
Natural Language Processing
with Deep Learning

CS224N/Ling284

Christopher Manning

Lecture 4: Gradients by hand (matrix calculus) and
algorithmically (the backpropagation algorithm)

Natural Language Processing
with Deep Learning

CS224N/Ling284

Christopher Manning and Richard Socher

Lecture 2: Word Vectors

1. Introduction

Assignment 2 is all about making sure you really understand the
math of neural networks … then we’ll let the software do it!

We’ll go through it quickly today, but also look at the readings!

This will be a tough week for some! à
Make sure to get help if you need it

Visit office hours Friday/Tuesday
Note: Monday is MLK Day – No office hours, sorry!
But we will be on Piazza

Read tutorial materials given in the syllabus

2

NER: Binary classification for center word being location

• We do supervised training and want high score if it’s a location

𝐽" 𝜃 = 𝜎 𝑠 =
1

1 + 𝑒*+

3

x = [xmuseums xin xParis xare xamazing]

Remember: Stochastic Gradient Descent

Update equation:

How can we compute ∇-𝐽(𝜃)?
1. By hand
2. Algorithmically: the backpropagation algorithm

𝛼 = step size or learning rate

4

Lecture Plan

Lecture 4: Gradients by hand and algorithmically
1. Introduction (5 mins)
2. Matrix calculus (40 mins)
3. Backpropagation (35 mins)

5

Computing Gradients by Hand

• Matrix calculus: Fully vectorized gradients

• “multivariable calculus is just like single-variable calculus if
you use matrices”

• Much faster and more useful than non-vectorized gradients

• But doing a non-vectorized gradient can be good for
intuition; watch last week’s lecture for an example

• Lecture notes and matrix calculus notes cover this
material in more detail

• You might also review Math 51, which has a new online
textbook:
http://web.stanford.edu/class/math51/textbook.html

6

Gradients

• Given a function with 1 output and 1 input

𝑓 𝑥 = 𝑥3

• It’s gradient (slope) is its derivative
45
46
= 3𝑥8

“How much will the output change if we change the input a bit?”

7

Gradients

• Given a function with 1 output and n inputs

• Its gradient is a vector of partial derivatives with
respect to each input

8

Jacobian Matrix: Generalization of the Gradient

• Given a function with m outputs and n inputs

• It’s Jacobian is an m x n matrix of partial derivatives

9

Chain Rule

• For one-variable functions: multiply derivatives

• For multiple variables at once: multiply Jacobians

10

Example Jacobian: Elementwise activation Function

11

Example Jacobian: Elementwise activation Function

Function has n outputs and n inputs → n by n Jacobian

12

Example Jacobian: Elementwise activation Function

13

Example Jacobian: Elementwise activation Function

14

Example Jacobian: Elementwise activation Function

15

Other Jacobians

• Compute these at home for practice!

• Check your answers with the lecture notes
16

Other Jacobians

• Compute these at home for practice!

• Check your answers with the lecture notes
17

Other Jacobians

• Compute these at home for practice!

• Check your answers with the lecture notes
18

Fine print: This is the correct Jacobian.
Later we discuss the “shape convention”;
using it the answer would be h.

Other Jacobians

• Compute these at home for practice!

• Check your answers with the lecture notes

19

Back to our Neural Net!

x = [xmuseums xin xParis xare xamazing]
20

Back to our Neural Net!

x = [xmuseums xin xParis xare xamazing]

• Let’s find

• Really, we care about the gradient of the loss, but we
will compute the gradient of the score for simplicity

21

1. Break up equations into simple pieces

22

2. Apply the chain rule

23

2. Apply the chain rule

24

2. Apply the chain rule

25

2. Apply the chain rule

26

3. Write out the Jacobians

Useful Jacobians from previous slide

27

3. Write out the Jacobians

Useful Jacobians from previous slide

28

𝒖:

3. Write out the Jacobians

Useful Jacobians from previous slide

29

𝒖:

3. Write out the Jacobians

Useful Jacobians from previous slide

30

𝒖:

3. Write out the Jacobians

Useful Jacobians from previous slide

31

𝒖:

𝒖:

Re-using Computation

• Suppose we now want to compute

• Using the chain rule again:

32

Re-using Computation

• Suppose we now want to compute

• Using the chain rule again:

The same! Let’s avoid duplicated computation…

33

Re-using Computation

• Suppose we now want to compute

• Using the chain rule again:

34 𝛿 is local error signal

𝒖:

Derivative with respect to Matrix: Output shape

• What does look like?

• 1 output, nm inputs: 1 by nm Jacobian?

• Inconvenient to do

35

Derivative with respect to Matrix: Output shape

• What does look like?

• 1 output, nm inputs: 1 by nm Jacobian?

• Inconvenient to do

• Instead we use shape convention: the shape of
the gradient is the shape of the parameters

• So is n by m:

36

Derivative with respect to Matrix

• Remember

• is going to be in our answer

• The other term should be because

• Answer is:

37

𝛿 is local error signal at 𝑧
𝑥 is local input signal

Why the Transposes?

• Hacky answer: this makes the dimensions work out!

• Useful trick for checking your work!

• Full explanation in the lecture notes; intuition next
• Each input goes to each output – you get outer product

38

Why the Transposes?

39

Deriving local input gradient in backprop

• For this function:

• Let’s consider the derivative
of a single weight Wij

• Wij only contributes to zi

• For example: W23 is only
used to compute z2 not z1

40

x1 x2 x3 +1

f(z1)= h1 h2 =f(z2)

s u2

W23
b2

𝜕𝑠
𝜕𝑾

= 𝜹
𝜕𝒛
𝜕𝑾

= 𝜹
𝜕
𝜕𝑾

𝑾𝒙 + 𝒃

𝜕𝑧C
𝜕𝑊CE

=
𝜕

𝜕𝑊CE
𝑾CF𝒙 + 𝑏C

= H
HIJK

∑MNO4 𝑊CM𝑥M = 𝑥E

What shape should derivatives be?

• is a row vector

• But convention says our gradient should be a column vector
because is a column vector…

• Disagreement between Jacobian form (which makes
the chain rule easy) and the shape convention (which
makes implementing SGD easy)
• We expect answers to follow the shape convention

• But Jacobian form is useful for computing the answers

41

What shape should derivatives be?
Two options:

1. Use Jacobian form as much as possible, reshape to
follow the convention at the end:

• What we just did. But at the end transpose to make the
derivative a column vector, resulting in

2. Always follow the convention
• Look at dimensions to figure out when to transpose and/or

reorder terms

42

• Tip 1: Carefully define your variables and keep track of their
dimensionality!

• Tip 2: Chain rule! If y = f(u) and u = g(x), i.e., y = f(g(x)), then:
𝜕𝒚
𝜕𝒙

=
𝜕𝒚
𝜕𝒖

𝜕𝒖
𝜕𝒙

Keep straight what variables feed into what computations
• Tip 3: For the top softmax part of a model: First consider the

derivative wrt fc when c = y (the correct class), then consider
derivative wrt fc when c ¹ y (all the incorrect classes)

• Tip 4: Work out element-wise partial derivatives if you’re getting
confused by matrix calculus!

• Tip 5: Use Shape Convention. Note: The error message 𝜹 that
arrives at a hidden layer has the same dimensionality as that
hidden layer

Deriving gradients: Tips

43

3. Backpropagation

We’ve almost shown you backpropagation

It’s taking derivatives and using the (generalized,
multivariate, or matrix) chain rule

Other trick:

We re-use derivatives computed for higher layers in
computing derivatives for lower layers to minimize
computation

44

Computation Graphs and Backpropagation

� + �

• We represent our neural net
equations as a graph

• Source nodes: inputs

• Interior nodes: operations

45

Computation Graphs and Backpropagation

� + �

• We represent our neural net
equations as a graph

• Source nodes: inputs

• Interior nodes: operations

• Edges pass along result of the
operation

46

Computation Graphs and Backpropagation

� + �

• Representing our neural net
equations as a graph

• Source nodes: inputs

• Interior nodes: operations

• Edges pass along result of the
operation

“Forward Propagation”

47

Backpropagation

� + �

• Go backwards along edges

• Pass along gradients

48

Backpropagation: Single Node

• Node receives an “upstream gradient”

• Goal is to pass on the correct
“downstream gradient”

Upstream
gradient

49 Downstream
gradient

Backpropagation: Single Node

Downstream
gradient

Upstream
gradient

• Each node has a local gradient

• The gradient of its output with
respect to its input

Local
gradient

50

Backpropagation: Single Node

Downstream
gradient

Upstream
gradient

• Each node has a local gradient

• The gradient of its output with
respect to its input

Local
gradient

51

Chain
rule!

Backpropagation: Single Node

Downstream
gradient

Upstream
gradient

• Each node has a local gradient

• The gradient of it’s output with
respect to it’s input

Local
gradient

• [downstream gradient] = [upstream gradient] x [local gradient]

52

Backpropagation: Single Node

*

• What about nodes with multiple inputs?

53

Backpropagation: Single Node

Downstream
gradients

Upstream
gradient

Local
gradients

*

• Multiple inputs → multiple local gradients

54

An Example

55

An Example

+

*
max

56

Forward prop steps

An Example

+

*
max

57

Forward prop steps

6

3

2

1

2

2

0

An Example

+

*
max

58

Forward prop steps

6

3

2

1

2

2

0

Local gradients

An Example

+

*
max

59

Forward prop steps

6

3

2

1

2

2

0

Local gradients

An Example

+

*
max

60

Forward prop steps

6

3

2

1

2

2

0

Local gradients

An Example

+

*
max

61

Forward prop steps

6

3

2

1

2

2

0

Local gradients

An Example

+

*
max

62

Forward prop steps

6

3

2

1

2

2

0

Local gradients

upstream * local = downstream

1

1*3 = 3

1*2 = 2

An Example

+

*
max

63

Forward prop steps

6

3

2

1

2

2

0

Local gradients

upstream * local = downstream

1

3

2

3*1 = 3

3*0 = 0

An Example

+

*
max

64

Forward prop steps

6

3

2

1

2

2

0

Local gradients

upstream * local = downstream

1

3

2

3

0

2*1 = 2

2*1 = 2

An Example

+

*
max

65

Forward prop steps

6

3

2

1

2

2

0

Local gradients

1

3

2

3

0

2

2

Gradients sum at outward branches

66

+

Gradients sum at outward branches

67

+

Node Intuitions

+

*
max

68

6

3

2

1

2

2

0

1

2
2

2

• + “distributes” the upstream gradient to each summand

Node Intuitions

+

*
max

69

6

3

2

1

2

2

0

1

33

0

• + “distributes” the upstream gradient to each summand

• max “routes” the upstream gradient

Node Intuitions

+

*
max

70

6

3

2

1

2

2

0

1

3

2

• + “distributes” the upstream gradient

• max “routes” the upstream gradient

• * “switches” the upstream gradient

Efficiency: compute all gradients at once

* + �

• Incorrect way of doing backprop:

• First compute

71

Efficiency: compute all gradients at once

* + �

• Incorrect way of doing backprop:

• First compute

• Then independently compute

• Duplicated computation!

72

Efficiency: compute all gradients at once

* + �

• Correct way:

• Compute all the gradients at once

• Analogous to using 𝜹 when we
computed gradients by hand

73

1. Fprop: visit nodes in topological sort order
- Compute value of node given predecessors

2. Bprop:
- initialize output gradient = 1
- visit nodes in reverse order:

Compute gradient wrt each node using
gradient wrt successors

Done correctly, big O() complexity of fprop and
bprop is the same

In general our nets have regular layer-structure
and so we can use matrices and Jacobians…

Back-Prop in General Computation Graph

…

…

…

= successors of

Single scalar output

74

Automatic Differentiation

• The gradient computation can be
automatically inferred from the
symbolic expression of the fprop

• Each node type needs to know how
to compute its output and how to
compute the gradient wrt its inputs
given the gradient wrt its output

• Modern DL frameworks (Tensorflow,
PyTorch, etc.) do backpropagation
for you but mainly leave layer/node
writer to hand-calculate the local
derivative

75

Backprop Implementations

76

Implementation: forward/backward API

77

Implementation: forward/backward API

78

Manual Gradient checking: Numeric Gradient

• For small h (≈ 1e-4),

• Easy to implement correctly

• But approximate and very slow:

• Have to recompute f for every parameter of our model

• Useful for checking your implementation

• In the old days when we hand-wrote everything, it was key
to do this everywhere.

• Now much less needed, when throwing together layers
79

Summary

We’ve mastered the core technology of neural nets! 🎉

• Backpropagation: recursively (and hence efficiently)
apply the chain rule along computation graph
• [downstream gradient] = [upstream gradient] x [local gradient]

• Forward pass: compute results of operations and save
intermediate values

• Backward pass: apply chain rule to compute gradients
80

Why learn all these details about gradients?

• Modern deep learning frameworks compute gradients for you!

• But why take a class on compilers or systems when they are
implemented for you?
• Understanding what is going on under the hood is useful!

• Backpropagation doesn’t always work perfectly
• Understanding why is crucial for debugging and improving

models
• See Karpathy article (in syllabus):
• https://medium.com/@karpathy/yes-you-should-understand-

backprop-e2f06eab496b

• Example in future lecture: exploding and vanishing gradients
81

