Natural Language Processing
with Deep Learning

CS224N/Ling284

Christopher Manning
Lecture 11: ConvNets for NLP

Lecture Plan

Lecture 11: ConvNets for NLP

Announcements (5 mins)

Intro to CNNs (20 mins)

Simple CNN for Sentence Classification: Yoon (2014) (20 mins)
CNN potpourri (5 mins)

Lk W

Deep CNN for Sentence Classification: Conneau et al. (2017)
(10 mins)

6. If | have extra time the stuff | didn’t do last week ...

1. Announcements

e Complete mid-quarter feedback survey by tonight (11:59pm PST)
to receive 0.5% participation credit!

e Project proposals (from every team) due this Thursday 4:30pm
* A dumb way to use late days!
* We aim to return feedback next Thursday

e Final project poster session: Mon Mar 16 evening, Alumni Center
* Groundbreaking research!
* Prizes!
* Food!

* Company visitors!

Welcome to the second half of the course!

e Now we’re preparing you to be real DL+NLP researchers/practitioners!

e Lectures won’t always have all the details
* It's up to you to search online / do some reading to find out more

* This is an active research field! Sometimes there’s no clear-cut
answer

 Staff are happy to discuss things with you, but you need to think for
yourself

e Assignments are designed to ramp up to the real difficulty of project
e Each assignment deliberately has less scaffolding than the last
* |n projects, there’s no provided autograder or sanity checks
* = DL debugging is hard but you need to learn how to do it!

2. From RNNs to Convolutional Neural Nets

e Recurrent neural nets cannot capture phrases without prefix
context

e Often capture too much of last words in final vector

1 1 5.5 4.5 2.5

3.5 s 261 138 25

0.4 2.1 7 4 2.3

0.3 3.3 7 4.5 3.6
Monae walked into the ceremony

e E.g., softmax is often only calculated at the last step

From RNNs to Convolutional Neural Nets

* Main CNN/ConvNet idea:

e What if we compute vectors for every possible word
subsequence of a certain length?

e Example: “tentative deal reached to keep government open”
computes vectors for:

 tentative deal reached, deal reached to, reached to keep, to
keep government, keep government open

e Regardless of whether phrase is grammatical
e Not very linguistically or cognitively plausible

e Then group them afterwards (more soon)

What is a convolution anyway?

1d d|ScrEte C0nV0|uti0n genera”y: (f % (“ n Z f[n —)n]q[yn].
m=—NM

e Convolution is classically used to extract features from images

* Models position-invariant identification

* Gotocs231n!

1/11/1/0|0
e 2dexample 2 0,1/1)1]0 4
e Yellow color and red numbers | Qi O L./1[1
show filter (=kernel) weights 0/{0(1/1]0
* Green shows input 0/1/1/0|0
* Pink shows output Image Convolved
Feature

From Stanford UFLDL wiki

A 1D convolution for text

tentative 0.2 0.1 -03 04

05 0.2 -03 -0.1 -1.0 0.0 0.50
reached -0.1 -03 -0.2 0.4 -0.5 05 0.38
03 -03 01 0.1 -3.6 26 0.93
02 -03 04 0.2 -0.2 08 031
01 02 -01 -0.1 0.3 1.3 021

m _04 -04 02 03

Apply a filter (or kernel) of size 3 + bias
=> non-linearity
3 1 2 -3

-1 2 1 -3
1 1 -1 1

1D convolution for text with padding

02 01 -03 04 06
EEE o5 02 03 -0l -1.0
01 -03 -02 04 05
EB o3 03 o1 ol 36
B o: 03 04 02 0.2
01 02 -01 -0.1 0.3

04 -04 02 03 0.5

open
9 | 00] 00] 00
Apply a filter (or kernel) of size 3
3 1 2 -3
-1 2 1 -3
10 1 1 -1 1

3 channel 1D convolution with padding =1

02 01 -03 04

m 5 02 -03 -01
01 -03 -02 04

0.5
_ 3 -03 01 01 36 03 03
T -
 government [IKKI

0
0.2 -0.3 04 0.2 -0.2 01 1.2
government 0

0.2 -01 -0.1 03 06 059

-04 -04 02 03 A/ -05 -09 0.1
Apply 3 filters of size 3

-06 0.2 14
-1.0 16 -1.0
-05 -0.1 0.8

Could also use (zero)
padding =2
Also called “wide convolution”

convld, padded with max pooling over time

-06 0.2 14
-1.0 16 -1.0
-05 -0.1 0.8
-36 03 0.3
-0.2 0.1 1.2

03 06 09
-05 -09 0.1

02 01 -03 04
0.2 -03 -0.1

01 -03 -02 04
EB o3 03 o1 ol
Coa o

1

0
02 -03 04 02
01 02 -01 -01

-04 -04 02 03
03 16 1.4
Apply 3 filters of size 3

government

Apply 3 filters of size 3

0.1
0.2
-0.3
-0.3
-0.3
0.2
-0.4

-0.3
-0.3
-0.2
0.1
0.4
-0.1

0.2 0.3

-0.6
-1.0
-0.5
-3.6
-0.2

0.3
-0.5

-0.87 0.26 0.53

convld, padded with ave pooling over time

0.2
1.6
-0.1
0.3
0.1
0.6
-0.9

In PyTorch

batch_size =16

word_embed size =4

seq_len=7

input = torch.randn(batch_size, word _embed_size, seq_len)

convl = Convld(in_channels=word _embed_size, out_channels=3,
kernel _size=3) # can add: padding=1

hiddenl = conv1(input)
hidden2 = torch.max(hidden1, dim=2) # max pool

14

02 01 -03 04

m 5 02 -03 -01
01 -03 -02 04

0.5
_ 3 -03 01 01
T -
 government VK

0
0.2 -0.3 04 0.2
government 0

0.2 -01 -0.1

-04 -04 02 03
Apply 3 filters of size 3

Other less useful notions: stride = 2

0.2
-0.1
0.1
-0.9

1.4
0.8
1.2
0.1

Less useful: local max pool, stride = 2

1.4
1.6 -1.0
-0.1 0.8
-36 03 0.3
-0.2 01 1.2

03 06 0.9
-0.5 -09 0.1
-Inf -Inf -Inf

¢;t;d _0-6 0.2

02 01 -03 04 t,d,r -1.0

m 5 02 -03 -01
01 -03 -02 04

0.5
_ 3 -03 01 01
T -
 government [IKKI

0
0.2 -0.3 04 0.2
government 0

0.2 -01 -0.1

-04 -04 02 03
Apply 3 filters of size 3

1.4
0.8

-0.6
d,rtk -0.5

1.6
0.3

3 1 2 -3 1 0 0 1 1 =12 =1
1 2 1 -3 00 I) R 1 0 -1 3 03 06 1.
0 BT N ol 1| @ i o 2 2 1 -0.5 -09 0.1

0.2
R o
0.3
0.2
0.1

government

-0.4

0.1
0.2
-0.3
-0.3
-0.3
0.2
-0.4

-0.3
-0.3
-0.2
0.1
0.4
-0.1
0.2

Apply 3 filters of size 3

0.4
-0.1
0.4
0.1
0.2
-0.1
0.3

-0.6
-1.0
-0.5
-3.6
-0.2

0.3
-0.5

S

0.3
-0.2

gq
o

1 -1
0
2

o =

0.2
1.6
-0.1
0.3
0.1
0.6
-0.9

1.6
0.6

2
-1
2

convld, k-max pooling over time, k = 2

1.4
-1.0
0.8
0.3
1.2
0.9
0.1

1.4
1.2

-1
3
1

0.2

0.5
01

-0.4

0.1
0.2
-0.3
-0.3
-0.3
0.2
-0.4

-0.3 0.4
-0.3 -0.1
-0.2 0.4
01 0.1
04 0.2
-0.1 -0.1
0.2 0.3

Apply 3 filters of size 3

1 1
-1 1
1 0

?,t,d -06 0.2 14

3 03
03 06 0.9
05 -09 0.1

I 1 -1 -1
3 1 O 3 1 -1

3. Single Layer CNN for Sentence Classification

e Yoon Kim (2014): Convolutional Neural Networks for Sentence
Classification. EMNLP 2014.
Code: [Theano!, etc.]

e Avariant of convolutional NNs of Collobert, Weston et al. (2011)
Natural Language Processing (almost) from Scratch.

e Goal: Sentence classification:
* Mainly positive or negative sentiment of a sentence
* Other tasks like:

e Subjective or objective language sentence
e Question classification: about person, location, number, ...

19

https://arxiv.org/pdf/1408.5882.pdf
https://arxiv.org/pdf/1408.5882.pdf

Single Layer CNN for Sentence Classification

20

A simple use of one convolutional layer and pooling

Word vectors: x; € R¥

Sentence: X1, = X1 @ x, @ --- P X,, (vectors concatenated)
Concatenation of words in range: X;.;;; (symmetric more common)
Convolutional filter: w € R (over window of h words)
Note, filter is a vector!

Filter could be of size 2, 3, or 4:

11

5 I 4 I A I

the country of my birth

Single layer CNN

Filter w is applied to all possible windows (concatenated vectors)
e To compute feature (one channel) for CNN layer:

ci = f(wWw!Xsipn_1+0b)

e Sentence: X1., = X1 PXoD ... P x,
 All possible windows of length h: {x1.5,X2.p41, -+, Xp_hilm |
e Resultis a feature map: ¢ = [c1,¢2,...,Ch_pyq] € RPH

F N

2.4
.f\
N —

,
0.4 2.1] 4] 2.3
0.3 h3.3 ‘4.5 3.6 2972227777

the country of my birth

21

Single layer CNN

e Filter wis applied to all possible windows (concatenated vectors)
e To compute feature (one channel) for CNN layer:

ci = f(W' Xi.izn_1 +b)

e Sentence: X1., =X1EXoP...PbXxX,
 All possible windows of length h: {X1.4,X2.h 01, - -+, Xp—htlm}
* Resultisafeature map: ¢ = [c1,¢2,...,Cn_hi1] € R+l

1.1 2.4

—

F NN F NN

0.4 2.1 4 2.3

0.3 3.3 4.5 3.6 [0] [
\ p \ \ O

the country of my birth

o

|

o

22

Pooling and channels

23

Pooling: max-over-time pooling layer
ldea: capture most important activation (maximum over time)
From featuremap ¢ = |c1,¢2,...,Cn_pi1] € RPAH]

A

Pooled single number: C = maX{C}

Use multiple filter weights w (i.e. multiple channels)

Useful to have different window sizes h

Because of max pooling ¢ = max{c}, length of c irrelevant
C = [Cl, Coy ..., Cn—h—l—l] c Rn—h+l

So we could have some filters that look at unigrams, bigrams,
tri-grams, 4-grams, etc.

A pitfall when fine-tuning word vectors

e Setting: We are training a logistic regression classification model
for movie review sentiment using single words.

e Inthe training data we have “TV” and “telly”
e |nthe testing data we have “television”

e The pre-trained word vectors have all three similar:

TV
telly

television

* , Question: What happens when we update the word vectors?

A pitfall when fine-tuning word vectors

e Question: What happens when we update the word vectors?
* Answer:

* Those words that are in the training data move around
e “TV” and “telly”

* Words not in the training data stay where they were
e “television”
telly

TV

This can be bad!

television

25

So what should | do?

e Question: Should | use available “pre-trained” word vectors
Answer:

* Almost always, yes!

* They are trained on a huge amount of data, and so they will know
about words not in your training data and will know more about
words that are in your training data

e Have 100s of millions of words of data? Okay to start random
e Question: Should | update (“fine tune”) my own word vectors?
* Answer:

 If you only have a small training data set, don’t train the word
vectors

* If you have have a large dataset, it probably will work better to
train = update = fine-tune word vectors to the task

26

Multi-channel input idea

e Initialize with pre-trained word vectors (word2vec or Glove)

Start with two copies

* Backprop into only one set, keep other “static”

Both channel sets are added to c; before max-pooling

27

Classification after one CNN layer

e First one convolution, followed by one max-pooling

* To obtain final feature vector: z = [¢1,...,¢m]
(assuming m filters w)

* Used 100 feature maps each of sizes 3, 4,5

e Simple final softmax layer
y = softmax (W(S)z + b)

28

+ activation function

From:

Zhang and Wallace
(2015) A Sensitivity
Analysis of (and

Practitioners’ Guide |

to) Convolutional thie
Neural Networks for ey
Sentence ™
Classification

https://arxiv.org/pdf/
1510.03820.pdf

(follow on paper, not
famous, but a nice picture)

29

=

|||I||l/

convolution 1-max softmax function
\ i regularization
| v pooling Y {\ in this layer
3 region sizes: (2,3,4) 2 feature
Sentence matrix 2 filters for each region maps for 6 univariate
7x5 size each vectors
totally 6 filters region size concatenated
together to form a
single feature
vector
d=5

2 classes

il

T
\-

https://arxiv.org/pdf/1510.03820.pdf

Regularization

30

Use Dropout: Create masking vector r of Bernoulli random
variables with probability p (a hyperparameter) of being 1

Delete features during training:

y = softmax (W(S> (roz)+ b)
Reasoning: Prevents co-adaptation (overfitting to seeing specific
feature constellations) (Srivastava, Hinton, et al. 2014)
At test time, no dropout, scale final vector by probability p

W) — pW(S)

Also: Constrain /, norms of weight vectors of each class (row in
softmax weight W) to fixed number s (also a hyperparameter)

If HWC(S>|| > s | then rescale it so that: HWC(S)H =5
Not very common

All hyperparameters in Kim (2014)

* Find hyperparameters based on dev set
 Nonlinearity: ReLU
e Window filter sizesh=3,4,5
e Each filter size has 100 feature maps
* Dropoutp=0.5
* Kim (2014) reports 2—4% accuracy improvement from dropout
e |2 constraint s for rows of softmax, s =3
e Mini batch size for SGD training: 50
e Word vectors: pre-trained with word2vec, k = 300

e During training, keep checking performance on dev set and pick
highest accuracy weights for final evaluation

31

Experiments on text classification

Model MR | SST-1 | SST-2 | Subj | TREC| CR | MPQA
CNN-rand 76.1 45.0 82.7 89.6 | 91.2 79.8 | 834
CNN-static 81.0 45.5 86.8 93.0 | 928 | 84.7 | 89.6
CNN-non-static 81.5 | 48.0 87.2 93.4 | 93.6 84.3 89.5
CNN-multichannel 81.1 47.4 88.1 93.2 92.2 | 85.0 | 894
RAE (Socher et al., 2011) 7.7 43.2 82.4 — — — 86.4
MV-RNN (Socher et al., 2012) 79.0 44 .4 82.9 — — — —
RNTN (Socher et al., 2013) — 45.7 85.4 — — — —
DCNN (Kalchbrenner et al., 2014) — 48.5 86.8 — 93.0 — —
Paragraph-Vec (Le and Mikolov, 2014) — 48.7 | 87.8 — — — —
CCAE (Hermann and Blunsom, 2013) 77.8 — — — — — 87.2
Sent-Parser (Dong et al., 2014) 79.5 — — — — — 86.3
NBSVM (Wang and Manning, 2012) 79.4 — — 93.2 — 81.8 | 86.3
MNB (Wang and Manning, 2012) 79.0 — — 93.6 — 80.0 | 86.3
G-Dropout (Wang and Manning, 2013) || 79.0 — — 93.4 — 82.1 | 86.1
F-Dropout (Wang and Manning, 2013) || 79.1 — — 93.6 — 81.9 | 86.3
Tree-CRF (Nakagawa et al., 2010) 77.3 — — — — 81.4 86.1
CRF-PR (Yang and Cardie, 2014) — — — — — 82.7 —
SVMg (Silva et al., 2011) — — — — 95.0 — —

32

Problem with comparison?

* Dropout gives 2—4 % accuracy improvement

e But several compared-to systems didn’t use dropout and would
possibly gain equally from it

e Still seen as remarkable results from a simple architecture!

e Differences to window and RNN architectures we described in
previous lectures: pooling, many filters, and dropout

e Some of these ideas can be used in RNNs too

33

4. Model comparison: Our growing toolkit

34

Bag of Vectors: Surprisingly good baseline for simple
classification problems. Especially if followed by a few RelLU
layers! (See paper: Deep Averaging Networks)

Window Model: Good for single word classification for
problems that do not need wide context. E.g., POS, NER

CNNs: good for classification, need zero padding for shorter
phrases, somewhat implausible/hard to interpret, easy to
parallelize on GPUs. Efficient and versatile

Recurrent Neural Networks: Cognitively plausible (reading from
left to right), not best for classification (if just use last state),
much slower than CNNs, good for sequence tagging and
classification, great for language models, can be amazing with
attention mechanisms

Gated units used vertically

e The gating/skipping that we saw in LSTMs and GRUs is a general
idea, which is now used in a whole bunch of places

* You can also gate vertically

* |ndeed the key idea — summing candidate update with shortcut
connection —is needed for very deep networks to work

T relu T relu
F(x) + x F(x)T(x) + x.C(x)
F(x) T relu X F(x) T relu X
identity identity
X X
Residual block Highway block
(He et al. ECCV 2016) (Srivistava et al. NeurlPS 2015)

Note: pad x for conv so same size when add them Note: can set C(x) = (1 — T(x)) more like GRU

Batch Normalization (BatchNorm)

[loffe and Szegedy. 2015. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. arXiv:1502.03167.]

e Often used in CNNs

 Transform the convolution output of a batch by scaling the
activations to have zero mean and unit variance

* This is the familiar Z-transform of statistics
* But updated per batch so fluctuations don’t affect things much

e Use of BatchNorm makes models much less sensitive to
parameter initialization, since outputs are automatically rescaled

* |t also tends to make tuning of learning rates simpler
e PyTorch: nn.BatchNorm1d

e Related but different: LayerNorm, standard in Transformers
36

Size 1 Convolutions

[Lin, Chen, and Yan. 2013. Network in network. arXiv:1312.4400.]
 Does this concept make sense?!? Yes.

e Size 1 convolutions (“1x1”), a.k.a. Network-in-network (NiN)
connections, are convolutional kernels with kernel_size=1

e Asize 1 convolution gives you a fully connected linear layer
across channels!

e |t can be used to map from many channels to fewer channels

e Size 1 convolutions add additional neural network layers with
very few additional parameters

e Unlike Fully Connected (FC) layers which add a lot of
parameters

37

CNN application: Translation

P(fle)
* One of the first successful neural AR
machine translation efforts nRARARARARARS
e Uses CNN for encoding and AR RN
RNN for decoding % % L 4 v
S
e Kalchbrenner and Blunsom (2013) ee
“Recurrent Continuous Translation Models”
| casm

38

Learning Character-level Representations

for Part-of-Speech Tagging
Dos Santos and Zadrozny (2014)

e Convolution over
Convolution | R BN
generate word N,
embeddings AL

e Fixed window of
word embeddings .
used for PoS S

max() [| |][]

tagging .

HEGEEH

..................

39

absurdity s recognized 1
- | : Cross entropy loss

Character-Aware
H and prediction

N eu ra l La nguage obtain distribution

over nextweord

Od e ls T l | Long short-term
(Kim, Jernite, Sontag, @
L
\T/

softmax output to

and Rush 2015)

e
Highway netwaork
e Character-based word S —
embedding TTTITTT, | n .
« Utilizes convolution, mas(] [—
highway network, and ||

Convalution layar
_‘/"F with multiple filters

ot different widths

‘ ‘ Concatenation
& of character

embeddings

40 moment the absurdih is reeognized

41

. Very Deep Convolutional Networks for Text Classification

Conneau, Schwenk, Lecun, Barrault. EACL 2017.

Starting point: sequence models (LSTMs) have been very
dominant in NLP; also CNNs, Attention, etc., but all the models
are basically not very deep — not like the deep models in Vision

What happens when we build a vision-like system for NLP
Works from the character level

42

VD-CNN architecture

The system very much
looks like a vision system
in its design, similar to
VGGnet or ResNet

It looks unlike most
typical Deep Learning NLP
systems

Result is constant size,
since text is truncated
or padded

Local pooling at each
stage halves temporal
resolution and
doubles number of
features

optional
shortcut

optional
shortcut

optional
shortcut

optional
shortcut

optional
shortcut

optional
shortcut

optional
shortcut

s = 1024 chars; 16d embed

fc(2048, nClasses) ‘

A

|

fc(2048, 2048), RelU |

A

|

fc(4096, 2048), ReLU \

! output: 512 x k

k-max pooling, k=8 ‘

A

Convolutional Block, 3, 512

A

Convolutional Block, 3, 512

output: 512 x s/8
pool/2

!

Convolutional Block, 3, 256

4

Convolutional Block, 3, 256

output: 256 x s/4

pool/2

f

Convolutional Block, 3, 128

t

Convolutional Block, 3, 128

T output: 128 x /2

pool/2

Convolutional Block, 3, 64

}

Convolutional Block, 3, 64

A output: 64 x s

3, Temp Conv, 64 |

A output: 16 x s

Lookup table, 16 |

? input: 1xs
Text

Convolutional block in VD-CNN

43

Each convolutional block is
two convolutional layers, each
followed by batch norm and a
ReLU nonlinearity

Convolutions of size 3

Pad to preserve (or halve
when local pooling) dimension

RelU

!

Temporal Batch Norm

!

3, Temp Conv, 256

T

RelU

!

Temporal Batch Norm

}

3, Temp Conv, 256

Experiments

e Use large text classification datasets
* Much bigger than the small datasets used in the Yoon Kim (2014)

paper

Data set #Train #Test #Classes Classification Task

AG’s news 120k 7.6k 4 English news categorization
Sogou news 450k 60k 5 Chinese news categorization
DBPedia 560k 70k 14 Ontology classification

Yelp Review Polarity 560k 38k 2 Sentiment analysis

Yelp Review Full 650k 50k 5 Sentiment analysis

Yahoo! Answers 1 400k 60k 10 Topic classification
Amazon Review Full 3000k 650k 5 Sentiment analysis

Amazon Review Polarity 3 600k 400k 2 Sentiment analysis

44

Experiments

Corpus: AG Sogou DBP. YelpP. YelpF. Yah. A. Amz.F. Amz.P.
Method n-TFIDF n-TFIDF n-TFIDF ngrams Conv Conv+RNN Conv Conv
Author [Zhang] [Zhang] [Zhang] [Zhang]| [Zhang] [Xiao] [Zhang] [Zhang]
Error 7.64 2.81 1.31 4.36 37.95* 28.26 40 43* 4.93*
[Yang] - - - - : 242 36.4 -

Table 4: Best published results from previous work. Zhang et al. (2015) best results use a Thesaurus data
augmentation technique (marked with an *). Yang et al. (2016)’s hierarchical methods is particularly

Depth Pooling AG Sogou DBP. YelpP. YelpF. Yah.A. Amz.F. Amz.P.
9 Convolution 10.17 422 164 501 3763 28.10 38.52 494
9 KMaxPooling 9.83 358 156 527 38.04 2824 39.19 5.69
9 MaxPooling 9.17 3.70 135 488 36.73 27.60 3795 4.70
17 Convolution 929 394 142 496 36.10 27.35 37.50 453
17 KMaxPooling 939 351 161 505 3741 2825 38.81 543
17 MaxPooling 888 354 140 450 3607 27.51 37.39 441
29 Convolution 936 361 136 435 3528 27.17 37.58 4.28
29 KMaxPooling 8.67 318 141 463 3700 27.16 38.39 4.94
29 MaxPooling 8.73 336 129 428 3574 2657 37.00 431

Table 5: Testing error of our models on the 8 data sets. No data preprocessing or augmentation is used.
45

7.

46

Pots of data

Many publicly available datasets are released with a
train/dev/test structure. We're all on the honor system to do
test-set runs only when development is complete.

Splits like this presuppose a fairly large dataset.

If there is no dev set or you want a separate tune set, then you
create one by splitting the training data, though you have to
weigh its size/usefulness against the reduction in train-set size.

Having a fixed test set ensures that all systems are assessed
against the same gold data. This is generally good, but:

* |tis problematic where the test set turns out to have unusual
properties that distort progress on the task.

* |t doesn’t give any measure of variance.
* It’s only an unbiased estimate of the mean if only used once.

Training models and pots of data

e When training, models overfit to what you are training on

* The model correctly describes what happened to occur in
particular data you trained on, but the patterns are not
general enough patterns to be likely to apply to new data

e The way to avoid problematic overfitting (lack of generalization)
is using independent validation and test sets ...

Error

validation

training

} o

Training models and pots of data

48

You build (estimate/train) a model on a training set.

Often, you then set further hyperparameters on another,
independent set of data, the tuning set

* The tuning set is the training set for the hyperparameters!

You measure progress as you go on a dev set (development test
set or validation set)

* |f you do that a lot you overfit to the dev set so it can be good
to have a second dev set, the dev2 set

Only at the end, you evaluate and present final numbers on a
test set

* Use the final test set extremely few times ... ideally only once

Training models and pots of data

49

The train, tune, dev, and test sets need to be completely distinct

It is invalid to test on material you have trained on

* You will get a falsely good performance. We usually overfit on train
You need an independent tuning set

* The hyperparameters won’t be set right if tune is same as train
If you keep running on the same evaluation set, you begin to
overfit to that evaluation set

* Effectively you are “training” on the evaluation set ... you are learning
things that do and don’t work on that particular eval set and using the info

To get a valid measure of system performance you need another
untrained on, independent test set ... hence dev2 and final test

8. Getting your neural network to train

e Start with a positive attitude!

* Neural networks want to learn!

e |f the network isn’t learning, you’re doing something to prevent it
from learning successfully

e Realize the grim reality:

* There are lots of things that can cause neural nets to not
learn at all or to not learn very well

e Finding and fixing them (“debugging and tuning”) can often take more
time than implementing your model

e |t's hard to work out what these things are
* But experience, experimental care, and rules of thumb help!

50

Models are sensitive to learning rates

e From Andrej Karpathy, CS231n course notes

loss
very high learning rate

low learning rate

high learning rate

good learning rate

epoch
51

Models are sensitive to initialization

 From Michael Nielsen
http://neuralnetworksanddeeplearning.com/chap3.html

Classification accuracy
100 T T .

98|

96|

94+

92}

90

88|

—— 0Old approach to weight initialization
86| New approach to weight initialization |7

0 5 10 15 20 25 30
Epoch
52 P

Training a gated RNN

A A

53

Use an LSTM or GRU: it makes your life so much simpler!
Initialize recurrent matrices to be orthogonal

Initialize other matrices with a sensible (smalll) scale
Initialize forget gate bias to 1: default to remembering
Use adaptive learning rate algorithms: Adam, AdaDelta, ...

Clip the norm of the gradient: 1-5 seems to be a reasonable
threshold when used together with Adam or AdaDelta.

Either only dropout vertically or look into using Bayesian
Dropout (Gal & Gahramani — can do but not natively in PyTorch)

Be patient! Optimization takes time [Saxe et al., ICLR2014;
Ba, Kingma, ICLR2015;

Zeiler, arXiv2012;

Pascanu et al., ICML2013]

Experimental strategy

e Work incrementally!
e Start with a very simple model and get it to work!
* |t’s hard to fix a complex but broken model

e Add bells and whistles one-by-one and get the model working
with each of them (or abandon them)

e Initially run on a tiny amount of data
* You will see bugs much more easily on a tiny dataset
* Something like 4—8 examples is good
* Often synthetic data is useful for this

* Make sure you can get 100% on this data

e Otherwise your model is definitely either not powerful enough or it is

broken
54

Experimental strategy

e Run your model on a large dataset

* |t should still score close to 100% on the training data after
optimization
e Otherwise, you probably want to consider a more powerful model

e QOverfitting to training data is not something to be scared of when
doing deep learning

* These models are usually good at generalizing because of the way
distributed representations share statistical strength regardless of
overfitting to training data

e But, still, you now want good generalization performance:

* Regularize your model until it doesn’t overfit on dev data
e Strategies like L2 regularization can be useful
e But normally generous dropout is the secret to success

55

Details matter!

* Be very familiar with your (train and dev) data, don’t
treat it as arbitrary bytes in a file!

* Look at your data, collect summary statistics

* Look at your model’s outputs, do error analysis

* Tuning hyperparameters is really important to almost
all of the successes of NNets

56

Good luck with your projects!

57

