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Lecture Plan

Lecture 11: ConvNets for NLP
1. Announcements (5 mins)
2. Intro to CNNs (20 mins)
3. Simple CNN for Sentence Classification: Yoon (2014) (20 mins)
4. CNN potpourri (5 mins)
5. Deep CNN for Sentence Classification: Conneau et al. (2017) 

(10 mins)
6. If I have extra time the stuff I didn’t do last week … 
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1. Announcements

• Complete mid-quarter feedback survey by tonight (11:59pm PST) 
to receive 0.5% participation credit!

• Project proposals (from every team) due this Thursday 4:30pm
• A dumb way to use late days!
• We aim to return feedback next Thursday

• Final project poster session: Mon Mar 16 evening, Alumni Center
• Groundbreaking research!
• Prizes!
• Food!
• Company visitors!
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Welcome to the second half of the course!

• Now we’re preparing you to be real DL+NLP researchers/practitioners!

• Lectures won’t always have all the details
• It's up to you to search online / do some reading to find out more
• This is an active research field! Sometimes there’s no clear-cut 

answer
• Staff are happy to discuss things with you, but you need to think for 

yourself

• Assignments are designed to ramp up to the real difficulty of project
• Each assignment deliberately has less scaffolding than the last
• In projects, there’s no provided autograder or sanity checks
• → DL debugging is hard but you need to learn how to do it!
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2. From RNNs to Convolutional Neural Nets 

• Recurrent neural nets cannot capture phrases without prefix 
context

• Often capture too much of last words in final vector

• E.g., softmax is often only calculated at the last step

Monáe walked      into         the      ceremony
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From RNNs to Convolutional Neural Nets 

• Main CNN/ConvNet idea: 
• What if we compute vectors for every possible word 

subsequence of a certain length?

• Example: “tentative deal reached to keep government open” 
computes vectors for:
• tentative deal reached, deal reached to, reached to keep, to 

keep government, keep government open

• Regardless of whether phrase is grammatical
• Not very linguistically or cognitively plausible

• Then group them afterwards (more soon)
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CNNs
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What is a convolution anyway?

• 1d discrete convolution generally:

• Convolution is classically used to extract features from images
• Models position-invariant identification
• Go to cs231n!

• 2d example à
• Yellow color and red numbers

show filter (=kernel) weights
• Green shows input
• Pink shows output

From Stanford UFLDL wiki
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tentative 0.2 0.1 −0.3 0.4

deal 0.5 0.2 −0.3 −0.1

reached −0.1 −0.3 −0.2 0.4

to 0.3 −0.3 0.1 0.1

keep 0.2 −0.3 0.4 0.2

government 0.1 0.2 −0.1 −0.1

open −0.4 −0.4 0.2 0.3

9

A 1D convolution for text

Apply a filter (or kernel) of size 3

t,d,r −1.0

d,r,t −0.5

r,t,k −3.6

t,k,g −0.2

k,g,o 0.3

3 1 2 −3

−1 2 1 −3

1 1 −1 1

+ bias
➔ non-linearity

0.0 0.50

0.5 0.38

-2.6 0.93

0.8 0.31

1.3 0.21



∅ 0.0 0.0 0.0 0.0

tentative 0.2 0.1 −0.3 0.4

deal 0.5 0.2 −0.3 −0.1

reached −0.1 −0.3 −0.2 0.4

to 0.3 −0.3 0.1 0.1

keep 0.2 −0.3 0.4 0.2

government 0.1 0.2 −0.1 −0.1

open −0.4 −0.4 0.2 0.3

∅ 0.0 0.0 0.0 0.0
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1D convolution for text with padding

Apply a filter (or kernel) of size 3

∅,t,d −0.6

t,d,r −1.0

d,r,t −0.5

r,t,k −3.6

t,k,g −0.2

k,g,o 0.3

g,o,∅ −0.5

3 1 2 −3

−1 2 1 −3

1 1 −1 1



∅ 0.0 0.0 0.0 0.0

tentative 0.2 0.1 −0.3 0.4

deal 0.5 0.2 −0.3 −0.1

reached −0.1 −0.3 −0.2 0.4

to 0.3 −0.3 0.1 0.1

keep 0.2 −0.3 0.4 0.2

government 0.1 0.2 −0.1 −0.1

open −0.4 −0.4 0.2 0.3

∅ 0.0 0.0 0.0 0.0
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3 channel 1D convolution with padding = 1

Apply 3 filters of size 3

∅,t,d −0.6 0.2 1.4

t,d,r −1.0 1.6 −1.0

d,r,t −0.5 −0.1 0.8

r,t,k −3.6 0.3 0.3

t,k,g −0.2 0.1 1.2

k,g,o 0.3 0.6 0.9

g,o,∅ −0.5 −0.9 0.1

Could also use (zero)
padding = 2
Also called “wide convolution”

3 1 2 −3

−1 2 1 −3

1 1 −1 1

1 0 0 1

1 0 −1 −1

0 1 0 1

1 −1 2 −1

1 0 −1 3

0 2 2 1



∅ 0.0 0.0 0.0 0.0

tentative 0.2 0.1 −0.3 0.4

deal 0.5 0.2 −0.3 −0.1

reached −0.1 −0.3 −0.2 0.4

to 0.3 −0.3 0.1 0.1

keep 0.2 −0.3 0.4 0.2

government 0.1 0.2 −0.1 −0.1

open −0.4 −0.4 0.2 0.3

∅ 0.0 0.0 0.0 0.0
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conv1d, padded with max pooling over time

Apply 3 filters of size 3

∅,t,d −0.6 0.2 1.4

t,d,r −1.0 1.6 −1.0

d,r,t −0.5 −0.1 0.8

r,t,k −3.6 0.3 0.3

t,k,g −0.2 0.1 1.2

k,g,o 0.3 0.6 0.9

g,o,∅ −0.5 −0.9 0.1

3 1 2 −3

−1 2 1 −3

1 1 −1 1

1 0 0 1

1 0 −1 −1

0 1 0 1

1 −1 2 −1

1 0 −1 3

0 2 2 1

max p 0.3 1.6 1.4



∅ 0.0 0.0 0.0 0.0

tentative 0.2 0.1 −0.3 0.4

deal 0.5 0.2 −0.3 −0.1

reached −0.1 −0.3 −0.2 0.4

to 0.3 −0.3 0.1 0.1

keep 0.2 −0.3 0.4 0.2

government 0.1 0.2 −0.1 −0.1

open −0.4 −0.4 0.2 0.3

∅ 0.0 0.0 0.0 0.0

13

conv1d, padded with ave pooling over time

Apply 3 filters of size 3

∅,t,d −0.6 0.2 1.4

t,d,r −1.0 1.6 −1.0

d,r,t −0.5 −0.1 0.8

r,t,k −3.6 0.3 0.3

t,k,g −0.2 0.1 1.2

k,g,o 0.3 0.6 0.9

g,o,∅ −0.5 −0.9 0.1

3 1 2 −3

−1 2 1 −3

1 1 −1 1

1 0 0 1

1 0 −1 −1

0 1 0 1

1 −1 2 −1

1 0 −1 3

0 2 2 1

ave p −0.87 0.26 0.53



In PyTorch

batch_size = 16
word_embed_size = 4
seq_len = 7
input = torch.randn(batch_size, word_embed_size, seq_len)
conv1 = Conv1d(in_channels=word_embed_size, out_channels=3,

kernel_size=3)  # can add: padding=1
hidden1 = conv1(input)
hidden2 = torch.max(hidden1, dim=2)  # max pool
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∅ 0.0 0.0 0.0 0.0

tentative 0.2 0.1 −0.3 0.4

deal 0.5 0.2 −0.3 −0.1

reached −0.1 −0.3 −0.2 0.4

to 0.3 −0.3 0.1 0.1

keep 0.2 −0.3 0.4 0.2

government 0.1 0.2 −0.1 −0.1

open −0.4 −0.4 0.2 0.3

∅ 0.0 0.0 0.0 0.0
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Other less useful notions: stride = 2

Apply 3 filters of size 3

∅,t,d −0.6 0.2 1.4

d,r,t −0.5 −0.1 0.8

t,k,g −0.2 0.1 1.2

g,o,∅ −0.5 −0.9 0.1

3 1 2 −3

−1 2 1 −3

1 1 −1 1

1 0 0 1

1 0 −1 −1

0 1 0 1

1 −1 2 −1

1 0 −1 3

0 2 2 1



∅ 0.0 0.0 0.0 0.0

tentative 0.2 0.1 −0.3 0.4

deal 0.5 0.2 −0.3 −0.1

reached −0.1 −0.3 −0.2 0.4

to 0.3 −0.3 0.1 0.1

keep 0.2 −0.3 0.4 0.2

government 0.1 0.2 −0.1 −0.1

open −0.4 −0.4 0.2 0.3

∅ 0.0 0.0 0.0 0.0

Less useful: local max pool, stride = 2

Apply 3 filters of size 3

∅,t,d −0.6 0.2 1.4

t,d,r −1.0 1.6 −1.0

d,r,t −0.5 −0.1 0.8

r,t,k −3.6 0.3 0.3

t,k,g −0.2 0.1 1.2

k,g,o 0.3 0.6 0.9

g,o,∅ −0.5 −0.9 0.1

∅ −Inf −Inf −Inf

3 1 2 −3

−1 2 1 −3

1 1 −1 1

1 0 0 1

1 0 −1 −1

0 1 0 1

1 −1 2 −1

1 0 −1 3

0 2 2 1

∅,t,d,r −0.6 1.6 1.4

d,r,t,k −0.5 0.3 0.8

t,k,g,o 0.3 0.6 1.2

g,o,∅,∅ −0.5 −0.9 0.1



∅ 0.0 0.0 0.0 0.0

tentative 0.2 0.1 −0.3 0.4

deal 0.5 0.2 −0.3 −0.1

reached −0.1 −0.3 −0.2 0.4

to 0.3 −0.3 0.1 0.1

keep 0.2 −0.3 0.4 0.2

government 0.1 0.2 −0.1 −0.1

open −0.4 −0.4 0.2 0.3

∅ 0.0 0.0 0.0 0.0
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conv1d, k-max pooling over time, k = 2

Apply 3 filters of size 3

∅,t,d −0.6 0.2 1.4

t,d,r −1.0 1.6 −1.0

d,r,t −0.5 −0.1 0.8

r,t,k −3.6 0.3 0.3

t,k,g −0.2 0.1 1.2

k,g,o 0.3 0.6 0.9

g,o,∅ −0.5 −0.9 0.1

3 1 2 −3

−1 2 1 −3

1 1 −1 1

1 0 0 1

1 0 −1 −1

0 1 0 1

1 −1 2 −1

1 0 −1 3

0 2 2 1

2-max p 0.3 1.6 1.4

−0.2 0.6 1.2



∅ 0.0 0.0 0.0 0.0

tentative 0.2 0.1 −0.3 0.4

deal 0.5 0.2 −0.3 −0.1

reached −0.1 −0.3 −0.2 0.4

to 0.3 −0.3 0.1 0.1

keep 0.2 −0.3 0.4 0.2

government 0.1 0.2 −0.1 −0.1

open −0.4 −0.4 0.2 0.3

∅ 0.0 0.0 0.0 0.0

Other somewhat useful notions: dilation = 2

Apply 3 filters of size 3

∅,t,d −0.6 0.2 1.4

t,d,r −1.0 1.6 −1.0

d,r,t −0.5 −0.1 0.8

r,t,k −3.6 0.3 0.3

t,k,g −0.2 0.1 1.2

k,g,o 0.3 0.6 0.9

g,o,∅ −0.5 −0.9 0.1

3 1 2 −3

−1 2 1 −3

1 1 −1 1

1 0 0 1

1 0 −1 −1

0 1 0 1

1 −1 2 −1

1 0 −1 3

0 2 2 1

1,3,5 0.3 0.0

2,4,6

3,5,7

2 3 1

1 −1 −1

3 1 0

1 3 1

1 −1 −1

3 1 −1



3. Single Layer CNN for Sentence Classification

• Yoon Kim (2014): Convolutional Neural Networks for Sentence 
Classification. EMNLP 2014. https://arxiv.org/pdf/1408.5882.pdf
Code: https://arxiv.org/pdf/1408.5882.pdf [Theano!, etc.]

• A variant of convolutional NNs of Collobert, Weston et al. (2011) 
Natural Language Processing (almost) from Scratch.

• Goal: Sentence classification:
• Mainly positive or negative sentiment of a sentence
• Other  tasks like:
• Subjective or objective language sentence
• Question classification: about person, location, number, …

19
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Single Layer CNN for Sentence Classification

• A simple use of one convolutional layer and pooling 
• Word vectors:  𝐱# ∈ ℝ&

• Sentence: 𝐱':) = 𝐱' ⊕ 𝑥- ⊕⋯⊕ 𝐱) (vectors concatenated)

• Concatenation of words in range: 𝐱#:#/0 (symmetric more common)

• Convolutional filter: 𝐰 ∈ ℝ2& (over window of h words)

• Note, filter is a vector!
• Filter could be of size 2, 3, or 4:

the           country       of           my         birth
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Single layer CNN

• Filter w is applied to all possible windows (concatenated vectors)
• To compute feature (one channel) for CNN layer:

• Sentence:
• All possible windows of length h:
• Result is a feature map: 

wait 
for 
the 

video 
and 
do 
n't 

rent 
it 

n x k representation of 
sentence with static and 

non-static channels 

Convolutional layer with 
multiple filter widths and 

feature maps 

Max-over-time 
pooling 

Fully connected layer 
with dropout and  
softmax output 

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one
feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m
filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ŵ = pw, and
ŵ is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s
whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.
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over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
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portant feature—one with the highest value—for
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to obtain multiple features. These features form
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Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one
feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
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ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one
feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m
filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ŵ = pw, and
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• From feature map
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tri-grams, 4-grams, etc.
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ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one
feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m
filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ŵ = pw, and
ŵ is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s
whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.
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Figure 1: Model architecture with two channels for an example sentence.
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is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
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prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
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backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m
filters), instead of using
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for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ŵ = pw, and
ŵ is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s
whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.
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A pitfall when fine-tuning word vectors

• Setting: We are training a logistic regression classification model 
for movie review sentiment using single words. 

• In the training data we have “TV” and “telly”
• In the testing data we have “television”
• The pre-trained word vectors have all three similar:

• Question: What happens when we update the word vectors?

TV
telly

television
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A pitfall when fine-tuning word vectors

• Question: What happens when we update the word vectors?
• Answer:

• Those words that are in the training data move around 
• “TV” and “telly”

• Words not in the training data stay where they were
• “television”

25
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telly

television

This can be bad!



So what should I do?

• Question: Should I use available “pre-trained” word vectors 
Answer:
• Almost always, yes! 
• They are trained on a huge amount of data, and so they will know 

about words not in your training data and will know more about 
words that are in your training data 

• Have 100s of millions of words of data? Okay to start random
• Question: Should I update (“fine tune”) my own word vectors? 
• Answer:

• If you only have a small training data set, don’t train the word 
vectors

• If you have have a large dataset, it probably will work better to 
train = update = fine-tune word vectors to the task
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Multi-channel input idea

• Initialize with pre-trained word vectors (word2vec or Glove)

• Start with two copies

• Backprop into only one set, keep other “static”

• Both channel sets are added to ci before max-pooling
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Classification after one CNN layer

• First one convolution, followed by one max-pooling
• To obtain final feature vector:

(assuming m filters w)
• Used 100 feature maps each of sizes 3, 4, 5

• Simple final softmax layer 

Figure 1: Model architecture with two channels for an example sentence.
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volves a filter w 2 Rhk, which is applied to a
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over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one
feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m
filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ŵ = pw, and
ŵ is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s
whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.
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From:
Zhang and Wallace 
(2015) A Sensitivity 
Analysis of (and 
Practitioners’ Guide 
to) Convolutional 
Neural Networks for 
Sentence 
Classification
https://arxiv.org/pdf/
1510.03820.pdf
(follow on paper, not 
famous, but a nice picture)
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Regularization

• Use Dropout: Create masking vector r of Bernoulli random 
variables with probability p (a hyperparameter) of being 1

• Delete features during training:

• Reasoning: Prevents co-adaptation (overfitting to seeing specific 
feature constellations) (Srivastava, Hinton, et al. 2014)

• At test time, no dropout, scale final vector by probability p

• Also: Constrain l2 norms of weight vectors of each class (row in 
softmax weight W(S)) to fixed number s (also a hyperparameter)

• If , then rescale it so that: 
• Not very common
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All hyperparameters in Kim (2014)

• Find hyperparameters based on dev set
• Nonlinearity: ReLU
• Window filter sizes h = 3, 4, 5
• Each filter size has 100 feature maps
• Dropout p = 0.5

• Kim (2014) reports 2–4% accuracy improvement from dropout
• L2 constraint s for rows of softmax, s = 3
• Mini batch size for SGD training: 50
• Word vectors: pre-trained with word2vec, k = 300

• During training, keep checking performance on dev set and pick 
highest accuracy weights for final evaluation
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Experiments on text classification

Model MR SST-1 SST-2 Subj TREC CR MPQA
CNN-rand 76.1 45.0 82.7 89.6 91.2 79.8 83.4
CNN-static 81.0 45.5 86.8 93.0 92.8 84.7 89.6
CNN-non-static 81.5 48.0 87.2 93.4 93.6 84.3 89.5
CNN-multichannel 81.1 47.4 88.1 93.2 92.2 85.0 89.4
RAE (Socher et al., 2011) 77.7 43.2 82.4 � � � 86.4
MV-RNN (Socher et al., 2012) 79.0 44.4 82.9 � � � �
RNTN (Socher et al., 2013) � 45.7 85.4 � � � �
DCNN (Kalchbrenner et al., 2014) � 48.5 86.8 � 93.0 � �
Paragraph-Vec (Le and Mikolov, 2014) � 48.7 87.8 � � � �
CCAE (Hermann and Blunsom, 2013) 77.8 � � � � � 87.2
Sent-Parser (Dong et al., 2014) 79.5 � � � � � 86.3
NBSVM (Wang and Manning, 2012) 79.4 � � 93.2 � 81.8 86.3
MNB (Wang and Manning, 2012) 79.0 � � 93.6 � 80.0 86.3
G-Dropout (Wang and Manning, 2013) 79.0 � � 93.4 � 82.1 86.1
F-Dropout (Wang and Manning, 2013) 79.1 � � 93.6 � 81.9 86.3
Tree-CRF (Nakagawa et al., 2010) 77.3 � � � � 81.4 86.1
CRF-PR (Yang and Cardie, 2014) � � � � � 82.7 �
SVMS (Silva et al., 2011) � � � � 95.0 � �

Table 2: Results of our CNN models against other methods. RAE: Recursive Autoencoders with pre-trained word vectors from
Wikipedia (Socher et al., 2011). MV-RNN: Matrix-Vector Recursive Neural Network with parse trees (Socher et al., 2012).
RNTN: Recursive Neural Tensor Network with tensor-based feature function and parse trees (Socher et al., 2013). DCNN:
Dynamic Convolutional Neural Network with k-max pooling (Kalchbrenner et al., 2014). Paragraph-Vec: Logistic regres-
sion on top of paragraph vectors (Le and Mikolov, 2014). CCAE: Combinatorial Category Autoencoders with combinatorial
category grammar operators (Hermann and Blunsom, 2013). Sent-Parser: Sentiment analysis-specific parser (Dong et al.,
2014). NBSVM, MNB: Naive Bayes SVM and Multinomial Naive Bayes with uni-bigrams from Wang and Manning (2012).
G-Dropout, F-Dropout: Gaussian Dropout and Fast Dropout from Wang and Manning (2013). Tree-CRF: Dependency tree
with Conditional Random Fields (Nakagawa et al., 2010). CRF-PR: Conditional Random Fields with Posterior Regularization
(Yang and Cardie, 2014). SVMS : SVM with uni-bi-trigrams, wh word, head word, POS, parser, hypernyms, and 60 hand-coded
rules as features from Silva et al. (2011).

to both channels, but gradients are back-
propagated only through one of the chan-
nels. Hence the model is able to fine-tune
one set of vectors while keeping the other
static. Both channels are initialized with
word2vec.

In order to disentangle the effect of the above
variations versus other random factors, we elim-
inate other sources of randomness—CV-fold as-
signment, initialization of unknown word vec-
tors, initialization of CNN parameters—by keep-
ing them uniform within each dataset.

4 Results and Discussion

Results of our models against other methods are
listed in table 2. Our baseline model with all ran-
domly initialized words (CNN-rand) does not per-
form well on its own. While we had expected per-
formance gains through the use of pre-trained vec-
tors, we were surprised at the magnitude of the
gains. Even a simple model with static vectors
(CNN-static) performs remarkably well, giving

competitive results against the more sophisticated
deep learning models that utilize complex pool-
ing schemes (Kalchbrenner et al., 2014) or require
parse trees to be computed beforehand (Socher
et al., 2013). These results suggest that the pre-
trained vectors are good, ‘universal’ feature ex-
tractors and can be utilized across datasets. Fine-
tuning the pre-trained vectors for each task gives
still further improvements (CNN-non-static).

4.1 Multichannel vs. Single Channel Models
We had initially hoped that the multichannel ar-
chitecture would prevent overfitting (by ensuring
that the learned vectors do not deviate too far
from the original values) and thus work better than
the single channel model, especially on smaller
datasets. The results, however, are mixed, and fur-
ther work on regularizing the fine-tuning process
is warranted. For instance, instead of using an
additional channel for the non-static portion, one
could maintain a single channel but employ extra
dimensions that are allowed to be modified during
training.
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Problem with comparison?

• Dropout gives 2–4 % accuracy improvement
• But several compared-to systems didn’t use dropout and would 

possibly gain equally from it

• Still seen as remarkable results from a simple architecture!

• Differences to window and RNN architectures we described in 
previous lectures: pooling, many filters, and dropout

• Some of these ideas can be used in RNNs too 
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4. Model comparison: Our growing toolkit

• Bag of Vectors: Surprisingly good baseline for simple 
classification problems. Especially if followed by a few ReLU
layers! (See paper: Deep Averaging Networks)

• Window Model: Good for single word classification for 
problems that do not need wide context. E.g., POS, NER

• CNNs: good for classification, need zero padding for shorter 
phrases, somewhat implausible/hard to interpret, easy to 
parallelize on GPUs. Efficient and versatile

• Recurrent Neural Networks: Cognitively plausible (reading from 
left to right), not best for classification (if just use last state), 
much slower than CNNs, good for sequence tagging and 
classification, great for language models, can be amazing with 
attention mechanisms
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Gated units used vertically

• The gating/skipping that we saw in LSTMs and GRUs is a general 
idea, which is now used in a whole bunch of places

• You can also gate vertically
• Indeed the key idea – summing candidate update with shortcut 

connection – is needed for very deep networks to work

relu

Residual block
(He et al. ECCV 2016)

conv

conv

x
identity

F(x) + x

F(x)

relu

x

+

relu

Highway block
(Srivistava et al. NeurIPS 2015)

conv

conv

x
identity

F(x)T(x) + x.C(x)

F(x)

relu

x

+

Note: pad x for conv so same size when add them Note: can set C(x) = (1 – T(x)) more like GRU



Batch Normalization (BatchNorm)

[Ioffe and Szegedy. 2015. Batch normalization: Accelerating deep network 
training by reducing internal covariate shift. arXiv:1502.03167.]
• Often used in CNNs
• Transform the convolution output of a batch by scaling the 

activations to have zero mean and unit variance
• This is the familiar Z-transform of statistics
• But updated per batch so fluctuations don’t affect things much

• Use of BatchNorm makes models much less sensitive to 
parameter initialization, since outputs are automatically rescaled
• It also tends to make tuning of learning rates simpler

• PyTorch: nn.BatchNorm1d

• Related but different: LayerNorm, standard in Transformers
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Size 1 Convolutions

[Lin, Chen, and Yan. 2013. Network in network. arXiv:1312.4400.]
• Does this concept make sense?!? Yes.
• Size 1 convolutions (“1x1”), a.k.a. Network-in-network (NiN) 

connections, are convolutional kernels with kernel_size=1
• A size 1 convolution gives you a fully connected linear layer 

across channels!
• It can be used to map from many channels to fewer channels
• Size 1 convolutions add additional neural network layers with 

very few additional parameters
• Unlike Fully Connected (FC) layers which add a lot of 

parameters
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CNN application: Translation

• One of the first successful neural 
machine translation efforts

• Uses CNN for encoding and 
RNN for decoding

• Kalchbrenner and Blunsom (2013)
“Recurrent Continuous Translation Models”
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Figure 3: A graphical depiction of the two RCTMs. Arrows represent full matrix transformations while lines are
vector transformations corresponding to columns of weight matrices.

represented by Ee
i . For example, for a sufficiently

long sentence e, gram(Ee
2) = 2, gram(Ee

3) = 4,
gram(Ee

4) = 7. We denote by cgm(e, n) that matrix
Ee

i from the CSM that represents the n-grams of the
source sentence e.

The CGM can also be inverted to obtain a repre-
sentation for a sentence from the representation of
its n-grams. We denote by icgm the inverse CGM,
which depends on the size of the n-gram represen-
tation cgm(e, n) and on the target sentence length
m. The transformation icgm unfolds the n-gram
representation onto a representation of a target sen-
tence with m words. The architecture corresponds
to an inverted CGM or, equivalently, to an inverted
truncated CSM (Fig. 3). Given the transformations
cgm and icgm, we now detail the computation of the
RCTM II.

4.2 RCTM II

The RCTM II models the conditional probability
P (f|e) by factoring it as follows:

P (f|e) = P (f|m, e) · P (m|e) (9a)

=
mY

i=1

P (fi+1|f1:i,m, e) · P (m|e) (9b)

and computing the distributions P (fi+1|f1:i,m, e)
and P (m|e). The architecture of the RCTM II
comprises all the elements of the RCTM I together
with the following additional elements: a translation
transformation Tq⇥q and two sequences of weight
matrices (Ji)2is and (Hi)2is that are part of
the icgm3.

The computation of the RCTM II proceeds recur-
sively as follows:

Eg = cgm(e, 4) (10a)
Fg
:,j = �(T ·Eg

:,j) (10b)

F = icgm(Fg,m) (10c)
h1 = �(I · v(f1) + S · F:,1) (10d)

hi+1 = �(R · hi + I · v(fi+1) + S · F:,i+1) (10e)
oi+1 = O · hi (10f)

and the conditional distributions P (fi+1|f1:i, e) are
obtained from oi as in Eq. 4. Note how each re-
constructed vector F:,i is added successively to the
corresponding layer hi that predicts the target word
fi. The RCTM II is illustrated in Fig. 3.

3Just like r the value s is small and depends on the length
of the source and target sentences in the training set. See
Sect. 5.1.2.
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Learning Character-level Representations 
for Part-of-Speech Tagging
Dos Santos and Zadrozny (2014) 

• Convolution over 
characters to 
generate word 
embeddings

• Fixed window of 
word embeddings 
used for PoS
tagging
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Character-Aware 
Neural Language 
Models
(Kim, Jernite, Sontag, 
and Rush 2015) 

40

• Character-based word 
embedding

• Utilizes convolution, 
highway network, and 
LSTM



5. Very Deep Convolutional Networks for Text Classification 

• Conneau, Schwenk, Lecun, Barrault. EACL 2017.
• Starting point: sequence models (LSTMs) have been very 

dominant in NLP; also CNNs, Attention, etc., but all the models 
are basically not very deep – not like the deep models in Vision

• What happens when we build a vision-like system for NLP
• Works from the character level
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VD-CNN architecture
The system very much 
looks like a vision system 
in its design, similar to
VGGnet or ResNet

It looks unlike most
typical Deep Learning NLP 
systems

42 s = 1024 chars; 16d embed

Local pooling at each 
stage halves temporal 
resolution and 
doubles number of 
features

Result is constant size, 
since text is truncated 
or padded



Convolutional block in VD-CNN

• Each convolutional block is 
two convolutional layers, each 
followed by batch norm and a 
ReLU nonlinearity

• Convolutions of size 3
• Pad to preserve (or halve 

when local pooling) dimension
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• Use large text classification datasets
• Much bigger than the small datasets used in the Yoon Kim (2014) 

paper
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7. Pots of data

• Many publicly available datasets are released with a 
train/dev/test structure. We're all on the honor system to do 
test-set runs only when development is complete.

• Splits like this presuppose a fairly large dataset.
• If there is no dev set or you want a separate tune set, then you 

create one by splitting the training data, though you have to
weigh its size/usefulness against the reduction in train-set size.

• Having a fixed test set ensures that all systems are assessed 
against the same gold data. This is generally good, but:
• It is problematic where the test set turns out to have unusual 

properties that distort progress on the task.
• It doesn’t give any measure of variance.
• It’s only an unbiased estimate of the mean if only used once.
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Training models and pots of data

• When training, models overfit to what you are training on
• The model correctly describes what happened to occur in 

particular data you trained on, but the patterns are not 
general enough patterns to be likely to apply to new data

• The way to avoid problematic overfitting (lack of generalization) 
is using independent validation and test sets …
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Training models and pots of data

• You build (estimate/train) a model on a training set.
• Often, you then set further hyperparameters on another, 

independent set of data, the tuning set
• The tuning set is the training set for the hyperparameters!

• You measure progress as you go on a dev set (development test 
set or validation set)
• If you do that a lot you overfit to the dev set so it can be good 

to have a second dev set, the dev2 set
• Only at the end, you evaluate and present final numbers on a 

test set
• Use the final test set extremely few times … ideally only once
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Training models and pots of data

• The train, tune, dev, and test sets need to be completely distinct
• It is invalid to test on material you have trained on

• You will get a falsely good performance. We usually overfit on train

• You need an independent tuning set
• The hyperparameters won’t be set right if tune is same as train

• If you keep running on the same evaluation set, you begin to 
overfit to that evaluation set
• Effectively you are “training” on the evaluation set … you are learning 

things that do and don’t work on that particular eval set and using the info

• To get a valid measure of system performance you need another 
untrained on, independent test set … hence dev2 and final test
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8. Getting your neural network to train

• Start with a positive attitude!
• Neural networks want to learn!
• If the network isn’t learning, you’re doing something to prevent it 

from learning successfully

• Realize the  grim reality:
• There are lots of things that can cause neural nets to not 

learn at all or to not learn very well
• Finding and fixing them (“debugging and tuning”) can often take more 

time than implementing your model

• It’s hard to work out what these things are
• But experience, experimental care, and rules of thumb help!
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Models are sensitive to learning rates

• From Andrej Karpathy, CS231n course notes 
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Models are sensitive to initialization

• From Michael Nielsen 
http://neuralnetworksanddeeplearning.com/chap3.html
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Training a gated RNN

1. Use an LSTM or GRU: it makes your life so much simpler!
2. Initialize recurrent matrices to be orthogonal
3. Initialize other matrices with a sensible (small!) scale
4. Initialize forget gate bias to 1: default to remembering
5. Use adaptive learning rate algorithms: Adam, AdaDelta, …
6. Clip the norm of the gradient: 1–5 seems to be a reasonable 

threshold when used together with Adam or AdaDelta.
7. Either only dropout vertically or look into using Bayesian 

Dropout (Gal & Gahramani – can do but not natively in PyTorch)
8. Be patient! Optimization takes time
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Experimental strategy

• Work incrementally!
• Start with a very simple model and get it to work!

• It’s hard to fix a complex but broken model
• Add bells and whistles one-by-one and get the model working 

with each of them (or abandon them)

• Initially run on a tiny amount of data
• You will see bugs much more easily on a tiny dataset
• Something like 4–8 examples is good
• Often synthetic data is useful for this
• Make sure you can get 100% on this data
• Otherwise your model is definitely either not powerful enough or it is 

broken
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Experimental strategy

• Run your model on a large dataset
• It should still score close to 100% on the training data after 

optimization
• Otherwise, you probably want to consider a more powerful model
• Overfitting to training data is not something to be scared of when 

doing deep learning 
• These models are usually good at generalizing because of the way 

distributed representations share statistical strength regardless of 
overfitting to training data

• But, still, you now want good generalization performance:
• Regularize your model until it doesn’t overfit on dev data
• Strategies like L2 regularization can be useful
• But normally generous dropout is the secret to success
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Details matter!

• Be very familiar with your (train and dev) data, don’t 
treat it as arbitrary bytes in a file!

• Look at your data, collect summary statistics

• Look at your model’s outputs, do error analysis

• Tuning hyperparameters is really important to almost 
all of the successes of NNets
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Good luck with your projects!
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