Natural Language Processing
with Deep Learning

CS224N/Ling284

Christopher Manning

Lecture 18: Tree Recursive Neural Networks,
Constituency Parsing, and Sentiment

Lecture Plan:

Lecture 18: Tree Recursive Neural Networks, Constituency Parsing,
and Sentiment

Motivation: Compositionality and Recursion (10 mins)
Structure prediction with simple Tree RNN: Parsing (20 mins)
Backpropagation through Structure (5 mins)

More complex TreeRNN units (35 mins)

Other uses of tree-recursive neural nets (5 mins)

SRR o

Institute for Human-Centered Artificial Intelligence (5 mins)

1. The spectrum of language in CS

[word
PHON /de1/

verb
HEAD ,
VFORM finite

VAL lSUBJ ()
comPs ([

SYNSEM LOCAL CAT

PRED +
suBJ ([3])

ARG-ST <P[3pl], l

TP

/AMPP

T Cl
/\P
Asp P v
tCL/>\

% PP

tp VP

_

Semantic interpretation of language —
Not just word vectors

How can we work out the meaning of larger
phrases?

People interpret the meaning of larger text units —
entities, descriptive terms, facts, arguments, stories — by
semantic composition of smaller elements

CQMPOSE&&QMQL&E

Language understanding -

& Artificial Intelligence - requires
being able to understand bigqer
things from lnowing about smaller
parts

REVIEW: NEUROSCIENCE ‘ ""'*%.4/

The Faculty of Language: What Is It, Who Has
It, and How Did It Evolve?

Marc D. Hauser,’ Noam Chomsky,? W. Tecumseh Fitch’

We argue that an understanding of the faculty of language requires substantial
interdisciplinary cooperation. We suggest how current developments in linguistics can
be profitably wedded to work in evolutionary biology, anthropology, psychology, and
neuroscience. We submit that a distinction should be made between the faculty of
language in the broad sense (FLB) and in the narrow sense (FLN). FLB includes a
sensory-motor system, a conceptual-intentional system, and the computational
mechanisms for recursion, providing the capacity to generate an infinite range of
expressions from a finite set of elements. We hypothesize that FLN only includes
recursion and is the only uniquely human component of the faculty of language. We
further argue that FLN may have evolved for reasons other than language, hence
comparative studies might look for evidence of such computations outside of the
domain of communication (for example, number, navigation, and social relations).

f a martian graced our planet, it would be
struck by one remarkable similarity among
Earth’s living creatures and a key difference.
Concerning similarity, it would note that all

Are languages recursive?

e Cognitively somewhat debatable (need to head to infinity)
e But: recursion is natural for describing language

e [The person standing next to [the man from [the company that
purchased [the firm that you used to work at]]]]

* noun phrase containing a noun phrase containing a noun phrase

e |t's a very powerful prior for language structure

S S

/\ NP VP
NP VP |

I PRP
PRP | VBZ NP

| He l /\
He ypz NP PP eats Np 5p

i NS N | P
eats IN NP NNS IN NP

achetti |
spaghetti (i DT NN spaghetti ~ with NN

9 a Spoon meat

Penn Treebank tree

S
NP-|SBJ VP
/\
NI|\IS VTD SBAR
/\
Analysts said —NO|NE- S
/\
0 NP-SB)-1 VP
/\
NI|\|P NI|\IP VTZ S
/\
Mr. Stronach wants NP-SB) VP
/\
-NCTNE— T|O VP
/\
*-1 to V|B NP
/\
resume NP PP-LOC
M\ /\
DT ADJP NN IN S-NOM
P2 N N
a RBR J) role in NP-SB) VP
| | N
more influential -NONE- VBG NP

N

* running DT NN

11 the company

2. Building on Word Vector Space Models

|

2 4
2 4

K Germany [1]
x 3

France
5

2
2

|
g

sri [

X Tuesday [,

1.5

the country of my birth
the place where | was born

|

>

X1

How can we represent the meaning of longer phrases?

12

By mapping them into the same vector space!

How should we map phrases into a vector space?

Use principle of compositionality

The meaning (vector) of a sentence
is determined by

(1) the meanings of its words and
(2) the rules that combine them.

the country of my

Socher, Manning, and Ng. ICML,
2011

x the country of my birth
x the place where | was born

Germany
3
France
. x xMonday
xTuesday
—— et — ey
1 2 3 4 5 6 7 8 9 10 X4

Models in this section
can jointly learn parse
trees and compositional
vector representations

Constituency Sentence Parsing: What we want

G 6 () () [

14 The cat sat the mat.

Learn Structure and Representation

()

)
1)) e
(G /\[;] Np
m/\[N

et

the

Recursive vs. recurrent neural networks

the
Y FY Y FY Y
1 1 5.5 4.5 2.5
3.5 > s 6.1 23 >33
N o . o N o h o h o
FTN F*N FTN FTN ,T,
0.4 2.1 7 4 2.3
0.3 3.3 7 4.5 3.6
N o N o N ” N ” N ”
the country of my birth

16

Recursive vs. recurrent neural networks

1

3.
0.4
0.3

e Recursive neural nets
require a tree structure

the country of
e Recurrent neural nets 3%5_> ; _>2i__>gz_>§g
cannot capture phrases 1\) 'T“ 'T‘ 'T‘ 1'
without prefix context (0.4] m () 4] 5 3]
and often capture too much (°3 33 L7) 3°
of last words in final vector the country of my birth

17

Recursive Neural Networks for Structure Prediction

Inputs: two candidate children’s representations

Outputs:

1. The semantic representation if the two nodes are merged.
2. Score of how plausible the new node would be.

]

o, 8
e

the ma

)

18

Recursive Neural Network Definition

score = U'p

Neural

Network = | p-= tanh(W[§1]+ b),
2

Same W parameters at all nodes
of the tree

19

Parsing a sentence with an RNN (greedily)

3.1 [g] 0.3 [2] 0.1 : 0.4 [é] 2.3 g
N T[T]TT T[T]

Neural
Network

Neural Neural Neural Neural
Network Network Network Network

20

Parsing a sentence

21

NEIEL
Network

Neural
Network

Parsing a sentence

22

Neural
Network

Parsing a sentence

on o™
[
]
f \ o= S
0 ™ | G
[
‘ \ o
N N
[
[
]
n o
[
]
LN N
[
]
o
[

Max-Margin Framework - Details

e The score of a tree is computed by
the sum of the parsing decision
scores at each node:

S($7y> — Z Sn

nenodes(y)

* Xxissentence; yis parse tree

24

Max-Margin Framework - Details

e Similar to max-margin parsing (Taskar et al. 2004), a supervised
max-margin objective

J:ZS(xi,y,-) — Imax (S(Xi>Y)+A(Y>Yi>)
i yeA(x;)

e Theloss A(y,y;) penalizes all incorrect decisions

e Structure search for A(x) was greedy (join best nodes each time)
* Instead: Beam search with chart

25

Scene Parsing

Similar principle of compositionality.

26

The meaning of a scene image is
also a function of smaller regions,

how they combine as parts to form
larger objects,

and how the objects interact.

Algorithm for Parsing Images

27

Same Recursive Neural Network as for natural language parsing!

(Socher et al. ICML 2011)

Parsing Natural Scene Images

Grass

XXX XXX)

&

[COXXXXYX)

People Building

XXX XXX

Tree

XXX XX X))

Semantic

Representations
Features

Segments

Multi-class segmentation

B sky -tree -road .grass .water .bldg .mntn I fg obj.

Pixel CRF (Gould et al., ICCV 2009) 74.3
Classifier on superpixel features 75.9
Region-based energy (Gould et al., ICCV 2009) 76.4
Local labelling (Tighe & Lazebnik, ECCV 2010) 76.9
Superpixel MRF (Tighe & Lazebnik, ECCV 2010) 77.5
Simultaneous MRF (Tighe & Lazebnik, ECCV 2010) 77.5
Recursive Neural Network 78.1

»g Stanford Background Dataset (Gould et al. 2009)

3. Backpropagation Through Structure

Introduced by Goller & Kiichler (1996) — old stuff!

Principally the same as general backpropagation

50 — ((W<z>>T5<z+1>) o (20,

0
ow)

Ep = 6D (@0)T 4 A ®

Calculations resulting from the recursion and tree structure:

1. Sum derivatives of W from all nodes (like RNN)

2. Split derivatives at each node (for tree)

3. Add error messages from parent + node itself

29

BTS: 1) Sum derivatives of all nodes

You can actually assume it’s a different W at each node

Intuition via example:

0
o FV (F(Wa))
0 0
= v ((W) SV + W rva)
= [f(W({f(Wz))(f(Wz)+ W f (Wz)x)
If we take separate derivatives of each occurrence, we get same:

T (Wa((Wh) + o= F(Walf(Wia)

Wiz)) (f(Whiz)) + ff(Wa(f(Wiz)) (Wa f (Wyiz)z)
Wiz)) (f(Wiz) + Wa f' (Wiz)z)
= ffW(f(Wx)) (f(Wz)+ W [f'(Wz)x)

30

BTS: 2) Split derivatives at each node

During forward prop, the parent is computed using 2 children

)
4o 1y,

Hence, the errors need to be computed wrt each of them:

8

3

/N

Vd ~
7 ~
Ve S
7

L/
8
5 Cq

N where each child’s error is n-dimensional
3
3 C
2 Op—screr = [Op—er Op—res]

31

BTS: 3) Add error messages

e Ateach node:
* What came up (fprop) must come down (bprop)

* Total error messages = error messages from parent + error
message from own score

32

BTS Python Code: forwardProp

def forwardProp(self,node):
Recursion

This node's hidden activation

node.h = np.dot(self.W,np.hstack([node.left.h, node.right.h])) + self.b
Relu

node.h[node.h<0] = 0

Softmax
node.probs = np.dot(self.Ws,node.h) + self.bs
node.probs -= np.max(node.probs)

node.probs = np.exp(node.probs)
node.probs = node.probs/np.sum(node.probs)

33

BTS Python Code: backProp

def backProp(self,node,error=None):
Softmax grad
deltas = node.probs

deltas[node.label] -= 1.0
self.dWs += np.outer(deltas,node.h)

self.dbs += deltas 5(0 — ((W(l)>T5(l‘|‘1)) o f/(Z(l)),

deltas = np.dot(self.Ws.T,deltas)

Add deltas from above
if error is not None: é) (l 1) (l) - (l)
deltas += error — Fn =) + a + AW
ow (@™)

£'(z) now:

deltas *= (node.h != 0)

Update word vectors if leaf node:
if node.isLeaf:
self.dL[node.word] += deltas
return

Recursively backprop

if not node.isLeaf:
self.dW += np.outer(deltas,np.hstack([node.left.h, node.right.h]))
self.db += deltas
Error signal to children
deltas = np.dot(self.W.T, deltas)
self.backProp(node.left, deltas[:self.hiddenDim])
self.backProp(node.right, deltas[self.hiddenDim:])

34

Discussion: Simple TreeRNN

35

Decent results with single layer TreeRNN

Single weight matrix TreeRNN could capture some
phenomena but not adequate for more complex,
higher order composition and parsing long sentences

There is no real interaction between the input words

The composition function is the same e S
for all syntactic categories, punctuation, etc. j

4. Version 2: Syntactically-Untied RNN

36

[Socher, Bauer, Manning, Ng 2013]

A symbolic Context-Free Grammar (CFG) backbone is
adequate for basic syntactic structure

We use the discrete syntactic categories of the
children to choose the composition matrix

A TreeRNN can do better with different composition
matrix for different syntactic environments

The result gives us a better semantics

Standard Recursive Neural Network Syntactically Untied Recursive Neural Network

/ /

/
Y, {P“’, e = ¢ {W [b}” / [P(l), p(1)=@< f {W(B,c) Ejﬂ
/ // \\ / //

C
/ // \
(A, a=@®) (B, b=@®) (C, c=@9) (A a=@®) (B, b=@d) (C, c=\@)

/

Compositional Vector Grammars

 Problem: Speed. Every candidate score in beam
search needs a matrix-vector product.

e Solution: Compute score only for a subset of trees
coming from a simpler, faster model (PCFG)

* Prunes very unlikely candidates for speed

* Provides coarse syntactic categories of the
children for each beam candidate

e Compositional Vector Grammar = PCFG + TreeRNN

37

Related Work for parsing

e Resulting CVG Parser is related to previous work that extends PCFG
parsers

e Klein and Manning (2003a) : manual feature engineering

e Petrov et al. (2006) : learning algorithm that splits and merges
syntactic categories

e Lexicalized parsers (Collins, 2003; Charniak, 2000): describe each
category with a lexical item

e Halland Klein (2012) combine several such annotation schemes in a
factored parser.

e (CVGs extend these ideas from discrete representations to richer
continuous ones

38

Experiments
e Standard WSJ split, labeled F1

e Based on simple PCFG with fewer states

e Fast pruning of search space, few matrix-vector products
e 3.8% higher F1

Paser ______________|Test,All Sentences

Stanford PCFG, (Klein and Manning, 2003a) 85.5
Stanford Factored (Klein and Manning, 2003b) 86.6
Factored PCFGs (Hall and Klein, 2012) 89.4
Collins (Collins, 1997) 87.7
SSN (Henderson, 2004) 89.4
Berkeley Parser (Petrov and Klein, 2007) 90.1
CVG (RNN) (Socher et al., ACL 2013) 85.0
CVG (SU-RNN) (Socher et al., ACL 2013) 90.4
Charniak - Self Trained (McClosky et al. 2006) 91.0

gnarniak - Self Trained-ReRanked (McClosky et al. 2006) 92.1

SU-RNN / CVG [Socher, Bauer, Manning, Ng 2013]
Learns soft notion of head words
Initialization: W) = 0.5[1,xn nxnOnx1] + €

40

SU-RNN / CVG [Socher, Bauer, Manning, Ng 2013]

Analysis of resulting vector representations

All the figures are adjusted for seasonal variations
1. All the numbers are adjusted for seasonal fluctuations
2. All the figures are adjusted to remove usual seasonal patterns

Knight-Ridder wouldn’t comment on the offer
1. Harsco declined to say what country placed the order
2. Coastal wouldn’t disclose the terms

Sales grew almost 7% to SUNK m. from SUNK m.
1. Sales rose more than 7% to $94.9 m. from $88.3 m.
2. Sales surged 40% to UNK b. yen from UNK b.

42

Version 3:
Compositionality Through Recursive Matrix-Vector Spaces
[Socher, Huval, Bhat, Manning, & Ng, 2012]

Before: p = tanh(W[21]+ b)
2

One way to make the composition function more powerful was by
untying the weights W

But what if words act mostly as an operator, e.g. “very” in
very good

Proposal: A new composition function

43

Compositionality Through Recursive Matrix-Vector
Recursive Neural Networks

p = tanh(W[gi]+ b) p = tanh(w [Czcl] +b)

Cic

Recursive Matrix-Vector Model

I S - vector
f(Ba, Ab)=(e® - ,
ool matrix

very good movie

(a,A) (b,B) (c,C)

@®|eoe0 CIDIFY CI AT
(ON@) (ON@) (ON@)

44

Matrix-vector RNNs
[Socher, Huval, Bhat, Manning, & Ng, 2012]

45

Predicting Sentiment Distributions

Good example for non-linearity in language

fairly annoying fairly awesome fairly sad
05 051 05
——MV-RNN oal ——MV-RNN oal —o— MV-RNN
- -+-RNN ' -+--RNN
0.3+ 03r
0.2r 02+
0.1 ’—_'—'/M 0l1‘i-—-=‘=-=.-;_-*;t ettt
0! : : : ‘ : : ‘ : - 0 : : : : : : ‘ : !
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
not annoying not awesome not sad
051 05
——MV-RNN 0al ——MV-RNN oa —o—MV-RNN
~+-RNN ' ~+-RNN ' -+~ RNN
031 03 —=—Ground Truth
0.2f PO
S . o e
. \-;---; ;‘. 010__.__;-___;“__;-___;____1_,_5_ o ©
. L . . i alntet - . . L . . L . . :
4 5 6 7 8 9 10 01 2 3 4 5 6 7 8 9 10
unbelievably annoying unbelievably awesome unbelievably sad
05 051 05
oal ——MV-RNN oal ——MV-RNN » o4 —— MV-RNN
' -+~ RNN ' -+~ RNN ' -+=RNN

46

Classification of Semantic Relationships

e Can an MV-RNN learn how a large syntactic context
conveys a semantic relationship?

. My [apartment],; has a pretty large [kitchen] ,
- component-whole relationship (e2,e1)

e Build a single compositional semantics for the minimal
constituent including both terms

~
Classifier: Message-Topic \

- -
P Ce,
- -
- -

the [movie] showed [wars]

47

Classification of Semantic Relationships

Classfer | Features | B

SVM POS, stemming, syntactic patterns 60.1

MaxEnt POS, WordNet, morphological features, noun 77.6
compound system, thesauri, Google n-grams

SVM POS, WordNet, prefixes, morphological 82.2
features, dependency parse features, Levin
classes, PropBank, FrameNet, NomLex-Plus,
Google n-grams, paraphrases, TextRunner

RNN — 74.8
MV-RNN - 79.1

MV-RNN POS, WordNet, NER 82.4

48

Version 4: Recursive Neural Tensor Network
Socher, Perelygin, Wu, Chuang, Manning, Ng, and Potts 2013

e Less parameters than MV-RNN

e Allows the two word or phrase vectors to interact
multiplicatively

Neural Tensor Layer

©co P2 = g(a,p1)

Slices of
Tensor Layer

[r

Standard
Layer

I
I
I
E. +B3%2 E

Beyond the bag of words: Sentiment detection

Is the tone of a piece of text positive, negative, or neutral?

e Sentiment is that sentiment is “easy”
e Detection accuracy for longer documents ~90%, BUT

...... lovedgreat impressed
.o marvelous

With this cast, and this subject matter, the
movie should have been funnier and more g

entertaining.

Stanford Sentiment Treebank

e 215,154 phrases labeled in 11,855 sentences
e Can actually train and test compositions

® ° »
[s o)
R & °
X s oy e)
oy) °
%o]
c]? (0] o« ,o.
haadiox o) []
e s
o
« .
. 3
D
He
€
®
O o
o« &
‘)‘5:‘.;. v

http://nlp.stanford.edu:8080/sentiment/

Better Dataset Helped All Models

84
83

M BiNB

82 ® RNN

81
80

m MV-RNN

79 -
78 -
77 -
76 -

75 -
Training with Sentence Training with Treebank
Labels

e Hard negation cases are still mostly incorrect

e We also need a more powerful model!

Version 4: Recursive Neural Tensor Network

Idea: Allow both additive and mediated

©o P2 = g(a,p1)
multiplicative interactions of vectors $

— e ey o e e e e e =)

Recursive Neural Tensor Network

g(arpl)

© O P2

_mmeMMw_mwmmew

|]

[@@co] !l[eeoco

0000| 1)|0600

@000 Q000
1|leeo0o

Recursive Neural Tensor Network

-— b

— e e e e e e —
P — — — — — — —

©o P2 = g(a,p1)

Recursive Neural Tensor Network

e Use resulting vectors in tree as input to
a classifier like logistic regression

e Train all weights jointly with gradient descent

©o P2 =g(a,p1)

Neural Tensor Layer

©
1
—h

Slices of Standard
Tensor Layer Layer

— e ey o e e e e e =)
P — — —— —— — — —

+[§

Positive/Negative Results on Treebank

Classifying Sentences: Accuracy improves to 85.4

86

84

82

80

78

76

74

Training with Sentence Labels

Training with Treebank

m BiNB

= RNN

m MV-RNN
B RNTN

Experimental Results on Treebank

e RNTN can capture constructions like X but Y

e RNTN accuracy of 72%, compared to MV-RNN (65%),
biword NB (58%) and RNN (54%)

O,
© O
e @ |
(2 0 © ()
© o but it) ©
® SN OJRO @
o spice
e © =) . jt enghp =
parts k -
S O RORC
© o) repetitive it interesting

Negation Results

When negating negatives, positive activation should
increase!

Negated Positive Sentences: Change in Activation

biNB
RRN
MV-RNN -0.5
RNTN | -054

06 -04 -02 00 02 04
Negated Negative Sentences: Change in Activation

biNB -0.01
RRN -0.01
MV-RNN +0.01

RNTN +0.25

's definitely

Demo: http://nlp.stanford.edu:8080/sentiment/

Version 5:
Improving Deep Learning Semantic

Representations using a TreeLSTM
[Tai et al., ACL 2015; also Zhu et al. ICML 2015]

Goals:

e Still trying to represent the meaning of a sentence as a location
in a (high-dimensional, continuous) vector space

* |n a way that accurately handles semantic composition and
sentence meaning

e Generalizing the widely used chain-structured LSTM to trees

Long Short-Term Memory (LSTM) Units for
Sequential Composition

Gates are vectors in [0,1]¢ multiplied element-wise for soft masking

output vector

A

output gate —p-m

- ——]l -

output vector

A

B<€¢— output gate

input gate —p-N T
forget gate

input vector

step ¢
61

-

B<4— input gate

input vector

stept+ 1

Tree-Structured Long Short-Term Memory

Networks [Tai et al., ACL 2015]
h1
yy
C1
ho Uclimbs hs
A A
/ f t \
ha Ucat hs Utree he
A A A
C4 Cs Ce

Uthe Uthe Vtall

Tree-structured LSTM

Generalizes sequential LSTM to trees with any branching factor

A forget output

gate
2 LIS t

L

1l

\¢ B<«4— output gate

N
4 /

input

\/

A forget

o - | gate

»...

/F B<¢— input gate

Tree-structured LSTM

Generalizes sequential LSTM to trees with any branching factor

.. \ A forget output
gate A
NN |
/ \ m<¢— output gate

\
I > ..
A ./ .
/f B<€4—— Input gate

forget

\ 4
\

input

64 gate

Results: Sentiment Analysis:
7 Stanford Sentiment Treebank

Accuracy %

(Fine-grain,
5 classes)
RNTN (Socher et al. 2013) 45.7
Paragraph-Vec (Le & Mikolov 2014) 48.7
DRNN (Irsoy & Cardie 2014) 49.8
| STM 46.4

Tree LSTM 50.9

Results: Sentiment Analysis:
LeJ Stanford Sentiment Treebank

Accuracy %
(Pos/Neg)

RNTN (Socher et al. 2013) 85.4
Paragraph-Vec (Le & Mikolov 2014) 87.8
DRNN (Irsoy & Cardie 2014) 86.6
| STM 84.9

Tree LSTM 38.0

Results: Semantic Relatedness
7 SICK 2014 (Sentences Involving Compositional Knowledge)

Pearson
correlation

Word vector average 0.758
Meaning Factory (Bjerva et al. 2014) 0.827
ECNU (Zhao et al. 2014) 0.841
LSTM 0.853

Tree LSTM 0.868

Forget Gates: Selective State Preservation

e Stripes = forget gate activations; more white = more preserved

OO
LA T
LR
IR

DR IR A

a waste of good performances
68

5. QCD-Aware Recursive Neural Networks for Jet Physics
Gilles Louppe, Kyunghun Cho, Cyril Becot, Kyle Cranmer (2017)

Event embedding Classifier
v(t1) v(t2) v(tar) O
& &
O
L g ce)
® O - —0 | (B0 0—0
. . . O
h)*™ (t4) h)* (t2) h)™ (tar)
O
O Q QO

Tree-to-tree Neural Networks for Program Translation
[Chen, Liu, and Song NeurlPS 2018]

e Explores using tree-structured encoding and generation for
translation between programming languages

e In generation, you use attention over the source tree

CoffeeScript Program: x=1 if y== JavaScript Program: if (y ===0) { x=1; }
Parse Tree Parse Tree

[fStatement

Block (BinaryExpression | BlockStatement

l

[Value] [Value | Assign (Identifier] (== [Literal | ExpressionStatement
AssignExpression
(Identiﬁer} [Number] Vallue Vallue i
Literal Literal Identifier Number
Lit?ral Lit?ral _ Identifier = Literal
Cy)0 J 0w 1 |
X 1

70

Tree-to-tree Neural Networks for Program Translation
[Chen, Liu, and Song NeurlPS 2018]

Tree2tree Seq2seq Seq2tree Tree2seq
ToT (T;FT) (_T:tg) PSP | PST | TP | T5T | PST | ToT | T=P | ToT

CofteeScript to JavaScript translation

CJ-AS | 99.57% | 98.80% | 0.09% | 90.51% | 79.82% | 92.73% | 89.13% | 86.52% | 88.50% | 96.96% | 92.18%

CJ-BS | 99.75% | 99.67% 0% 97.44% | 16.26% | 98.05% | 93.89% | 91.97% | 88.22% | 96.83% | 78.77%

CJ-AL | 9715% | 71.52% 0% 21.04% 0% 0% 0% 80.82% | 78.60% | 82.55% | 46.94%

CJ-BL | 95.60% | 78.61% 0% 19.26% | 9.98% | 25.35% | 42.08% | 76.12% | 76.21% | 83.61% | 26.83%
JavaScript to CoffeeScript translation

JC-AS | 87.75% | 85.11% | 0.09% | 83.07% | 86.13% | 73.88% | 86.31% | 86.86% | 86.99% | 71.61% | 86.53%

JC-BS | 86.37% | 80.35% 0% 80.49% | 85.94% | 69.77% | 85.28% | 85.06% | 84.25% | 66.82% | 85.31%

JC-AL | 78.59% | 54.93% 0% 77.10% | 77.30% | 65.52% | 75.70% | 77.11% | 77.59% | 60.75% | 75.75%

JC-BL | 75.62% | 44.40% 0% 73.14% | 73.96% | 61.92% | 74.51% | 74.34% | 71.56% | 57.09% | 73.86%

71

Tree-to-tree Neural Networks for Program Translation
[Chen, Liu, and Song NeurlPS 2018]

J2C# | 1pSMT | mppSMT
Tree2tree Repgrted n [221]313
Lucene 72.8 % 21.5% | 21.6% 40.0%
POI 72.2 % 18.9% | 34.6% 48.2%
[text 67.5% 25.1% | 24.4% 40.6%
JGit 68.7 % 10.7% | 23.0% 48.5%
JTS 68.2 % 11.7% | 18.5% 26.3%
Antlr | 31.9% (88.3%) | 10.0% | 11.5% 49.1%

72

Last minute project tips

* Nothing works and everything is too slow = First, panic! Then:

e Simplify model = Go back to basics: bag of vectors + NNet
 Make a very small network and/or dataset for debugging

e Once no bugs: increase model size

e Make sure you can overfit to your training dataset

e Plot your training and dev errors over training iterations

e Once its working, then try bigger more complex models

e Make sure to regularize with L2 and Dropout

e Then if you have time, do some hyperparameter search

e Talk to us in office hours!

73

The finish line is in sight!

Good luck with
Your final project!

Take care of your health!

