
Natural Language Processing
with Deep Learning

CS224N/Ling284

Christopher Manning

Lecture 4: Gradients by hand (matrix calculus) and 
algorithmically (the backpropagation algorithm)

Natural Language Processing
with Deep Learning

CS224N/Ling284

Christopher Manning and Richard Socher

Lecture 2: Word Vectors



1. Introduction

Assignment 2 is all about making sure you really understand the 
math of neural networks … then we’ll let the software do it!

We’ll go through it quickly today, but also look at the readings!

This will be a tough week for some! à
Make sure to get help if you need it

Visit office hours Friday/Tuesday
Note: Monday is MLK Day – No office hours, sorry!
But we will be on Piazza

Read tutorial materials given in the syllabus
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NER: Binary classification for center word being location

• We do supervised training and want high score if it’s a location

𝐽" 𝜃 = 𝜎 𝑠 =
1

1 + 𝑒*+
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x  = [  xmuseums xin xParis xare xamazing ]



Remember: Stochastic Gradient Descent

Update equation:

How can we compute ∇-𝐽(𝜃)?
1. By hand
2. Algorithmically: the backpropagation algorithm

𝛼 = step size or learning rate
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Lecture Plan

Lecture 4: Gradients by hand and algorithmically
1. Introduction (5 mins)
2. Matrix calculus (40 mins)
3. Backpropagation (35 mins)
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Computing Gradients by Hand

• Matrix calculus: Fully vectorized gradients

• “multivariable calculus is just like single-variable calculus if 
you use matrices” 

• Much faster and more useful than non-vectorized gradients

• But doing a non-vectorized gradient can be good for 
intuition; watch last week’s lecture for an example

• Lecture notes and matrix calculus notes cover this 
material in more detail

• You might also review Math 51, which has a new online 
textbook: 
http://web.stanford.edu/class/math51/textbook.html
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Gradients

• Given a function with 1 output and 1 input

𝑓 𝑥 = 𝑥3

• It’s gradient (slope) is its derivative 
45
46
= 3𝑥8

“How much will the output change if we change the input a bit?”
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Gradients

• Given a function with 1 output and n inputs

• Its gradient is a vector of partial derivatives with 
respect to each input 
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Jacobian Matrix: Generalization of the Gradient

• Given a function with m outputs and n inputs

• It’s Jacobian is an m x n matrix of partial derivatives 
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Chain Rule

• For one-variable functions: multiply derivatives

• For multiple variables at once: multiply Jacobians
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Example Jacobian: Elementwise activation Function
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Example Jacobian: Elementwise activation Function

Function has n outputs and n inputs → n by n Jacobian
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Example Jacobian: Elementwise activation Function
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Example Jacobian: Elementwise activation Function
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Example Jacobian: Elementwise activation Function
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Other Jacobians

• Compute these at home for practice!

• Check your answers with the lecture notes
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Other Jacobians

• Compute these at home for practice!

• Check your answers with the lecture notes
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Other Jacobians

• Compute these at home for practice!

• Check your answers with the lecture notes
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Fine print: This is the correct Jacobian. 
Later we discuss the “shape convention”; 
using it the answer would be h.



Other Jacobians

• Compute these at home for practice!

• Check your answers with the lecture notes
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Back to our Neural Net!

x  = [  xmuseums xin xParis xare xamazing ]
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Back to our Neural Net!

x  = [  xmuseums xin xParis xare xamazing ]

• Let’s find

• Really, we care about the gradient of the loss, but we 
will compute the gradient of the score for simplicity
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1. Break up equations into simple pieces
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2. Apply the chain rule
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2. Apply the chain rule
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2. Apply the chain rule
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2. Apply the chain rule
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3. Write out the Jacobians

Useful Jacobians from previous slide
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3. Write out the Jacobians

Useful Jacobians from previous slide
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𝒖:
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3. Write out the Jacobians
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𝒖:



3. Write out the Jacobians

Useful Jacobians from previous slide
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𝒖:

𝒖:



Re-using Computation

• Suppose we now want to compute

• Using the chain rule again:
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Re-using Computation

• Suppose we now want to compute

• Using the chain rule again:

The same! Let’s avoid duplicated computation…
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Re-using Computation

• Suppose we now want to compute

• Using the chain rule again:

34 𝛿 is local error signal

𝒖:



Derivative with respect to Matrix: Output shape

• What does             look like?         

• 1 output, nm inputs: 1 by nm Jacobian?

• Inconvenient to do 
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Derivative with respect to Matrix: Output shape

• What does             look like?         

• 1 output, nm inputs: 1 by nm Jacobian?

• Inconvenient to do 

• Instead we use shape convention: the shape of 
the gradient is the shape of the parameters

• So              is n by m: 
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Derivative with respect to Matrix

• Remember 

• is going to be in our answer

• The other term should be       because

• Answer is:  
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𝛿 is local error signal at 𝑧
𝑥 is local input signal



Why the Transposes?

• Hacky answer: this makes the dimensions work out!

• Useful trick for checking your work!

• Full explanation in the lecture notes; intuition next
• Each input goes to each output – you get outer product
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Why the Transposes?
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Deriving local input gradient in backprop

• For this function:

• Let’s consider the derivative 
of a single weight Wij

• Wij only contributes to zi

• For example: W23 is only 
used to compute z2 not z1
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x1 x2                 x3 +1

f(z1)=   h1 h2 =f(z2)

s  u2

W23
b2

𝜕𝑠
𝜕𝑾

= 𝜹
𝜕𝒛
𝜕𝑾

= 𝜹
𝜕
𝜕𝑾

𝑾𝒙 + 𝒃

𝜕𝑧C
𝜕𝑊CE

=
𝜕

𝜕𝑊CE
𝑾CF𝒙 + 𝑏C

= H
HIJK

∑MNO4 𝑊CM𝑥M = 𝑥E



What shape should derivatives be?

• is a row vector 

• But convention says our gradient should be a column vector 
because      is a column vector…

• Disagreement between Jacobian form (which makes 
the chain rule easy) and the shape convention (which 
makes implementing SGD easy)
• We expect answers to follow the shape convention 

• But Jacobian form is useful for computing the answers
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What shape should derivatives be?
Two options:

1. Use Jacobian form as much as possible, reshape to 
follow the convention at the end:

• What we just did. But at the end transpose       to make the 
derivative a column vector, resulting in

2. Always follow the convention
• Look at dimensions to figure out when to transpose and/or 

reorder terms
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• Tip 1: Carefully define your variables and keep track of their 
dimensionality!

• Tip 2: Chain rule! If y = f(u) and u = g(x), i.e., y = f(g(x)), then:
𝜕𝒚
𝜕𝒙

=
𝜕𝒚
𝜕𝒖

𝜕𝒖
𝜕𝒙

Keep straight what variables feed into what computations
• Tip 3: For the top softmax part of a model: First consider the 

derivative wrt fc when c = y (the correct class), then consider 
derivative wrt fc when c ¹ y (all the incorrect classes)

• Tip 4: Work out element-wise partial derivatives if you’re getting 
confused by matrix calculus!

• Tip 5: Use Shape Convention. Note: The error message 𝜹 that 
arrives at a hidden layer has the same dimensionality as that 
hidden layer

Deriving gradients: Tips
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3. Backpropagation

We’ve almost shown you backpropagation

It’s taking derivatives and using the (generalized, 
multivariate, or matrix) chain rule

Other trick: 

We re-use derivatives computed for higher layers in 
computing derivatives for lower layers to minimize 
computation

44



Computation Graphs and Backpropagation

� + �

• We represent our neural net 
equations as a graph 

• Source nodes: inputs

• Interior nodes: operations
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• We represent our neural net 
equations as a graph 
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Computation Graphs and Backpropagation

� + �

• Representing our neural net 
equations as a graph 

• Source nodes: inputs

• Interior nodes: operations

• Edges pass along result of the 
operation

“Forward Propagation”
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Backpropagation

� + �

• Go backwards along edges

• Pass along gradients
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Backpropagation: Single Node

• Node receives an “upstream gradient”

• Goal is to pass on the correct 
“downstream gradient”

Upstream 
gradient 

49 Downstream 
gradient



Backpropagation: Single Node

Downstream 
gradient

Upstream 
gradient 

• Each node has a local gradient

• The gradient of its output with 
respect to its input

Local 
gradient
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Backpropagation: Single Node

Downstream 
gradient

Upstream 
gradient 

• Each node has a local gradient

• The gradient of its output with 
respect to its input

Local 
gradient

51

Chain 
rule!



Backpropagation: Single Node

Downstream 
gradient

Upstream 
gradient 

• Each node has a local gradient

• The gradient of it’s output with 
respect to it’s input

Local 
gradient

• [downstream gradient] = [upstream gradient] x [local gradient]
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Backpropagation: Single Node

*

• What about nodes with multiple inputs?
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Backpropagation: Single Node

Downstream 
gradients

Upstream 
gradient 

Local 
gradients

*

• Multiple inputs → multiple local gradients
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An Example
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Forward prop steps
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Gradients sum at outward branches
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Gradients sum at outward branches
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Node Intuitions

+

*
max
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Node Intuitions

+

*
max
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Efficiency: compute all gradients at once 

* + �

• Incorrect way of doing backprop:

• First compute 
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Efficiency: compute all gradients at once 

* + �

• Incorrect way of doing backprop:

• First compute 

• Then independently compute

• Duplicated computation!
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Efficiency: compute all gradients at once 

* + �

• Correct way:

• Compute all the gradients at once

• Analogous to using 𝜹 when we 
computed gradients by hand
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1. Fprop: visit nodes in topological sort order 
- Compute value of node given predecessors

2. Bprop:
- initialize output gradient = 1 
- visit nodes in reverse order:

Compute gradient wrt each node using 
gradient wrt successors

Done correctly, big O() complexity of fprop and 
bprop is the same

In general our nets have regular layer-structure 
and so we can use matrices and Jacobians…

Back-Prop in General Computation Graph

…

…

…

= successors of 

Single scalar output
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Automatic Differentiation

• The gradient computation can be 
automatically inferred from the 
symbolic expression of the fprop

• Each node type needs to know how 
to compute its output and how to 
compute the gradient wrt its inputs 
given the gradient wrt its output

• Modern DL frameworks (Tensorflow, 
PyTorch, etc.) do backpropagation 
for you but mainly leave layer/node 
writer to hand-calculate the local 
derivative
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Backprop Implementations
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Implementation: forward/backward API
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Implementation: forward/backward API
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Manual Gradient checking: Numeric Gradient

• For small h (≈ 1e-4),

• Easy to implement correctly

• But approximate and very slow:

• Have to recompute f for every parameter of our model

• Useful for checking your implementation

• In the old days when we hand-wrote everything, it was key 
to do this everywhere.

• Now much less needed, when throwing together layers
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Summary

We’ve mastered the core technology of neural nets! 🎉

• Backpropagation: recursively (and hence efficiently)
apply the chain rule along computation graph
• [downstream gradient] = [upstream gradient] x [local gradient]

• Forward pass: compute results of operations and save 
intermediate values

• Backward pass: apply chain rule to compute gradients
80



Why learn all these details about gradients?

• Modern deep learning frameworks compute gradients for you!

• But why take a class on compilers or systems when they are 
implemented for you?
• Understanding what is going on under the hood is useful!

• Backpropagation doesn’t always work perfectly
• Understanding why is crucial for debugging and improving 

models
• See Karpathy article (in syllabus):
• https://medium.com/@karpathy/yes-you-should-understand-

backprop-e2f06eab496b

• Example in future lecture: exploding and vanishing gradients
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