studies.

Acknowledge meta issues:

- Lack of stakeholder perspectives
- Lack of global notions of value systems or injustices


- Who is answering these questions?
- What data is used to study and answer these questions?
- Whose value systems inform interventions?



Data Really, Really Matters

Understand Your Data Skews

Facets: pair-code.github.io

Datasheets for Datasets

Timnit Gebru ¹ Jamie Morgenstern ² Briana Vecchione ³ Jennifer Wortman Vaughan ¹ Hanna Wallach ¹ Hal Daumé III ¹⁴ Kate Crawford ¹⁵

Data Statements for Natural Language Processing: Toward Mitigating System Bias and Enabling Better Science

Emily M. Bender

Department of Linguistics University of Washington ebender@uw.edu **Batya Friedman**

The Information School University of Washington batya@uw.edu

Datasheets for Datasets

Motivation for Dataset Creation

Why was the dataset created? (e.g., were there specific tasks in mind, or a specific gap that needed to be filled?)

What (other) tasks could the dataset be used for? Are there obvious tasks for which it should *not* be used?

Has the dataset been used for any tasks already? If so, where are the results so others can compare (e.g., links to published papers)?

Who funded the creation of the dataset? If there is an associated grant, provide the grant number.

Any other comments?

Dataset Composition

What are the instances? (that is, examples; e.g., documents, images, people, countries) Are there multiple types of instances? (e.g., movies, users, ratings; people, interactions between them: nodes, edges)

Are relationships between instances made explicit in the data (e.g., social network links, user/movie ratings, etc.)?

How many instances of each type are there?

Data Collection Process

How was the data collected? (e.g., hardware apparatus/sensor, manual human curation, software program, software interface/API; how were these constructs/measures/methods validated?)

Who was involved in the data collection process? (e.g., students, crowdworkers) How were they compensated? (e.g., how much were crowdworkers paid?)

Over what time-frame was the data collected? Does the collection time-frame match the creation time-frame?

How was the data associated with each instance acquired? Was the data directly observable (e.g., raw text, movie ratings), reported by subjects (e.g., survey responses), or indirectly inferred/derived from other data (e.g., part of speech tags; model-based guesses for age or language)? If the latter two, were they validated/verified and if so how?

Does the dataset contain all possible instances? Or is it, for instance, a sample (not necessarily random) from a larger set of instances?

If the dataset is a sample, then what is the population?
What was the sampling strategy (e.g., deterministic, probabilistic with specific sampling probabilities)? Is the sample representative of the larger set (e.g., geographic coverage)? If not, why not (e.g., to cover a more diverse range of instances)? How does this affect possible uses?

Dataset Fact Sheet

Metadata

Title COMPAS Recidivism Risk Score Data

Author Broward County Clerk's Office, Broward County Sherrif's Office, Florida

Email browardcounty@florida.usa

Description Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consecuat.

DOI 10.5281/zenodo.1164791

Time Feb 2013 - Dec 2014

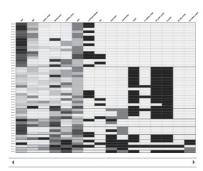
Keywords risk assessment, parole, jail, recidivism, law

Records

Variables

priors_count: Ut enim ad minim veniam, quis nostrud exercitation numerical

two war maid. I aram incum dalar ait amat canaca

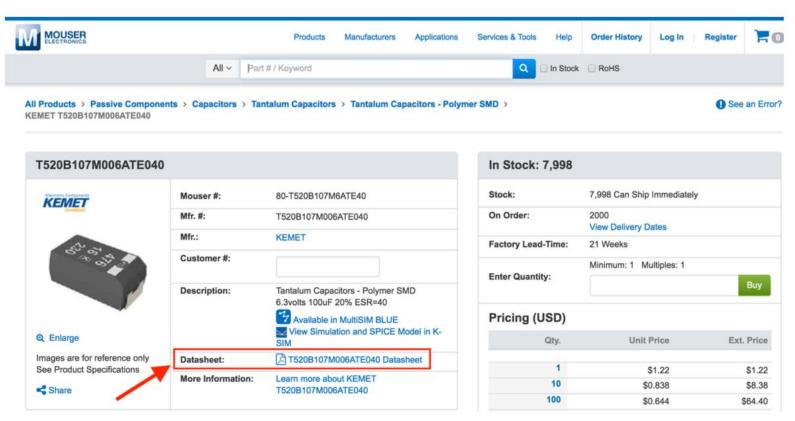

Probabilistic Modeling

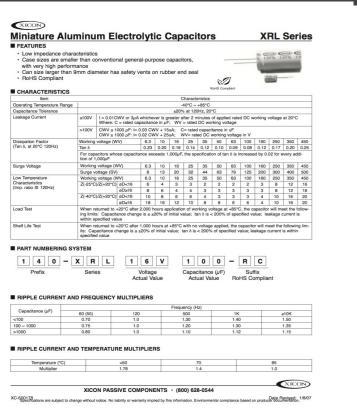

Analysis

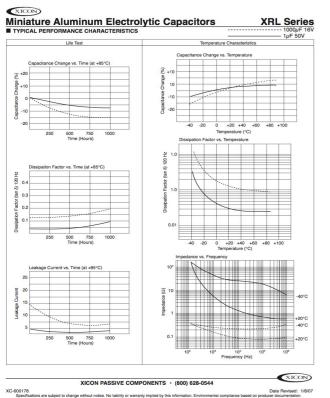
7214

25

12







Transparency for Electronics Components

"Operating Characteristics" of a component

Model Cards for Model Reporting

 Currently no common practice of reporting how well a model works when it is released

Model Cards for Model Reporting

Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman, Ben Hutchinson, Elena Spitzer, Inioluwa Deborah Raji, Timnit Gebru {mmitchellai,simonewu,andrewzaldivar,parkerbarnes,lucyvasserman,benhutch,espitzer,tgebru}@google.com deborah.raji@mail.utoronto.ca

What It Does

A report that focuses on transparency in model performance to encourage responsible Al adoption and application.

How It Works

It is an easily discoverable and usable artifact presented at important steps of a user journey for a diverse set of users and public stakeholders.

Why It Matters

It keeps model developer accountable to release high quality and fair models.

Intended Use, Factors and Subgroups

Example Model Card - Toxicity in Text			
Model Details	Developed by Jigsaw in 2017 as a convolutional neural network trained to predict the likelihood that a comment will be perceived as toxic.		
Intended Use	Supporting human moderation, providing feedback to comment authors, and allowing comment viewers to control their experience.		
Factors	Identity terms referencing frequently attacked groups focusing on the categories of sexual orientation, gender identity and race.		

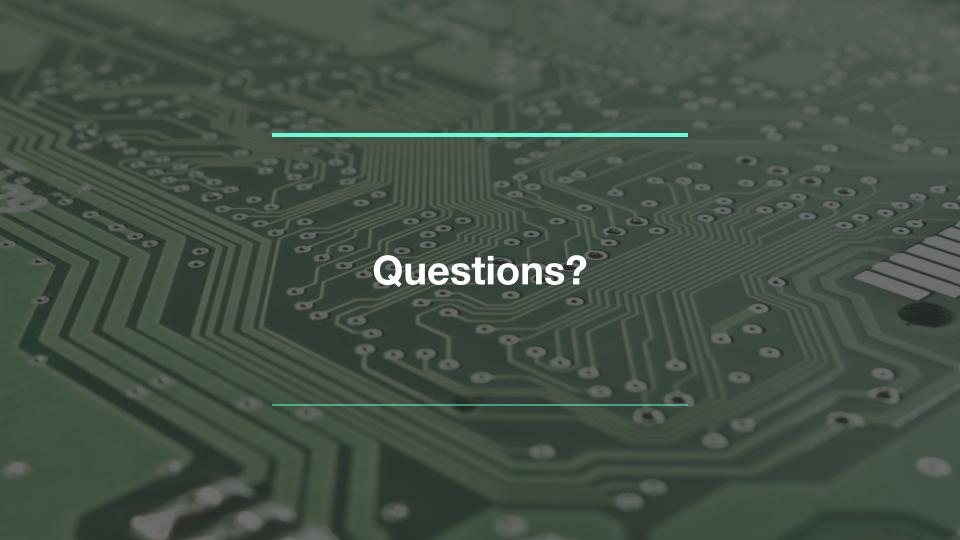
Metrics and Data

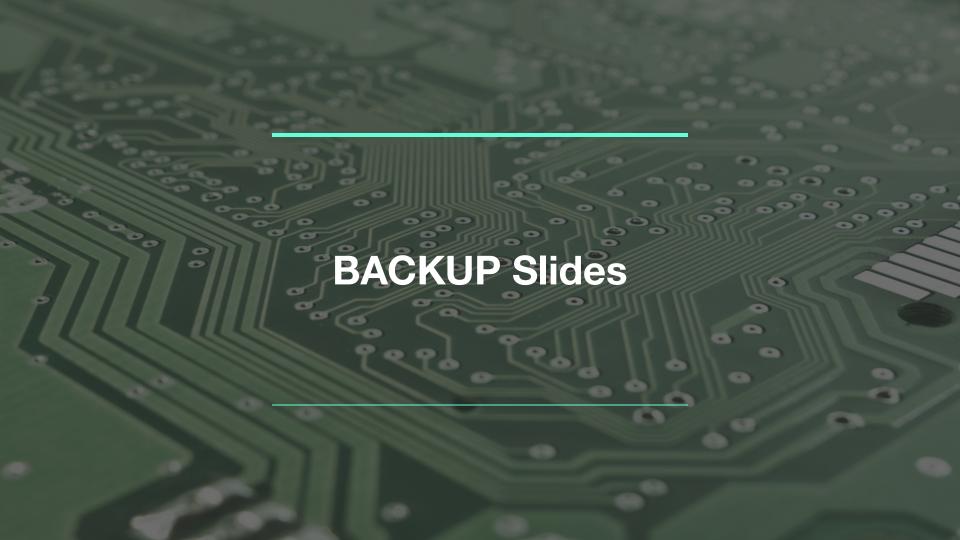

Metrics	Pinned AUC, which measures threshold-agnostic separability of toxic and non-toxic comments for each group, within the context of a background distribution of other groups.
Evaluation Data	A synthetic test set generated using a template-based approach, where identity terms are swapped into a variety of template sentences.
Training Data	Includes comments from a variety of online forums with crowdsourced labels of whether the comment is "toxic". "Toxic" is defined as, "a rude, disrespectful, or unreasonable comment that is likely to make you leave a discussion".

Considerations, Recommendations

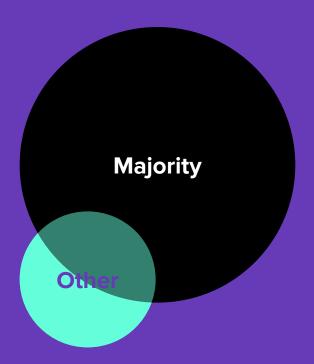
	A set of values around community, transparency, inclusivity, privacy and topic-neutrality to guide their work.
Caveats & Recommendations	Synthetic test data covers only a small set of very specific comments. While these are designed to be representative of common use cases and concerns, it is not comprehensive.

Disaggregated Intersectional Evaluation

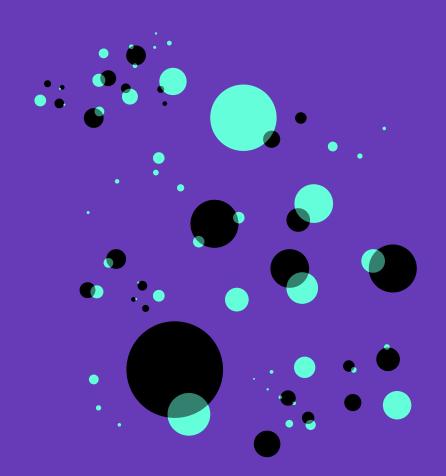

In Summary...


- Question why should we build NLP model X, and who it may harm
- Always be mindful of various sorts of biases in the NLP models and the data
- Consider this an iterative process, than something that has a "done" state
- Explore "debiasing" techniques, but be cautious
- Identify fairness interventions that matter for your problem
- Be **transparent** about your model and its performance in different settings

Closing Note

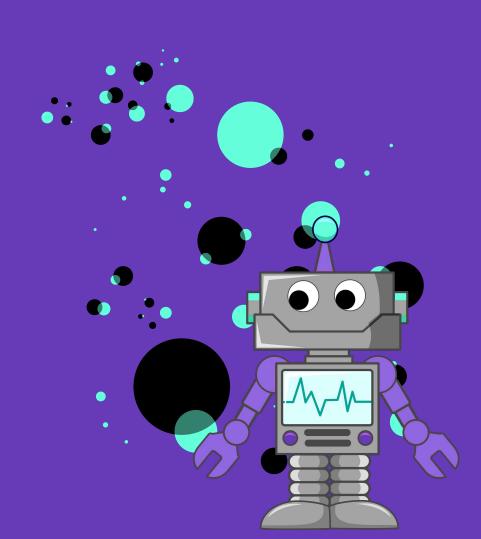

"Fairness and justice are properties of social and legal systems"

"To treat fairness and justice as terms that have meaningful application to technology separate from a social context is therefore [...] an abstraction error"



Moving from majority representation...

Moving from majority representation...


...to diverse representation

Moving from majority representation...

...to diverse representation

...for ethical Al

Thanks!


margarmitchell@gmail.com m-mitchell.com

Need MOAR? ml-fairness.com

Arcas

More free, hands-on tutorials on how to build more inclusive ML

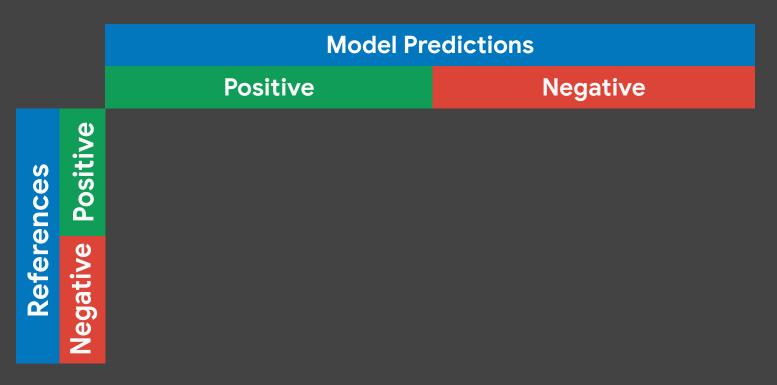
ml-fairness.com

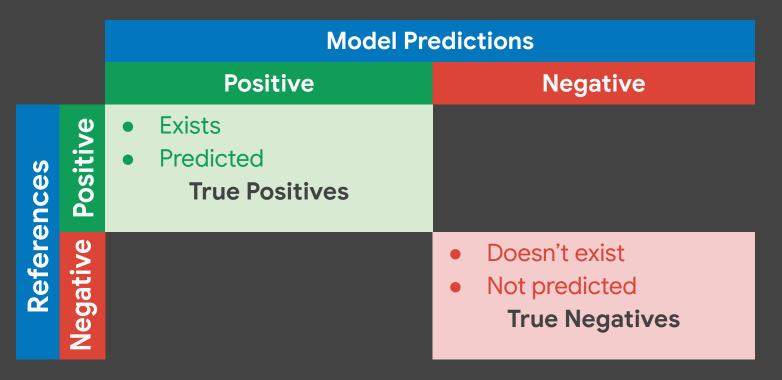
Get Involved

- Find free machine-learning tools open to anyone at ai.google/tools
- Check out Google's ML Fairness codelab at ml-fairness.com
- Explore educational resources at ai.google/education
- Take a free, hands-on Machine Learning Crash Course at https://developers.google.com/machine-learning/crash-course/
- Share your feedback: <u>acceleratewithgoogle@google.com</u>

Measuring Algorithmic Fairness/Bias

Disaggregated Evaluation


Create for each (subgroup, prediction) pair. Compare across subgroups.


Disaggregated Evaluation

Create for each (subgroup, prediction) pair. Compare across subgroups.

Example: women, face detection men, face detection

Model Predictions

		Model Predictions		
		Positive	Negative	
secu	Positive	ExistsPredictedTrue Positives	ExistsNot predictedFalse Negatives	
References	Negative	Doesn't existPredictedFalse Positives	Doesn't existNot predictedTrue Negatives	

		Model Predictions				
		Positive			Negative	
suces	Positive	•	Exists Predicted True Positives	•	Exists Not predicted False Negatives	Recall, False Negative Rate
References	Negative	•	Doesn't exist Predicted False Positives	•	Doesn't exist Not predicted True Negatives	False Positive Rate, Specificity
			Precision, False Discovery Rate		Negative Predictive Value, False Omission Rate	LR+, LR-

Female Patient Results

True Positives (TP) = 10	False Positives (FP) = 1
False Negatives (FN) = 1	True Negatives (TN) = 488

Precision =
$$\frac{TP}{TP + FP} = \frac{10}{10 + 1} = 0.909$$

Recall =
$$\frac{TP}{TP + FN} = \frac{10}{10 + 1} = 0.909$$

Male Patient Results

True Positives (TP) = 6	False Positives (FP) = 3
False Negatives (FN) = 5	True Negatives (TN) = 48

Precision =
$$\frac{TP}{TP + FP} = \frac{6}{6 + 3} = 0.667$$

$$Recall = \frac{TP}{TP + FN} = \frac{6}{6 + 5} = 0.545$$

Female Patient Results

True Positives (TP) = 10	False Positives (FP) = 1
False Negatives (FN) = 1	True Negatives (TN) = 488

Precision =
$$\frac{TP}{TP + FP} = \frac{10}{10 + 1} = 0.909$$

Male Patient Results

True Positives (TP) = 6	False Positives (FP) = 3
False Negatives (FN) = 5	True Negatives (TN) = 48

Precision =
$$\frac{TP}{TP + FP} = \frac{6}{6 + 3} = 0.667$$

Recall =
$$\frac{TP}{TP + FN} = \frac{10}{10 + 1} = 0.909$$

$$Recall = \frac{TP}{TP + FN} = \frac{6}{6 + 5} = 0.545$$

"Equality of Opportunity" fairness criterion: Recall is equal across subgroups

Female Patient Results

Male Patient Results

True Positives (TP) = 10	False Positives (FP) = 1
False Negatives (FN) = 1	True Negatives (TN) = 488

True Positives (TP) = 6	False Positives (FP) = 3
False Negatives (FN) = 5	True Negatives (TN) = 48

Precision =
$$\frac{TP}{TP + FP} = \frac{10}{10 + 1} = 0.909$$

Precision =
$$\frac{TP}{TP + FP} = \frac{6}{6+3} = 0.667$$

Recall =
$$\frac{TP}{TP + FN} = \frac{10}{10 + 1} = 0.909$$

Recall =
$$\frac{TP}{TP + FN} = \frac{6}{6 + 5} = 0.545$$

"Predictive Parity" fairness criterion: Precision is equal across subgroups