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Course Logistics

Final Project Report
- Due Saturday, March 14 at 11:59 PM PST
- 1 late day: Sunday, March 15 at 11:59 PM PST
- 2 late days: Monday, March 16 at 11:59 PM PST
- 3 late days: Tuesday, March 17 at 4:30 PM PST
Final Project Poster
- Zoom 3-minute poster presentations with 2 TAs and a cohort of ~14
other teams
- Monday, March 16 at 5PM - 7PM PST
- Monday, March 16 at 7.30PM - 9:30PM PST
- Tuesday, March 17 at 9AM - 11AM PST
- Fill out the form on Piazza with your time preferences
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Lecture Outline

Lecture 20: Analysis and Interpretability of Neural NLP

Motivation: what are our models doing? (10 mins)

Neural networks as linguistic test subjects (10 mins)

Careful ablation studies and architecture modifications (5 mins)
Analysis of inherently interpretable architectures (5 mins)
Playing the adversary: breaking NLP models (5 mins)
Analyzing representations using supervised methods (35 mins)
Aggregating analysis insights across studies (10 mins)
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Motivation: what are our models doing?
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Fig 1: A black box

It is not clear what functions our algorithms learn, and their complexity
precludes exact understanding
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Motivation: how do we make models better?

! STATISTICAL LEARNING \

Gentlemen, our learner

experts and minimze the
structural risk in a new one.
Rework our loss function,

ake the next kernel stable,
nbiased and consider using 3

[Reddit; source unknown]
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Motivation: how do we make models better?

STATISTICAL LEARNING

Gentlemen, our learner
overgeneralizes because the
C-Dimension of our Kernel
s too high, Get some
experts and minimze the
structural risk in a new one.
Rework our loss function,
ake the next kernel stable,
nbiased and consider using 3
o

NEURAL
NETWORKS

STACK
MORE
LAYERS

i

LAYERS

/\

[Reddit; source unknown]
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{ STATISTICAL LEARNING \

—
NEURAL
NETWORKS

Gentlemen, our learner
overgeneralizes because the
C-Dimension of our Kernel
s too high, Get some
experts and minimze the
structural risk in a new one.
Rework our loss function,
ake the next kernel stable,
nbiased and consider using 3

Motivation: how do we make models better?

STACK
MORE
LAYERS

.

—

LAYERS

VAN

[Reddit; source unknown]

THIS 1S YOUR MACHINE LEARNING SYSTETM?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSLERS ON THE OTHER SIDE.

WHAT IF THE ANSIERS ARE LRONG? )

JUST STR THE PILE UNTIL
THEY START LOOKING RIGHT.

[xkcd.com]
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What we've seen: simple analyses of
word2vec

cat Sacramento Harrisburg

kitty
Bold type: Math property guitar / /

Italic type: interpretation California Pennsylvania

We interpret cosine similarity Some relationships are encoded
as semantic similarity as vector differences

Knowing what properties word embeddings have: useful for practitioners!
Knowing that word embeddings encode undesirable social biases: useful
for everyone!
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Machine Translation

Language Modeling

Neural networks are worthy subjects of study

Question Answering

-
BERT
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Tok Tok Tok Tok

Sentence 1 Sentence 2

It's wild that any of our models work at all
- Their behavior is an emergent property of data and our design decisions
- Accuracy on a held out test set is not sufficient to fully characterize them

The first recorded travels by Europeans to China and back date from this time.
The most famous traveler of the period was the Venetian Marco Polo, whose
account of his trip to "Cambaluc," the capital of the Great Khan, and of life there
astounded the people of Europe. The account of his travels, Il milione (or, The
Million, known in English as the Travels of Marco Polo), appeared about the year
1299. Some argue over the accuracy of Marco Polo's accounts due to the lack of
mentioning the Great Wall of China, tea houses, which would have been a
prominent sight since Europeans had yet to adopt a tea culture, as well the
practice of foot binding by the women in capital of the Great Khan. Some
suggest that Marco Polo acquired much of his knowledge through contact with
Persian traders since many of the places he named were in Persian.

How did some suspect that Polo learned about
China instead of by actually visiting it?

Answer: through contact with Persian traders
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Lecture 20: Analysis and Interpretability of Neural NLP

NOoO O~ ON~

Motivation: what are our models doing?

Neural networks as linguistic test subjects

Careful ablation studies and architecture modifications
Analysis of inherently interpretable architectures
Playing the adversary: breaking NLP models
Analyzing representations using supervised methods
Aggregating analysis insights across studies

10
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Neural networks as linguistic test subjects

11
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s as linguistic test subjects

12



AN s as linguistic test subjects
Stanford INLP um a n g

How do we understand language behavior in humans?
One method: minimal pairs. What sounds “okay” to a speaker?

The chef who made the pizzasis <« “Acceptable”
*The chef who made the pizzas are « “Unacceptable’

|ldea: English present-tense verbs agree in number with their subject.

______

agree in number S £
| < chef are
The chef who made the pizzas The R made
are who pizzas

13

the
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Neural networks as linguistic test subjects

How do we understand language behavior in language models?
One method: minimal pairs. Is the acceptable sentence higher-probability?

The chef who made the pizzas is The chef who made the pizzas are
l l
Language Language
Model Model
l l
0.0001 > 0.00000001

Premise: A language model should assign higher probability to the

acceptable sentence in any minimal pair.
Linzen et al., 2016
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Neural networks as linguistic test subjects

Steps to conduct a minimal pairs test on a language model:

1.

Gather or construct a test set of minimal pairs which require specific
aspects of understanding to distinguish.

Run your language model on the pairs, and report percent of pairs the
model predicts as desired.

— R
—_— | 75%

——

15
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Neural networks as linguistic test subjects

Example: Do LMs show Subject-Verb number agreement across attractors?

The chef who made the pizzas and talked to the customers is

subject attractor

n=0 | n=1 | n=2 | n=3 n=4
Random 50.0 | 50.0 | 50.0 | 50.0 50.0
Majority 32.0 | 320 | 32.0 | 320 | 32.0
LSTM, H=501 6.8 | 32.6 | ~50 | =65 | =70
Our LSTM, H=50 241 80115772617 34.65
Our LSTM, H=150 15] 45| 90| 143 | 176
Our LSTM, H=250 14| 33| 59| 97| 139
Our LSTM, H=350 13| 30| 57| 97| 138
1B Word LSTM (repl) | 2.8 | 8.0 ] 14.0 | 21.8 | 20.0
Char LSTM 1.2 ] 55| 11.8]204 | 278

attractor verb

# of attractors between
subject and verb

Error rate on a large
corpus of minimal pairs

LMs do really well!?

[Kuncoro et al., 2018]
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Method: Modify the test set to remove long contexts, or replace them with

Neural networks as linguistic test subjects

longer words. Evaluate whether the LM perplexity changes.

Increase in Loss
© o o o o
= N w B W

o
o

—4— PTB

5

—

D D DO OOOOOBHIK]
LSRR DOOOOOOSSSHI

10 20 50 100 200 500 1000
Context Size (number of tokens)

Only giving the LM 10 words of
context at test time makes the test
error go up.

Only giving the LM 250 words of
context doesn’t change its loss, so
it's not using contexts longer than
250 words much.

[Khandelwal et al., 2018]

17
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Neural networks as linguistic test subjects

Question: How does an LSTM language model use its long-distance
contexts?

Method: Modify the test set to remove long contexts, or replace them with
longer words. Evaluate whether the LM perplexity changes.

18
[Khandelwal et al., 2018]
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Neural networks as linguistic test subjects

Method: Modify the test set to remove long contexts, or replace them with
longer words. Evaluate whether the LM perplexity changes.

huffling the order of th ntext
Bl —— Shuffle entire context fSr'tuh t?'\ 650 dedo € conte
—f— Reverse entire context _u er than o woras away
2.5 —4— Replace context with random sequence increases loss, so the LM cares

about word order past 5 words.

Increase in Loss
=
[0, ]

10 Shuffling the word order of the

0s context further than 50 words away
' doesn’t increase loss, so the LM

5.6 — g treats words 50-250 effectively as a

1 5 10 1520 30 50 100 200 bag-of-words.
Distance of perturbation from target (number of tokens)

[Khandelwal et al., 2018]
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Neural networks as linguistic test subjects

Question: Do LMs memorize factual relations?
Method:

“Dante was born in [MASK].”
> A VY 2

Neural LM

e E——
Memory Access Florence

e.g. ELMo/BERT /

Check if most likely word under the LM is a
correct answer.
Eval: % of these relations for which this holds.

20
[Petroni et al., 2019]
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Neural networks as linguistic test subjects

Question: Do LMs memorize factual relations?

Evaluation: _
Baseline: Return word that BERT-base and BERT-large:
shows up most with the memorize a surprising
subject (Dante) and the number of facts
relation (born in)
. Statistics l Baselines KB LM \
Corpus Relation
#Facts #Rel | Freq DrQA RE, RE, | Fs Tx1 Eb E5B Bb Bl
birth-place 2937 1 4.6 - 35 138 44 27 55 1715 149 16.1
Gooole-RE birth-date 1825 1 1.9 - 00 19 063 11 01 01 15 14
& death-place 765 1 6.8 - 01 72 30 09 03 13 131 140
Total 5527 3 4.4 - 12 76 26 16 20 30 98 105

21
[Khandelwal et al., 2018]
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Lecture 20: Analysis and Interpretability of Neural NLP

NSO kb=

Motivation: what are our models doing?

Neural networks as linguistic test subjects

Careful ablation studies and architecture modifications
Analysis of inherently interpretable architectures

Playing the adversary: breaking NLP models

Analyzing representations using supervised methods
Aggregating analysis insights across studies

22
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Viewing model studies as network analysis

Question: What is necessary, or even good, about my network design?
Method: Make targeted model changes; observe validation accuracy

Ex: The Transformer interleaves self-attention with feed-forward layers

START/ LR R - BB R R - R - R - - ha-R-a-py —— 18.40 PPL
input END/

\ output

self-attention
feed-forward

23
[Press et al., 2019]
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Viewing model studies as network analysis

Question: What is necessary, or even good, about my network design?
Method: Make targeted model changes; observe validation accuracy

Ex: The Transformer interleaves self-attention with feed-forward layers

SfEfEfElfES fEfElfEfELfE LS LfE LS E L i —er A
But what if we re-ordered them?

SRR R - - - pmmmmed —— 17.96 PPL
/ _— (Better!)

Bunch of self-attention Bunch of feed-forward (Press et al., 2019] #
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Lecture 20: Analysis and Interpretability of Neural NLP

N kb=

Motivation: what are our models doing?

Neural networks as linguistic test subjects

Careful ablation studies and architecture modifications
Analysis of inherently interpretable architectures
Playing the adversary: breaking NLP models
Analyzing representations using supervised methods
Aggregating analysis insights across studies

25
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Analysis of “interpretable” architectures

Some architectures have components that lend themselves to inspection
Example: Try to characterize each attention head of BERT.

Head 1-1 . _
Attends broadly Attention head 1 of layer 1

Not just on this sentence, but

in. in .
! taiian on most sentences, thl_s h(_aad
N _ demonstrates a behavior like
[SEP]- A [SEP] this.
the - A the
wingspan - y »wingspan
is 'is
24 LLFENARE S 24
28 .28
mm’ ‘mm
[SEP]/ [SEP] 26

[Clark et al., 2019]
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Analysis of “interpretable” architectures

Some architectures have components that lend themselves to inspection
Example: Try to characterize each attention head of BERT.

Head 1-1 Head 3-1 Head 8-7 Head 11-6
Attends broadly Attends to next token Attends to [SEP] Attends to periods
found, ,found found \found found found found
in. in in\in in - ARG in
taiwan. ,taiwan taiwan \ taiwan taiwan taiwan
[SEP]. ' - [SEP] [SEP]>[SEP] ———3[SEP] [SEP]
the - RN > the the the 7 the the
Wi _ : ; \ ; ) ; .
gspan ) »wingspan wmgspan\wmgspan wingspan wingspan
is &7 . is is\is is is
24 LLFREA S 04 24\24 24 24
28 ' .28 28528 \ 28 284/ \ 28
mm/ ‘mm mm \ mm N\ mm mm \\\\\\ mm
[SEP] [SEP] [SEP]>[SEP] [SEP] [SEP] [SEP] 27

[Clark et al., 2019]
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Analysis of “interpretable” architectures

Some architectures have components that lend themselves to inspection
Example: Try to characterize each attention head of BERT.

Head 8-11

- Noun modifiers (e.g., determiners) attend

to their noun

- 94.3% accuracy at the det relation

complicated -
language,

muddied .\
the -

fight

[SEPi

[CLS]\ [CLS]
The\ The
5_([21:5] 45-year-old\ 45-year-old
complicated formery \ former
X jan ﬁa " General, \\ General
e S Electric Electric
thé Co.: -Co.
huge executive! executive
9 figures, figures
new 2 :
i it it
will+ will
e be be
\\ ~muddied ; .
V- the easier- W easier
\ this<>U\\\|  this
fight — L
N \t t|me
N

iSEP]

[SEP] X [sEp)

Interpretation +
Quantitative Analysis

Qualitative Model
behavior

28
[Clark et al., 2019]
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Analysis of “interpretable” architectures

Some architectures have components that lend themselves to inspection
Example: Try to characterize each attention head of BERT.

Head 5-4

- Coreferent mentions attend to their antecedents
- 65.1% accuracy at linking the head of a
coreferent mention to the head of an antecedent
with with
Kim Kim joining joining

today today peace peace
as as talks talks
she she between between
got got Israel Israel
some some and and
expert expert the | the
opinions opinions Palestinians Palestinians
on ——on . .
the—f——the The The
damage damage negotiations negotiations
to to are are
her her
home home

Interpretation +
Quantitative Analysis

Qualitative Model

behavior

29
[Clark et al., 2019]
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Understanding representations by inspection

Are individual hidden units in recurrent neural networks interpretable?

Cell sensitive to position in line:

The sole importance of the crossing
fhat it plainly and 1ndub1tably pro
cutting off the enemy'’ retreat nd
line of action--the one Kutuzov nd general mass of th army
demanded--namely, simply to follow t enemy up. The French crowd fT1ed
AR R E AR c e ass i ng speed and all its energy was directed) tio
reaching its goal. It fled like a wounded animal and it was impossible
HEEEONIEDICENIR RSN D ARt R TS wia's. s hown not so much by the arrangements 1t
made for crossing as by what took place at the bridges. When the bridges
broke down, unarmed soldiers, people from Moscow and women with children
DN e e nich transport, all--carried on by vis inertiae- -
pirelsssedforward 1into boats and into the ice-covered water and didinoEs
surrender .

BB erezina lies 1 t he TAIERE
IIlERNT ATl liacy of all plans for

of n

ved the

the soundness of the only possible
the e

he

30
[Karpathy et al., 2016]
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Understanding representations by inspection

Are individual hidden units in recurrent neural networks interpretable?

Cell that turns on inside quotes:

31
[Karpathy et al., 2016]
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Understanding representations by inspection

Are individual hidden units in recurrent neural networks interpretable?

=N =T N\ TN

'e boy gently and lcmdly greets the 0 near car greets the ' The boy that watches the dog greets the
(a) 2Adv (b) nounPP (c) subject relative
1.5 & R i -
s o | | : ~ - | | I\
| |
Ct J o
-1.54
The boy that watches the dog that watches the cat greets the

Interpretation: this LSTM cell unit fires approximately
between a subject and its verb

32
[Lakretz et al., 2019]



P

Lecture Outline

Stanford INLP

Lecture 20: Analysis and Interpretability of Neural NLP

N a ko=

Motivation: what are our models doing?

Neural networks as linguistic test subjects

Careful ablation studies and architecture modifications
Analysis of inherently interpretable architectures
Playing the adversary: breaking NLP models
Analyzing representations using supervised methods
Aggregating analysis insights across studies

33
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Understanding models by breaking them

Question: Are our models robust to innocuous changes in their input?
By robust, in this case we mean their outputs do not change.

Article: Super Bowl 50

Paragraph: “Peyton Manning became the first quarter- The performance of this QA
back ever to lead two different teams to multiple Super model on this input looks good!
Bowls. He is also the oldest quarterback ever to play

in a Super Bowl at age 39. The past record was held

by John Elway, who led the Broncos to victory in Super

Bowl XXXIII at age 38 and is currently Denver’s Execu-

tive Vice President of Football Operations and General

Manager.

Question: “What is the name of the quarterback who
was 38 in Super Bowl XXXIII?”
Original Prediction: John Elway

34
[Jia et al., 2019]
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Understanding models by breaking them

Question: Are our models robust to innocuous changes in their input?
By robust, in this case we mean their outputs do not change.

Article: Super Bowl 50

Paragraph: “Peyton Manning became the first quarter- The performance of this QA
back ever to lead two different teams to multiple Super model on this input looks good!
Bowls. He is also the oldest quarterback ever to play

in a Super Bowl at age 39. The past record was held

by John Elway, who led the Broncos to victory in Super This sentence is irrelevant:
Bowl XXXIII at age 38 and is currently Denver’s Execu- adding it does not change the
tive Vice President of Football Operations and General answer.

Manager. Quarterback Jeff Dean had jersey number 37
in Champ Bowl XXXIV.”

Question: “What is the name of the quarterback who
was 38 in Super Bowl XXXIII?”

Original Prediction: John Elway

35
[Jia et al., 2019]
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Understanding models by breaking them

Question: Are our models robust to innocuous changes in their input?
By robust, in this case we mean their outputs do not change.

Article: Super Bowl 50

Paragraph: “Peyton Manning became the first quarter- The performance of this QA
back ever to lead two different teams to multiple Super model on this input looks good!
Bowls. He is also the oldest quarterback ever to play

in a Super Bowl at age 39. The past record was held

by John Elway, who led the Broncos to victory in Super This sentence is irrelevant:
Bowl XXXIII at age 38 and is currently Denver’s Execu- adding it does not change the
tive Vice President of Football Operations and General answer.

Manager. Quarterback Jeff Dean had jersey number 37
in Champ Bowl XXXIV.”

Question: “What is the name of the quarterback who
was 38 in Super Bowl XXXIII?”

Original Prediction: John Elway

Prediction under adversary: Jeff Dean

But it changes the model’s
prediction :(

Interpretation: model is not

really working
36
[Jia et al., 2019]
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Understanding models by breaking them

Question: Are our models robust to innocuous changes in their input?

In the United States especially, several high-profile
cases such as Debra LaFave, Pamela Rogers, and
Mary Kay Letourneau have caused increased
scrutiny on teacher misconduct.

(a) Input Paragraph

Q: What has been the result of this publicity?
A: increased scrutiny on teacher misconduct
(b) Original Question and Answer

The performance of this QA
model on this input looks good!

37

[Ribeiro et al., 2018]
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Understanding models by breaking them

Question: Are our models robust to innocuous changes in their input?

In the United States especially, several high-profile
cases such as Debra LaFave, Pamela Rogers, and

Mary Kay Letourneau have caused increased _
scrutiny on teacher misconduct. The performance of this QA

(a) Input Paragraph model on this input looks good!

Q: What has been the result of this publicity?
A: increased scrutiny on teacher misconduct

(b) Original Question and Answer

This typo is annoying, but a
reasonable language learner
would be robust to it.

Q: What hal been the result of this publicity?
A: teacher misconduct
(c) Adversarial Q & A (Ebrahimi et al., 2018)

38
[Ribeiro et al., 2018]
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Understanding models by breaking them

Question: Are our models robust to innocuous changes in their input?

In the United States especially, several high-profile
cases such as Debra LaFave, Pamela Rogers, and
Mary Kay Letourneau have caused increased
scrutiny on teacher misconduct.

(a) Input Paragraph

Q: What has been the result of this publicity?
A: increased scrutiny on teacher misconduct
(b) Original Question and Answer

Q: What hal been the result of this publicity?
A: teacher misconduct
(c) Adversarial Q & A (Ebrahimi et al., 2018)

Q: What’s been the result of this publicity?
A: teacher misconduct
(d) Semantically Equivalent Adversary

The performance of this QA
model on this input looks good!

This typo is annoying, but a
reasonable language learner
would be robust to it.

Changing what has to what’s
should never change the
answer!

39

[Ribeiro et al., 2018]
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Understanding models by breaking them

Question: Are our models robust to typos or noise in their input?

40
[Belinkov and Bisk, 2018]
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Question: Are robust to typos or noise in their input?

Understanding models by breaking them

41
[Belinkov and Bisk, 2018]
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Question: Are robust to typos or noise in their input?

“Aoccdrnig to arscheearch at Cmabrigde Uinervtisy, it deosn’t mttaer in waht oredr the ltteers
in a wrod are, the olny iprmoetnt tihng is taht the frist and Isat Itteer be at the rghit pclae.”

Understanding models by breaking them

Just 1 data point/meme, but interpretation: humans are!

42
[Belinkov and Bisk, 2018]
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Understanding models by breaking them

Question: Are our models robust to typos or noise in their input?

BLEU on clean text

AW
Vanilla
French charCNN 42.54
charCNN 34.79
German char2char 29.97
Nematus 34.22
charCNN 25.99
Czech char2char 25.71
Nematus 29.65

43
[Belinkov and Bisk, 2018]
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Understanding models by breaking them

Question: Are our models robust to typos or noise in their input?

BLEU on clean text BL.EU on datg with BL_EU on datg with _natural
noise like we just saw noise (real misspellings, +)
N ' Synthetic I

Vanilla Swap Mid Rand Key Nat
French  charCNN 42.54 10.52 9.71 1.71 8.26 17.42
charCNN 34.79 9.25 837 1.02 640 14.02
German char2char 29.97 5.68 546 0.28 2.96 12.68
Nematus 34.22 3.39 5.16 0.29 0.61 10.68
charCNN 25.99 6.56 6.67 1.50 7.13 10.20
Czech char2char 25.71 390 424 025 288 11.42
Nematus 29.65 294 4.09 0.66 141 11.88

44
[Belinkov and Bisk, 2018]
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Lecture 20: Analysis and Interpretability of Neural NLP

N akowobd-~

Motivation: what are our models doing?

Neural networks as linguistic test subjects

Careful ablation studies and architecture modifications
Analysis of inherently interpretable architectures

Playing the adversary: breaking NLP models

Analyzing representations using supervised methods
Aggregating analysis insights across studies

45
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Understanding representations by probing

Hypothesis:
Neural models, especially large ones like BERT, perform well without any
explicit linguistic supervision in part because they learn similar notions
themselves.

Question:
Do neural networks’ internal representations encode linguistic notions of
structure, like parts-of-speech, dependency trees, named entities?

46
[Lakretz et al., 2019]



Probing: supervised analysis of representations

Does my network make task (e.g., part-of-speech) labels accessible?

The chef made five pizzas

47
[Shi et al,, 2016, Peters et al., 2018, Tenney et al., 2019, Liu et al., 2019, Hewitt and Manning 2019, Kim et al., 2019..] [Hewitt and Liang, 2019]



Probing: supervised analysis of representations

Does my network make task (e.g., part-of-speech) labels accessible?

Choose a function family ,
to decode the task. (e.g., linear) The chef made five pizzas

48
[Shi et al, 2016, Peters et al., 2018, Tenney et al., 2019, Liu et al, 2019, Hewitt and Manning 2019, Kim et al., 2019..] [Hewitt and Liang, 2019]



Probing: supervised analysis of representations

Does my network make task (e.g., part-of-speech) labels accessible?

Choose a function family ,
to decode the task. (e.g., linear) The chef made five pizzas

Train a function
representations --> task

DT NN VBD JJ NNS

49
[Shi et al, 2016, Peters et al., 2018, Tenney et al., 2019, Liu et al, 2019, Hewitt and Manning 2019, Kim et al., 2019..] [Hewitt and Liang, 2019]



Probing: supervised analysis of representations

Does my network make task (e.g., part-of-speech) labels accessible?

Choose a function family :
to decode the task. (e.g., linear) The chet made five pizzas
Train a function
representations --> task

\

Interpret accuracy N 2 v v v
on held-out data DT NN VBD JJ NNS

(Don’t fine-tune the model while doing this!)

50
[Shi et al., 2016, Peters et al., 2018, Tenney et al., 2019, Liu et al, 2019, Hewitt and Manning 2019, Kim et al,, 2019..] [Hewitt and Liang, 2019]
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Understanding representations by probing

: ; POS Supersense ID
Pretrained Representation
Avg. CCG PTB EWT Chunk NER ST GED PS-Role PS-Fxn EF
BERT (base, cased) best layer 84.09 93.67 96.95 95.21 92.64 82.71 93.72 4330 79.61 8794 75.11
BERT (large, cased) best layer 85.07 94.28 96.73 95.80 93.64 84.44 93.83 46.46 79.17 90.13 76.25
GloVe (840B.300d) 59.94 71.58 90.49 83.93 62.28 53.22 8092 1494 40.79 51.54 49.70
oyt ety 8344 947 9796 9582 9577 9138 95.15 39.83 6689 7829 77.10

(without pretraining)

Interpretation 1: BERT’s representations, when used as features for a linear classifier, lead to high

accuracy on linguistic tasks; this is evidence that BERT makes these properties linearly accessible.

Interpretation 2: BERT-large seems to perform better than BERT-base, indicating that it may learn better

representations of linguistic properties.

51

[Liu et al., 2019; table cropped]
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Understanding representations by probing

(e) BERT (base, cased) )
Layer 0
p— Interpretation: BERT makes
o (H) BERT (large, cased) > linguistic properties most

' PR P BEEEE accessible in middle layers
Layer 24 === =
I

Lower Penl"formance Higher Pelrformance ~

Figure 3: A visualization of layerwise patterns in task
performance. Each column represents a probing task,
and each row represents a contextualizer layer.
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[Liu et al., 2019; figure cropped]
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Understanding representations by probing

Question: Can we ask questions about structure in neural representations?

out
store °
the. °

c.hef food

ran
°

°
to hd
of

[ ]
who ®
was

[ ]
The

A neural (vector) representation

was
chef

The ran out
who to of

store food
the

A structured linguistic representation
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[Hewitt and Manning, 2019]
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Understanding representations by probing

Let’'s walk through a whole analysis paper, step-by-step

A Structural Probe for Finding Syntax in Word Representations

54
[Hewitt and Manning, 2019]



This work’s questions!

Do ELMo and BERT encode English dependency
trees in their contextual representations?
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This work’s questions!

Do ELMo and BERT encode English dependency
trees in their contextual representations?

How do we ask whether vector representations
encode trees?
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This work’s questions! tl;dr answers

Do ELMo and BERT encode English dependency
trees in their contextual representations?

How do we ask whether vector representations
encode trees?

By structural probes: look at the geometry! A
hypothesis for syntax in word representations.
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This work’s questions! tl;dr answers

Do ELMo and BERT encode English dependency
trees in their contextual representations?

We provide evidence for yes, approximately!

How do we ask whether vector representations
encode trees?

By structural probes: look at the geometry! A
hypothesis for syntax in word representations.
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Outline

1. connecting vector spaces and trees

2. The structural probe method

3. Results and pictures and fun
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Are vector spaces and trees reconcilable?

Are vector space representations in NLP reconcilable with the discrete
(syntactic) tree structures hypothesized in language?

was

The chef who ran to the store was out of food chef

T .

the

of
food
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Distance metrics unify trees and vectors

An undirected tree defines a distance metric on pairs of words, the path metric:
the number of edges in the path between the words.

k‘ose—\ The chef dpatn= 1
was

chef
The ran far [ ©Ut
who to of

store food
the

61
[For more fun, see Deza and Laurent. A Geometry of Cuts and Metrics. Springer. 2009



Distance metrics unify trees and vectors

An undirected tree defines a distance metric on pairs of words, the path metric:
the number of edges in the path between the words.

closé
/_\was
chef
The ran far [ ©Ut
who to of
store food
the

[For more fun, see Deza and Laurent. A Geometry of Cuts and Metrics. Springer. 2009

The chef

dpath =1
chef ran dpan= 1
chef was Aot = 1

62



Distance metrics unify trees and vectors

An undirected tree defines a distance metric on pairs of words, the path metric:
the number of edges in the path between the words.

klose—\ The chef dpatn= 1
waS | B B |

chef
The ran far out chef ran dpath =1
who o of chef Was dpath =1
store food o
the was store  dpun=4
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[For more fun, see Deza and Laurent. A Geometry of Cuts and Metrics. Springer. 2009



Distance metrics unify trees and vectors

An undirected tree defines a distance metric on pairs of words, the path metric:
the number of edges in the path between the words.

closé The chef dpan = 1
/_\was .
chef
The ran far out chef ran dpath =1
who o of chef Was dpath =1
store food .
the was store  dpun=4

The edges of the tree can be recovered by looking at all distance=1 pairs.
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[For more fun, see Deza and Laurent. A Geometry of Cuts and Metrics. Springer. 2009



Norms unify edge directions and vectors

A rooted tree defines a norm on the words, the parse depth:
the number of edges from each word to ROOT.

was
was
chef

The ran
who

out
to of The

store food
the



Norms unify edge directions and vectors

A rooted tree defines a norm on the words, the parse depth:
the number of edges from each word to ROOT.

was was was

was
chef chef
The ran out

who to of The

store food
the

who
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Norms unify edge directions and vectors

A rooted tree defines a norm on the words, the parse depth:
the number of edges from each word to ROOT.

was wasS WwasS wasS was WwWasS wasS wasS Wwas

was
chef chef out
The ran gt

who to of The

store food
the

who ran

to

Each edge is directed towards the word with

; t
greater norm (deeper in the tree) >Hore

the
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summary

chef

The ran

who to

distance unifies undirected trees and vector space

norm unifies edge directions and vector space -

was

store

out

of
food
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The structural probe method
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Finding trees in vector spaces

We can look for trees in the vector

out space by looking for their distances
store ¢ and norms in the space.
the. °
c.hef f00d
o
ran
®
[
= of
[
who ° \ h
Wels chef
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Finding trees in vector spaces

We can look for trees in the vector

out space by looking for their distances
store ¢ and norms in the space.
the °
° chef
. food ,
. Here's a sentence embedded by a NN!
ran
o h, hJ. . vector representation of
words /1 and.
[
= of
[
who ° \
was h

chef
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Finding trees in vector spaces

We don't expect all dimensions of the
QUt vector space to encode syntax -- NNs

StO:@ have a lot to encode!

the

chef 7
: / food

D
D
D
D
0
o
»
D
»
D
D
g
D

to

j was BN per
Thé
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Finding trees in vector spaces

We don't expect all dimensions of the
QUt vector space to encode syntax -- NNs

store have a lot to encode!
the ;
i chef ¢ food We find the linear transformation
o that encodes syntax best.
® i
ran

to

j was BN per
Thé
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Finding trees in vector spaces

We don't expect all dimensions of the
QUt vector space to encode syntax -- NNs

store have a lot to encode!
the - ;
chef ¢ food We find the linear transformation
o that encodes syntax best.
° =
ran
2 B : The syntax transformation
j i i matrix
; Bh, : Syntax-transformed vector
td word representation
wihe 4 o
£ Ve BN et

Thé
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Finding trees in vector spaces

In the transformed space,
store QUt (squared) L2 distance
the - approximates tree distance.

chef
/ food

;
Sy U
o -
Y .
> .
f -
N e
;
g ;
; :
: :
;
: &
3
~4 -

who ¢ ¢
/was

The
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Finding trees in vector spaces

store
the -

chef
/ foo

out

d

In the transformed space,
(squared) L2 distance
approximates tree distance.

dpatn(ij) : Tree path distance

1B(h;-h, )|I5 : Squared Vector space
distance (|[h.-h. IIB

J
:. . :.:
to ¢
of
» 1
who 7 ¢
S was
Thée

dpath(i,j)
was store
was chef
1Bth;-h)IIZ
was store
was chef 76




Finding trees in vector spaces

With this property, a minimum
<tore out spanning tree in the vector
the space distance recovers the tree.

o chef /
¢ food

L)

D
D
g
.
D
»
D
o
D
D
o
o

:
2
- -
> U
3 Y
;
; :
: :
: :
: :
; :

who 7 ¢
/was

The
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Finding trees in vector spaces

With this property, a minimum
<tore out spanning tree in the vector
the space distance recovers the tree.

;i chef /
¢ food

L)

J was
ran ¢ chef

D

out
who

. store food
6 S f i the
: : - Ol

who 7 ¢
/was

The
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Does BERT encode undirected parse trees
-> does there exist a distance transformation?

are min
5 B

/.

Find a single
transformation
B
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Does BERT encode undirected parse trees
-> does there exist a distance transformation?

Find a single
transformation
B

such that over all
sentences in PTB et s

traini THE ran s

ralnlﬂg who to of

80 o ystore food
the



Does BERT encode undirected parse trees
-> does there exist a distance transformation?

arg mm Z Z

(ePTB
/ | | | \I
Find a single Over all word
transformation pairs in each
B sentence

such that over all
sentences in PTB et s

traini THE ran s

ralnlﬂg who to of

81  ystore food
the



Does BERT encode undirected parse trees
-> does there exist a distance transformation?

l AP
argmm § E :‘dpath i,7) — | B(h; _hj)H2’
(ePTB
/ | | | \II \
Find a single Over all word The difference between tree
transformation pairs in each distance and squared vector
B sentence distance is minimized
such that over all
sentences in PTB chet S

training L Y
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Does BERT encode undirected parse trees
-> does there exist a distance transformation?

argmm Z g,g Z ‘dpath z ] HB(hf o hf)H%’

EEPTB
/ | | | \II \
Find a single Over all word The difference between tree
transformation pairs in each distance and squared vector
B sentence distance is minimized
such that over all
sentences in PTB chet S

training L Y

83 store food
the



Does BERT encode edge directions
-> does there exist a depth transformation?

Find a single
transformation
B

such that over all
sentences in PTB
training
84 11
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Does BERT encode edge directions
-> does there exist a depth transformation?

arg mm Z e, Z

KGPTB
/ H \I
Find a single Over all words in
transformation each sentence

B

such that over all
sentences in PTB
training

store



Does BERT encode edge directions
-> does there exist a depth transformation?

argmm g e, E ‘depthe HBthg’
EGPTB
/ ll \Il \ |
Find a single Over allwordsin  The difference between tree
transformation each sentence depth and squared vector
B norm is minimized

such that over all
sentences in PTB
training
86 1l



experiments & results

Evaluating ELMo, BERT, and baselines
Training structural probes on PTB train, evaluating on test.

Evaluate by comparing structural probe minimum spanning
trees to human-annotated parse trees.

Metrics:
Spearman correlation: true vs predicted distances/depths

UUAS: Unlabeled Undirected Attachment Score,
minimum spanning tree vs. gold tree



What percent of undirected edges
are predicted correctly? (PTB Test)

80

/0

60

50

40

Linear
chain tree

48.9

Structural
Probe on
Weighted
Average of
Word
Embeddings

51.7

Trees aren't well-encoded in baselines

Structural

Probe on
Random
BiLSTM

59.8

Baselines



But they are in trained representations!

% "qm'; Structural

o ® Probe on
m

T - Structural BERT

28 70 7 Sptrué: et Probe on Layer 15

o robe on FLMo 82.5
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Tree depth isn't well-encoded in baselines

Correlation between true parse
tree depths nad predicted depths

(PTB TEST)
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But it is In trained representations!

Correlation between true parse
tree depths nad predicted depths

(PTB TEST)
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Trees from structural probe parse distances
approximate parse trees pretty well!

Black (above sentence): Human-annotated parse tree
Teal (below sentence): Minimum spanning tree, structural probe on BERT

= =\

The complex financing plan in the S+L bailout law include ng $ 30 billion from debt issued by the newly created RTC

! HT\\ — /\—/V&/ /uwuv\ i
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Trees from structural probe parse distances
approximate parse trees pretty well!

Black (above sentence): Human-annotated parse tree
Teal (below sentence): Minimum spanning tree, structural probe on BERT

—nl = \ L=

The complex financing |plan in the S+L bailout law includes ng $ 30 billion from debt issued by the newly created RTC

! pﬁv\\ — /LQV&/ /uwuv\ i
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Trees on baseline representations don't
approximate gold trees well!

Black (above sentence): Human-annotated parse tree
Purple (below sentence): MST, structural probe on random-weights BiLSTM

T = T

The complex financing plan in the S+L bailout law includes raising $ 30 billion from debt issued by the newly created RTC
Nt 7 N N\~ N/ \_7 N/ N/ N AN NS

\ J
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Trees on baseline representations don't
approximate gold trees well!

Black (above sentence): Human-annotated parse tree
Purple (below sentence): MST, structural probe on random-weights BiLSTM

The complex financing plan in the S+L bailout law 1nc1udesl raising $ 30 billion from debt issued by the newly created RTC
X, i
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Predicted depths on BERT + ELMo

reconstruct parse depths well

grey circle: gold parse depth
red triangle: ELMo1 squared norm
blue square: BERT large 15 squared norm

Parse Depth
o The

-
o

0 5 10 15

Word Index

20
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Predicted depths on BERT + ELMo

reconstruct parse depths well

grey circle: gold parse depth
red triangle: ELMo1 squared norm
blue square: BERT large 15 squared norm
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Predicted depths on BERT + ELMo

reconstruct parse depths well

grey circle: gold parse depth
red triangle: ELMo1 squared norm
blue square: BERT large 15 squared norm
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Predicted depths on BERT + ELMo

reconstruct parse depths well

grey circle: gold parse depth
red triangle: ELMo1 squared norm
blue square: BERT large 15 squared norm
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Predicted depths on BERT + ELMo

reconstruct parse depths well

grey circle: gold parse depth
red triangle: ELMo1 squared norm
blue square: BERT large 15 squared norm

8
7 52
e .=
= . 5 e
o' v ES
Qs _cogcc
L, |—UL|:m._
& A —
== A
2 20 e , ¢
1 ®

-
o

0 5 10 15 20

Word Index 100



Predicted depths on BERT + ELMo

reconstruct parse depths well

grey circle: gold parse depth
red triangle: ELMo1 squared norm
blue square: BERT large 15 squared norm
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Predicted depths on BERT + ELMo

reconstruct parse depths well

grey circle: gold parse depth
red triangle: ELMo1 squared norm
blue square: BERT large 15 squared norm
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Predicted depths on BERT + ELMo

reconstruct parse depths well

grey circle: gold parse depth
red triangle: ELMo1 squared norm
blue square: BERT large 15 squared norm

newly
created

)
< @)
- —
8 = ®) o D:
o0 —1 O QO >
7 X - (|)+__ c S_Qg 0
< oD wr=s = (T O O 2 u
8 . o O SN Q> mEE_g._ L
© U € © T ,, o0 a
S| 2EE..s TP BEsT. 80
B 1 Cic-8gg TL296 “ae
i 5 o @ U - o @
o A A
é A C
2 o0 , o = A @ o
1
o A' @
0 @

Word Index | 103



Syntax geometry differs between layers

-l BERTLARGE DSpr.
@+ BERTBASE DSpr.
-k ELMo DSpr.
—i—- BERTLARGE UUAS
—8— BERTBASE UUAS
—&— ELMo UUAS

1234567 89101112131415161718192021222324

Hidden Layer Index
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More visualizations of structural probe

Visualizing and Measuring the Geometry of BERT

Andy Coenen; Emily Reif; Ann Yuan™
Been Kim, Adam Pearce, Fernanda Viégas, Martin Wattenberg
Google Brain
Cambridge, MA
{andycoenen,ereif,,annyuan,beenkim,adampearce,viegas,wattenberg}@google.com
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“The sale of Southern Optical is a part of the program.”

Optical
of ©Southern d<outhern program tge
Ratio between 42 and tree distance
| - == Ground truth dependency
0.25 0.5 1 2 4 ==== No ground truth dependency, & < 1.5

[Reif et al., 2019]



“Factories booked $236.74 billion in orders in September, nearly the
same as the $236.79 billion in August, the Commerce Department said.”

o Commerce
ongDepartlent
O. o Sl?.d
Factories August
in oin
Q September
ooked ¥ 1
g othe the
orders onearly
adn R billion
August ©236.79
236.79 obillion
in 0236.74
Ratio between 42 and tree distance
| . B =~ Ground truth dependency
0.25 0.5 1 2 4 ==== No ground truth dependency, d* < *

[Reif et al., 2019]
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Probing results can be hard to interpret

Supervised classifiers are powerful even when simple, and it can be unclear
what you’re learning about the representation itself.

You can learn good classifiers on top of lots of representations.
How do we know what a probing accuracy means?

108
[Hewitt and Liang, 2019]
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Stanford INLP

Lecture 20: Analysis and Interpretability of Neural NLP

N Ok owbd =

Motivation: what are our models doing?

Neural networks as linguistic test subjects

Careful ablation studies and architecture modifications
Analysis of inherently interpretable architectures
Playing the adversary: breaking NLP models
Analyzing representations using supervised methods
Aggregating analysis insights across studies
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Aggregating analyses in surveys and toolkits

Each analysis paper asks a very specific question.
How do we ask, what does the field currently know about BERT?
Answer: meta-studies compiling results

Analysis Methods in Neural Language Processing: A Survey A Primer in BERTology: What we know about how BERT works

Yonatan Belinkov'? and James Glass!
Anna Rogers, Olga Kovaleva, Anna Rumshisky

IMIT Computer Science and Artificial Intelligence Laboratory Department of Computer Science, University of Massachusetts Lowell
2Harvard School of Engineering and Applied Sciences Lowell, MA 01854
Cambridge, MA, USA {arogers, okovalev, arum}@cs.uml.edu

{belinkov, glass}@mit.edu
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M/E Aggregating analyses in surveys and toolkits

How do we ask, what can | easily find out about my model?

Answer: interpretability toolkits!

AllenNLP Interpret:
A Framework for Explaining Predictions of NLP Models

Eric Wallace!  Jens Tuyls? Junlin Wang?  Sanjay Subramanian'
Matt Gardner!  Sameer Singh?

! Allen Institute for Artificial Intelligence ~ 2University of California, Irvine
ericw@allenai.org, sameer@uci.edu

Input Reduction A

Input Reduction removes as many words from the input as possible without changing the
model's prediction.

Original Premise: Two women are wandering along the shore drinking iced tea.

Original Hypothesis: .-.-.'-.---- politics

Reduced Hypothesis: politics
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Takeaways

Neural models are complex, fascinating objects that we don’t currently
understand, but we're making strides to understand them better!

A wide variety of analysis methods have been developed, for:
- Understanding a model’s behavior on specific phenomena
- Understanding what a model learns about a topic or task
- Understanding what seemingly innocuous input changes make a model
fail
- Many other things, with more coming every day!

These methods can be integrated into your future NLP projects!
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