Natural Language Processing with Deep Learning

CS224N/Ling284

John Hewitt

Analysis and Interpretability of Neural NLP

Course Logistics

Final Project Report

- Due Saturday, March 14 at 11:59 PM PST
 - 1 late day: Sunday, March 15 at 11:59 PM PST
 - 2 late days: Monday, March 16 at 11:59 PM PST
 - 3 late days: Tuesday, March 17 at 4:30 PM PST

Final Project Poster

- Zoom 3-minute poster presentations with 2 TAs and a cohort of ~14 other teams
 - Monday, March 16 at 5PM 7PM PST
 - Monday, March 16 at 7.30PM 9:30PM PST
 - Tuesday, March 17 at 9AM 11AM PST
- Fill out the form on Piazza with your time preferences

Lecture Outline

Lecture 20: Analysis and Interpretability of Neural NLP

- 1. Motivation: what are our models doing? (10 mins)
- 2. Neural networks as linguistic test subjects (10 mins)
- 3. Careful ablation studies and architecture modifications (5 mins)
- 4. Analysis of inherently interpretable architectures (5 mins)
- 5. Playing the adversary: breaking NLP models (5 mins)
- 6. Analyzing representations using supervised methods (35 mins)
- 7. Aggregating analysis insights across studies (10 mins)

Motivation: what are our models doing?

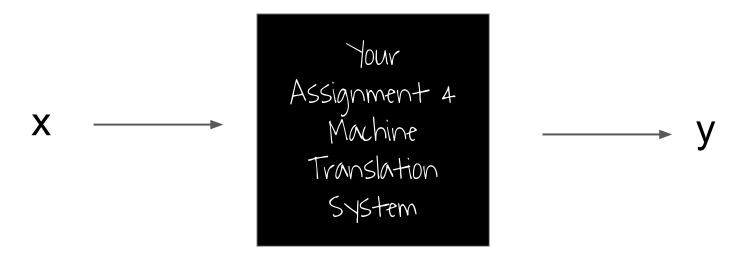
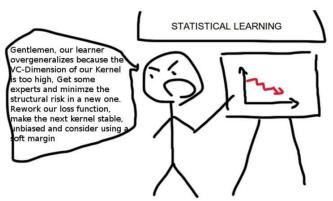


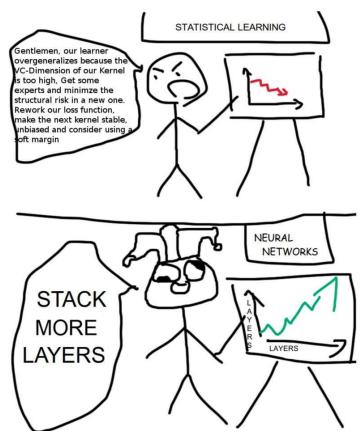
Fig 1: A black box

It is not clear what *functions* our algorithms learn, and their complexity precludes exact understanding

Motivation: how do we make models better?

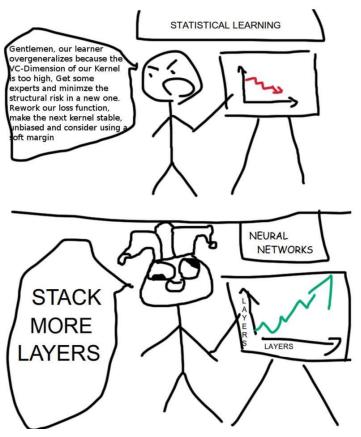


Motivation: how do we make models better?



[Reddit; source unknown]

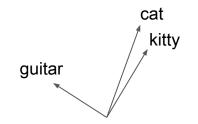
Motivation: how do we make models better?

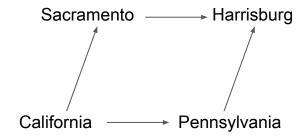


What we've seen: simple analyses of word2vec

Bold type: Math property

Italic type: interpretation





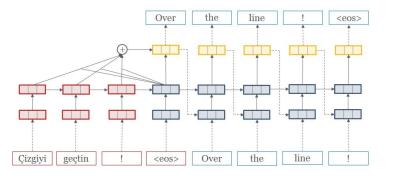
We interpret **cosine similarity** as *semantic similarity*

Some *relationships* are encoded as **vector differences**

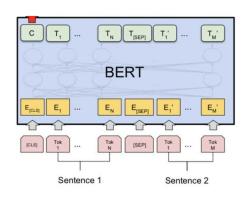
Knowing what *properties* word embeddings have: useful for practitioners! Knowing that word embeddings encode *undesirable social biases*: useful for everyone!

Neural networks are worthy subjects of study

Machine Translation



Language Modeling



Question Answering

The first recorded travels by Europeans to China and back date from this time. The most famous traveler of the period was the Venetian Marco Polo, whose account of his trip to "Cambaluc," the capital of the Great Khan, and of life there astounded the people of Europe. The account of his travels, Il millione (or, The Million, known in English as the Travels of Marco Polo), appeared about the year 1299. Some argue over the accuracy of Marco Polo's accounts due to the lack of mentioning the Great Wall of China, tea houses, which would have been a prominent sight since Europeans had yet to adopt a tea culture, as well the practice of foot binding by the women in capital of the Great Khan. Some suggest that Marco Polo acquired much of his knowledge through contact with Persian traders since many of the places he named were in Persian.

How did some suspect that Polo learned about China instead of by actually visiting it?

Answer: through contact with Persian traders

It's wild that any of our models work at all

- Their behavior is an emergent property of data and our design decisions
- Accuracy on a held out test set is not sufficient to fully characterize them

Lecture Outline

Lecture 20: Analysis and Interpretability of Neural NLP

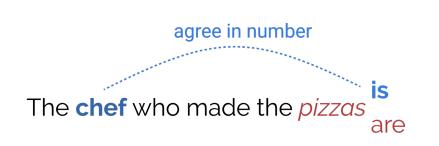
- Motivation: what are our models doing?
- 2. Neural networks as linguistic test subjects
- 3. Careful ablation studies and architecture modifications
- 4. Analysis of inherently interpretable architectures
- 5. Playing the adversary: breaking NLP models
- 6. Analyzing representations using supervised methods
- 7. Aggregating analysis insights across studies

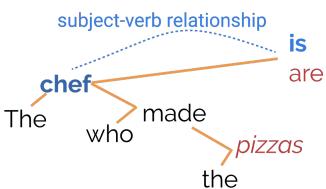
How do we understand language behavior in **humans**? One method: *minimal pairs. What sounds "okay" to a speaker?*

The chef who made the pizzas is ← "Acceptable"

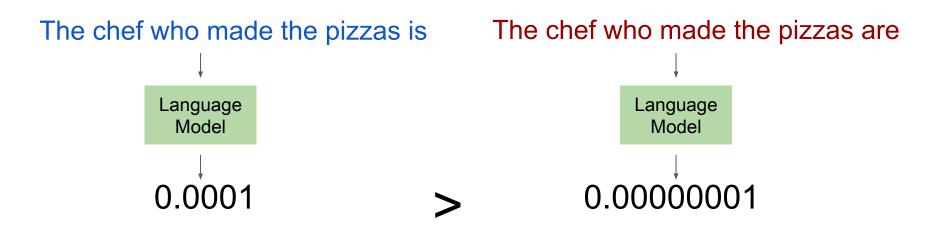
*The chef who made the pizzas are ← "Unacceptable"

Idea: English present-tense verbs agree in number with their subject.





How do we understand language behavior in **language models**? One method: *minimal pairs. Is the acceptable sentence higher-probability?*

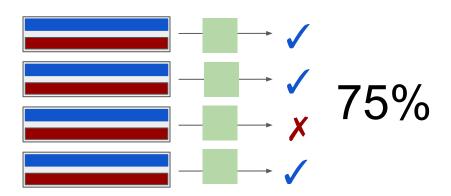


Premise: A language model should assign higher probability to the acceptable sentence in any minimal pair.

Linzen et al., 2016

Steps to conduct a *minimal pairs* test on a language model:

- 1. Gather or construct a test set of minimal pairs which require specific aspects of understanding to distinguish.
- 2. Run your language model on the pairs, and report percent of pairs the model predicts as desired.



Example: Do LMs show Subject-Verb number agreement across attractors?

The chef who made the pizzas and talked to the customers is subject attractor attractor verb

	n=0	n=1	n=2	n=3	n=4	4
Random	50.0	50.0	50.0	50.0	50.0	_
Majority	32.0	32.0	32.0	32.0	32.0	_
LSTM, H=50 [†]	6.8	32.6	≈50	≈65	≈70	-
Our LSTM, H=50	2.4	8.0	15.7	26.1	34.65	-
Our LSTM, H=150	1.5	4.5	9.0	14.3	17.6	
Our LSTM, H=250	1.4	3.3	5.9	9.7	13.9	
Our LSTM, H=350	1.3	3.0	5.7	9.7	13.8	_
1B Word LSTM (repl)	2.8	8.0	14.0	21.8	20.0	
Char LSTM	1.2	5.5	11.8	20.4	27.8	+

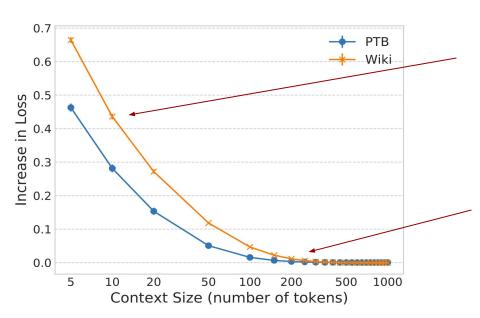
of attractors between subject and verb

Error rate on a large corpus of minimal pairs

LMs do *really* well!?

[Kuncoro et al., 2018]

Method: Modify the test set to remove long contexts, or replace them with longer words. Evaluate whether the LM perplexity changes.



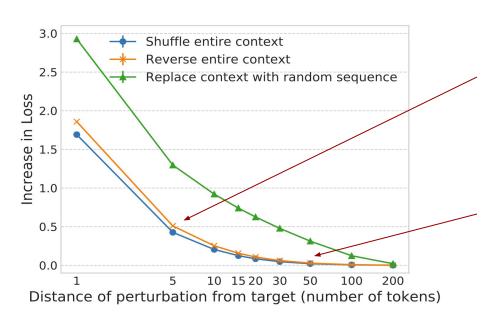
Only giving the LM 10 words of context at test time makes the test error go up.

Only giving the LM 250 words of context *doesn't change its loss*, so it's not using contexts longer than 250 words much.

Question: How does an LSTM language model use its long-distance contexts?

Method: Modify the test set to remove long contexts, or replace them with longer words. Evaluate whether the LM perplexity changes.

Method: Modify the test set to remove long contexts, or replace them with longer words. Evaluate whether the LM perplexity changes.

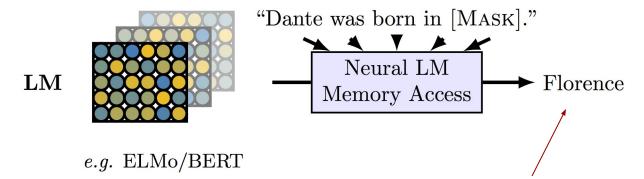


Shuffling the order of the context further than 5 words away increases loss, so the LM cares about word order past 5 words.

Shuffling the word order of the context further than 50 words away *doesn't* increase loss, so the LM treats words 50-250 effectively as a bag-of-words.

Question: Do LMs memorize factual relations?

Method:



Check if most likely word under the LM is a correct answer.

Eval: % of these relations for which this holds.

Question: Do LMs memorize factual relations?

Evaluation:

Baseline: Return word that shows up most with the subject (Dante) and the relation (born in) BERT-base and BERT-large: memorize a surprising number of facts

Corpus	Relation	Statistics		Base	Baselines		KB			LM			
		#Facts	#Rel	Freq	DrQA	RE_n	RE_o	Fs	Txl	Eb	E5B	Bb	Bl
Google-RE	birth-place	2937	1	4.6	-	3.5	13.8	4.4	2.7	5.5	7.5	14.9	16.1
	birth-date	1825	1	1.9	2. 	0.0	1.9	0.3	1.1	0.1	0.1	1.5	1.4
	death-place	765	1	6.8	-	0.1	7.2	3.0	0.9	0.3	1.3	13.1	14.0
	Total	5527	3	4.4	-	1.2	7.6	2.6	1.6	2.0	3.0	9.8	10.5

Lecture Outline

Lecture 20: Analysis and Interpretability of Neural NLP

- Motivation: what are our models doing?
- 2. Neural networks as linguistic test subjects
- 3. Careful ablation studies and architecture modifications
- 4. Analysis of inherently interpretable architectures
- 5. Playing the adversary: breaking NLP models
- 6. Analyzing representations using supervised methods
- 7. Aggregating analysis insights across studies

Viewing model studies as network analysis

Question: What is necessary, or even *good*, about my network design? Method: Make targeted model changes; observe validation accuracy

Ex: The Transformer interleaves self-attention with feed-forward layers

Viewing model studies as network analysis

Question: What is necessary, or even *good*, about my network design? Method: Make targeted model changes; observe validation accuracy

Ex: The Transformer interleaves self-attention with feed-forward layers

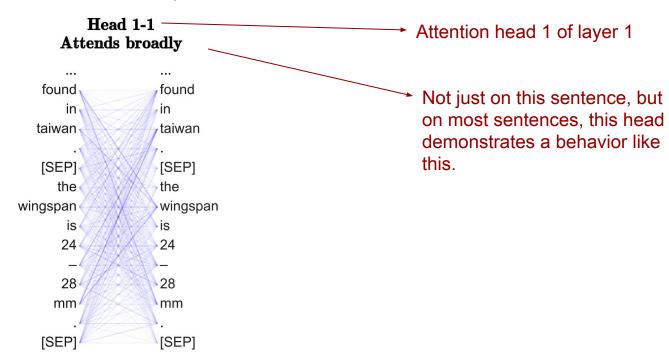
sfsfsfsfsfsfsfsfsfsfsfsf → 18.40 PPL

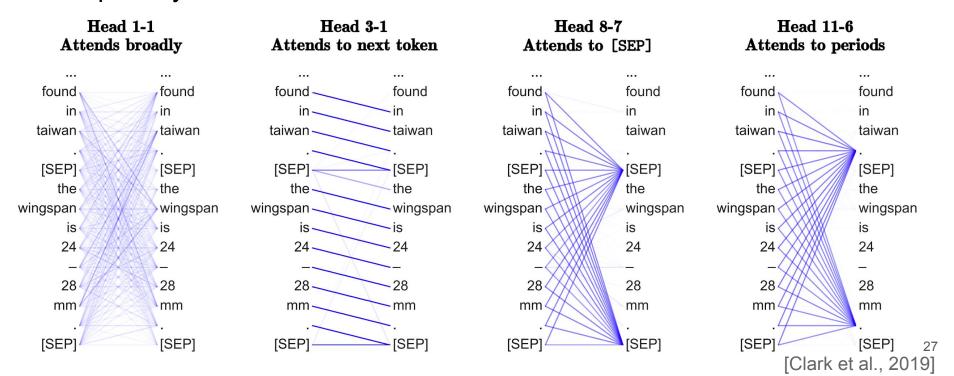
But what if we re-ordered them?

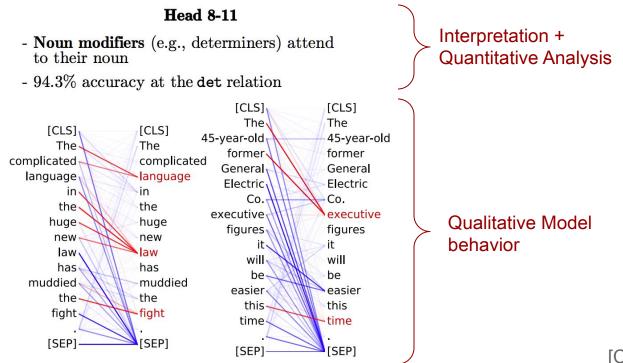
Lecture Outline

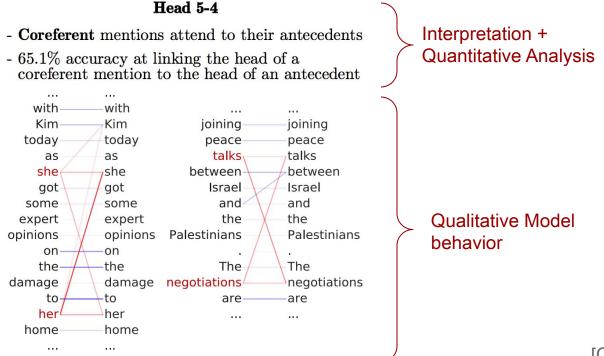
Lecture 20: Analysis and Interpretability of Neural NLP

- 1. Motivation: what are our models doing?
- 2. Neural networks as linguistic test subjects
- 3. Careful ablation studies and architecture modifications
- 4. Analysis of inherently interpretable architectures
- 5. Playing the adversary: breaking NLP models
- 6. Analyzing representations using supervised methods
- 7. Aggregating analysis insights across studies









Understanding representations by inspection

Are individual hidden units in recurrent neural networks interpretable?

Cell sensitive to position in line:

```
The sole importance of the crossing of the Berezina lies in the fact that it plainly and indubitably proved the fallacy of all the plans for cutting off the enemy's retreat and the soundness of the only possible line of action--the one Kutuzov and the general mass of the army demanded--namely, simply to follow the enemy up. The French crowd fled at a continually increasing speed and all its energy was directed to reaching its goal. It fled like a wounded animal and it was impossible to block its path. This was shown not so much by the arrangements it made for crossing as by what took place at the bridges. When the bridges broke down, unarmed soldiers, people from Moscow and women with children who were with the French transport, all--carried on by vis inertiae--pressed forward into boats and into the ice-covered water and did not, surrender.
```


Understanding representations by inspection

Are individual hidden units in recurrent neural networks interpretable?

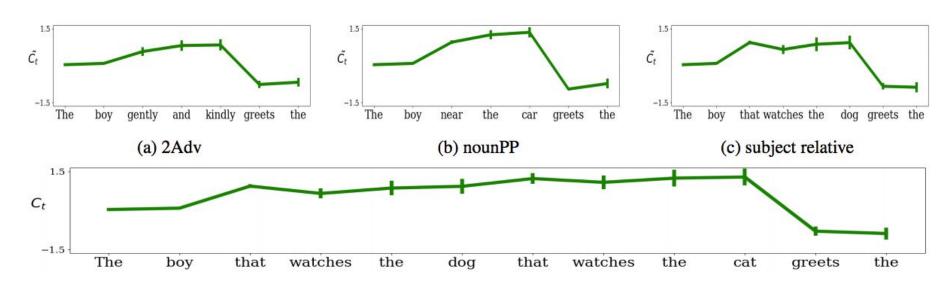
```
Cell that turns on inside quotes:
```

```
"You mean to imply that I have nothing to eat out of.... On the contrary, I can supply you with everything even if you want to give dinner parties," warmly replied Chichagov, who tried by every word he spoke to prove his own rectitude and therefore imagined Kutuzov to be animated by the same desire.
```

```
Kutuzov, shrugging his shoulders, replied with his subtle penetrating smile: "I meant merely to say what I said."
```


Understanding representations by inspection

Are individual hidden units in recurrent neural networks interpretable?



Interpretation: this LSTM cell unit fires approximately between a subject and its verb

Lecture Outline

Lecture 20: Analysis and Interpretability of Neural NLP

- Motivation: what are our models doing?
- 2. Neural networks as linguistic test subjects
- 3. Careful ablation studies and architecture modifications
- 4. Analysis of inherently interpretable architectures
- 5. Playing the adversary: breaking NLP models
- 6. Analyzing representations using supervised methods
- 7. Aggregating analysis insights across studies

Understanding models by breaking them

Question: Are our models robust to innocuous changes in their input? By robust, in this case we mean their outputs do not change.

Article: Super Bowl 50

Paragraph: "Peyton Manning became the first quarter-back ever to lead two different teams to multiple Super Bowls. He is also the oldest quarterback ever to play in a Super Bowl at age 39. The past record was held by John Elway, who led the Broncos to victory in Super Bowl XXXIII at age 38 and is currently Denver's Executive Vice President of Football Operations and General Manager.

The performance of this QA model on this input looks good!

Question: "What is the name of the quarterback who

was 38 in Super Bowl XXXIII?"

Original Prediction: John Elway

Understanding models by breaking them

Question: Are our models robust to innocuous changes in their input? By robust, in this case we mean their outputs do not change.

Article: Super Bowl 50

Paragraph: "Peyton Manning became the first quarter-back ever to lead two different teams to multiple Super Bowls. He is also the oldest quarterback ever to play in a Super Bowl at age 39. The past record was held by John Elway, who led the Broncos to victory in Super Bowl XXXIII at age 38 and is currently Denver's Executive Vice President of Football Operations and General Manager. Quarterback Jeff Dean had jersey number 37 in Champ Bowl XXXIV."

Question: "What is the name of the quarterback who

was 38 in Super Bowl XXXIII?"
Original Prediction: John Elway

The performance of this QA model on this input looks good!

This sentence is irrelevant; adding it does not change the answer.

Understanding models by breaking them

Question: Are our models robust to innocuous changes in their input? By robust, in this case we mean their outputs do not change.

Article: Super Bowl 50

Paragraph: "Peyton Manning became the first quarter-back ever to lead two different teams to multiple Super Bowls. He is also the oldest quarterback ever to play in a Super Bowl at age 39. The past record was held by John Elway, who led the Broncos to victory in Super Bowl XXXIII at age 38 and is currently Denver's Executive Vice President of Football Operations and General Manager. Quarterback Jeff Dean had jersey number 37 in Champ Bowl XXXIV."

Question: "What is the name of the quarterback who was 38 in Super Bowl XXXIII?"

Original Prediction: John Elway

Prediction under adversary: Jeff Dean

The performance of this QA model on this input looks good!

This sentence is irrelevant; adding it does not change the answer.

But it changes the model's prediction :(

Interpretation: model is not really working

Question: Are our models robust to innocuous changes in their input?

In the United States especially, several high-profile cases such as Debra LaFave, Pamela Rogers, and Mary Kay Letourneau have caused increased scrutiny on teacher misconduct.

(a) Input Paragraph

Q: What has been the result of this publicity?

A: increased scrutiny on teacher misconduct

(b) Original Question and Answer

The performance of this QA model on this input looks good!

Question: Are our models robust to innocuous changes in their input?

In the United States especially, several high-profile cases such as Debra LaFave, Pamela Rogers, and Mary Kay Letourneau have caused increased scrutiny on teacher misconduct.

(a) Input Paragraph

Q: What has been the result of this publicity?

A: increased scrutiny on teacher misconduct

(b) Original Question and Answer

Q: What haL been the result of this publicity?

A: teacher misconduct

(c) Adversarial Q & A (Ebrahimi et al., 2018)

The performance of this QA model on this input looks good!

This typo is annoying, but a reasonable language learner would be robust to it.

Question: Are our models robust to innocuous changes in their input?

In the United States especially, several high-profile cases such as Debra LaFave, Pamela Rogers, and Mary Kay Letourneau have caused increased scrutiny on teacher misconduct.

(a) Input Paragraph

Q: What has been the result of this publicity?

A: increased scrutiny on teacher misconduct

(b) Original Question and Answer

Q: What haL been the result of this publicity?

A: teacher misconduct

(c) Adversarial Q & A (Ebrahimi et al., 2018)

Q: What's been the result of this publicity?

A: teacher misconduct

(d) Semantically Equivalent Adversary

The performance of this QA model on this input looks good!

This typo is annoying, but a reasonable language learner would be robust to it.

Changing what has to what's should never change the answer!

Question: Are our models robust to typos or noise in their input?

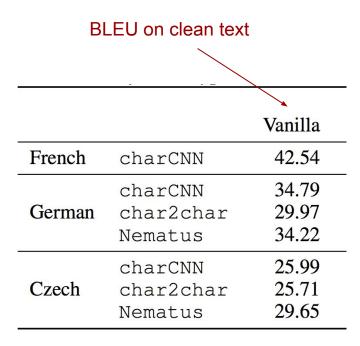
Question: Are Question: Are questions robust to typos or noise in their input?

Question: Are Question: Are robust to typos or noise in their input?

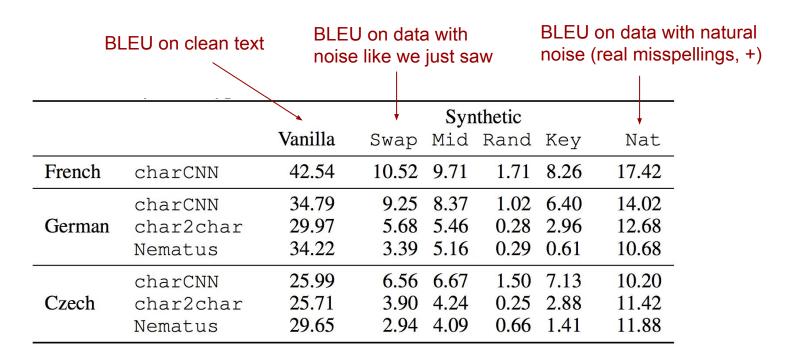
"Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the ltteers in a wrod are, the olny iprmoetnt tihng is taht the frist and lsat ltteer be at the rghit pclae."

Just 1 data point/meme, but interpretation: humans are!

Question: Are our models robust to typos or noise in their input?



Question: Are our models robust to typos or noise in their input?



Lecture Outline

Lecture 20: Analysis and Interpretability of Neural NLP

- Motivation: what are our models doing?
- 2. Neural networks as linguistic test subjects
- 3. Careful ablation studies and architecture modifications
- 4. Analysis of inherently interpretable architectures
- 5. Playing the adversary: breaking NLP models
- 6. Analyzing representations using supervised methods
- 7. Aggregating analysis insights across studies

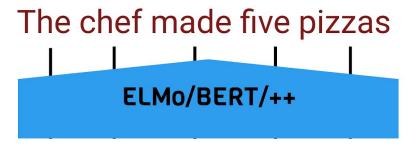
Hypothesis:

Neural models, especially large ones like BERT, perform well without any explicit linguistic supervision in part because they learn similar notions themselves.

Question:

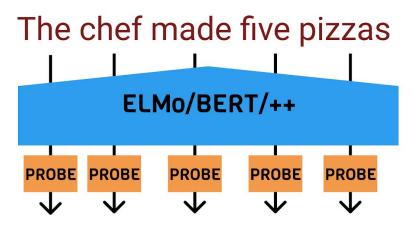
Do neural networks' internal representations encode linguistic notions of structure, like *parts-of-speech*, *dependency trees*, *named entities*?

Does my network make task (e.g., part-of-speech) labels accessible?



Does my network make task (e.g., part-of-speech) labels accessible?

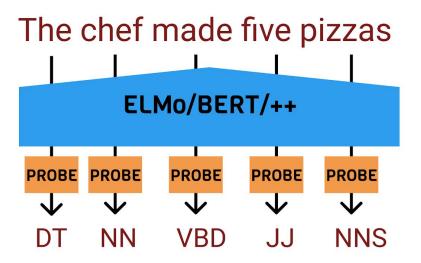
Choose a function family to decode the task. (e.g., linear)



Does my network make task (e.g., part-of-speech) labels accessible?

Choose a function family to decode the task. (e.g., linear)

Train a function representations --> task

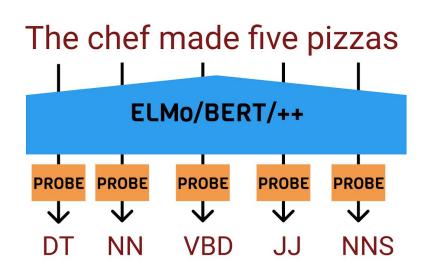


Does my network make task (e.g., part-of-speech) labels accessible?

Choose a function family to decode the task. (e.g., linear)

Train a function representations --> task

Interpret accuracy on held-out data

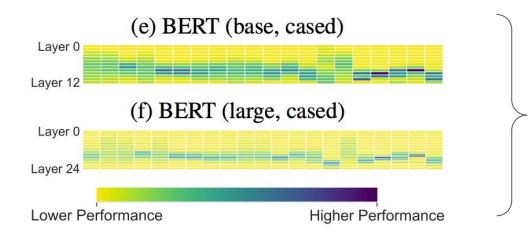


(Don't fine-tune the model while doing this!)

Pretrained Representation			PC	OS					Supersense ID			
	Avg.	CCG	PTB	EWT	Chunk	NER	ST	GED	PS-Role	PS-Fxn	EF	
BERT (base, cased) best layer BERT (large, cased) best layer	84.09 85.07	93.67 94.28		95.21 95.80	92.64 93.64		93.72 93.83		79.61 79.17	87.94 90.13	75.11 76.25	
GloVe (840B.300d)	59.94	71.58	90.49	83.93	62.28	53.22	80.92	14.94	40.79	51.54	49.70	
Previous state of the art (without pretraining)	83.44	94.7	97.96	95.82	95.77	91.38	95.15	39.83	66.89	78.29	77.10	

Interpretation 1: BERT's representations, when used as features for a linear classifier, lead to high accuracy on linguistic tasks; this is evidence that BERT makes these properties linearly accessible.

Interpretation 2: BERT-large seems to perform better than BERT-base, indicating that it may learn better representations of linguistic properties.



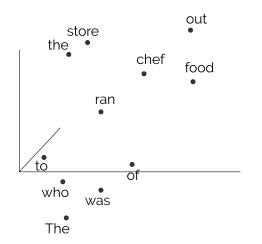
accessible in middle layers

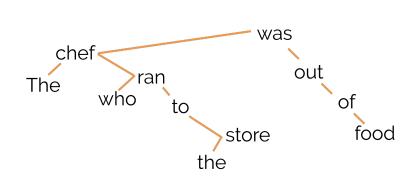
Interpretation: BERT makes

linguistic properties most

Figure 3: A visualization of layerwise patterns in task performance. Each column represents a probing task, and each row represents a contextualizer layer.

Question: Can we ask questions about structure in neural representations?



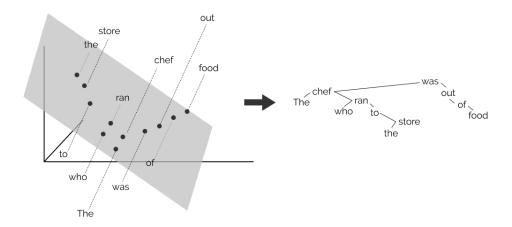


A neural (vector) representation

A structured linguistic representation

Let's walk through a whole analysis paper, step-by-step

A Structural Probe for Finding Syntax in Word Representations



Do *ELMo and BERT* encode English dependency trees in their *contextual* representations?

Do *ELMo and BERT* encode English dependency trees in their *contextual* representations?

How do we ask whether vector representations encode trees?

tl;dr answers

Do *ELMo and BERT* encode English dependency trees in their *contextual* representations?

How do we ask whether vector representations encode trees?

By **structural probes**: look at the geometry! A hypothesis for syntax in word representations.

tl;dr answers

Do *ELMo and BERT* encode English dependency trees in their *contextual* representations?

We provide evidence for yes, approximately!

How do we ask whether vector representations encode trees?

By **structural probes**: look at the geometry! A hypothesis for syntax in word representations.

Outline

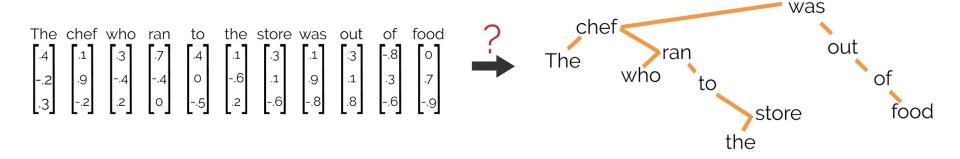
1. connecting vector spaces and trees

2. The **structural probe** method

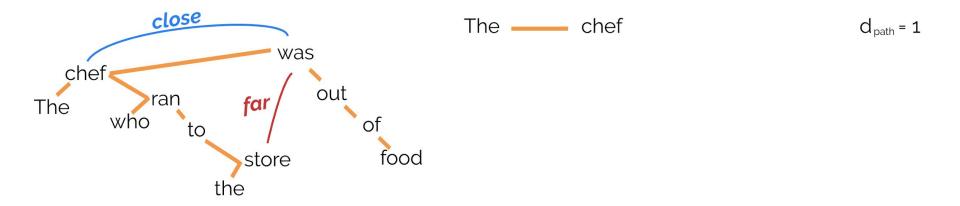
3. Results and pictures and fun

Are vector spaces and trees reconcilable?

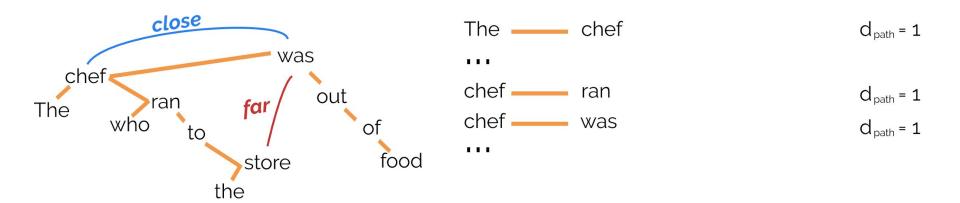
Are vector space representations in NLP reconcilable with the discrete (syntactic) tree structures hypothesized in language?



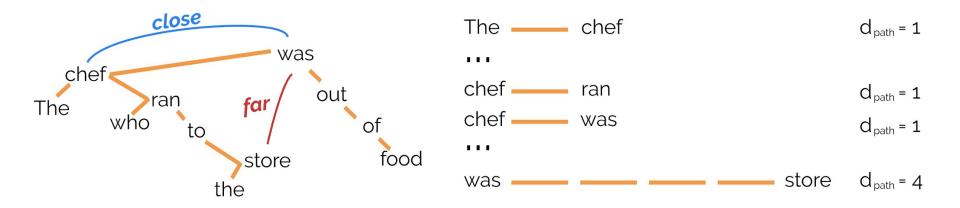
An **undirected tree** defines a **distance metric** on pairs of words, the path metric: the number of edges in the path between the words.



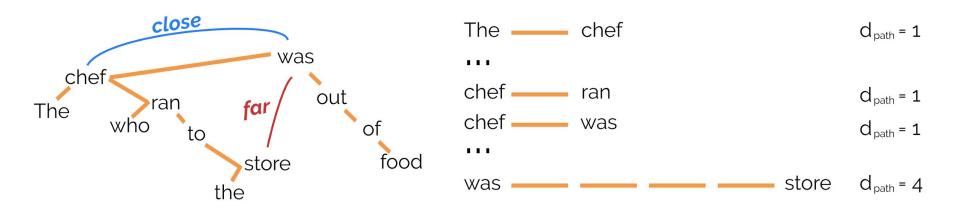
An undirected tree defines a distance metric on pairs of words, the path metric: the number of edges in the path between the words.



An **undirected tree** defines a **distance metric** on pairs of words, the path metric: the number of edges in the path between the words.



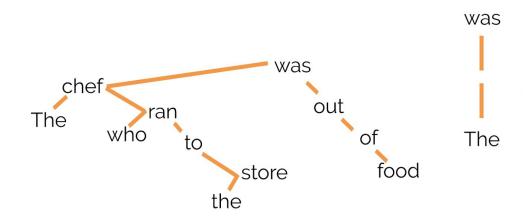
An **undirected tree** defines a **distance metric** on pairs of words, the path metric: the number of edges in the path between the words.



The edges of the tree can be recovered by looking at all distance=1 pairs.

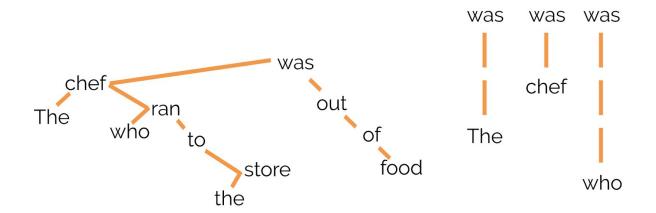
Norms unify edge directions and vectors

A **rooted tree** defines a **norm** on the words, the parse depth: the number of edges from each word to ROOT.



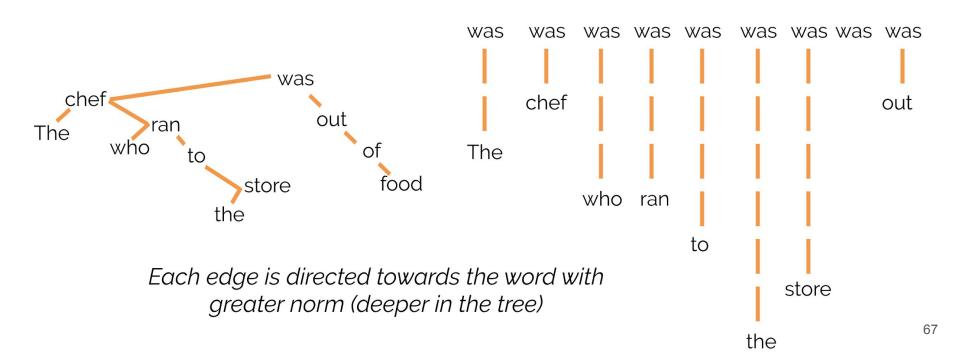
Norms unify edge directions and vectors

A **rooted tree** defines a **norm** on the words, the parse depth: the number of edges from each word to ROOT.



Norms unify edge directions and vectors

A **rooted tree** defines a **norm** on the words, the parse depth: the number of edges from each word to ROOT.

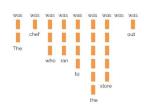


summary

chef ran out
The who to of store food

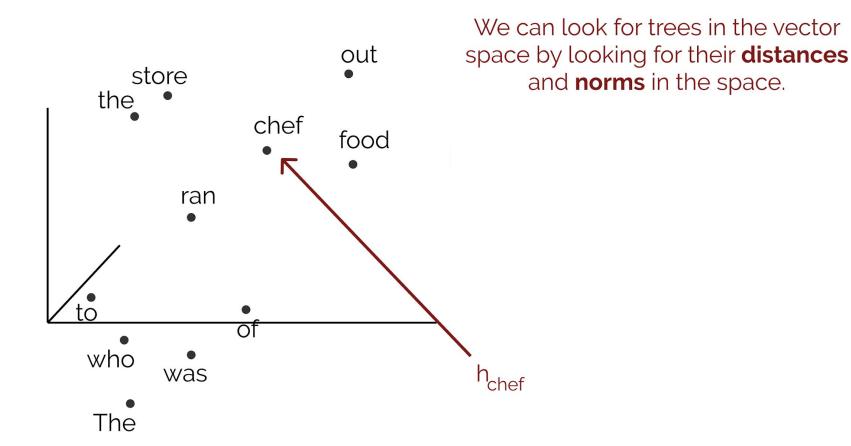
distance unifies undirected trees and vector space

norm unifies edge directions and vector space

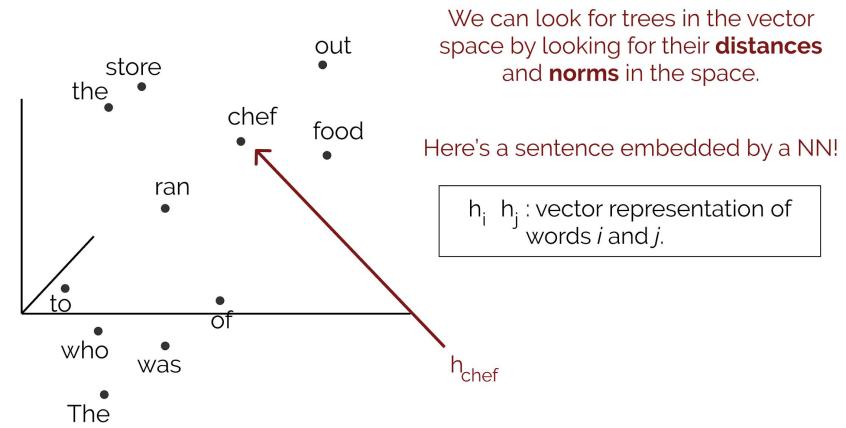


The structural probe method

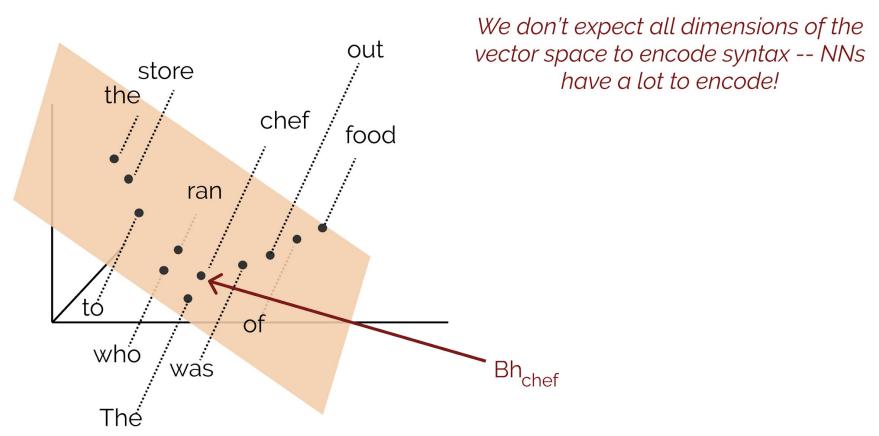
Finding trees in vector spaces

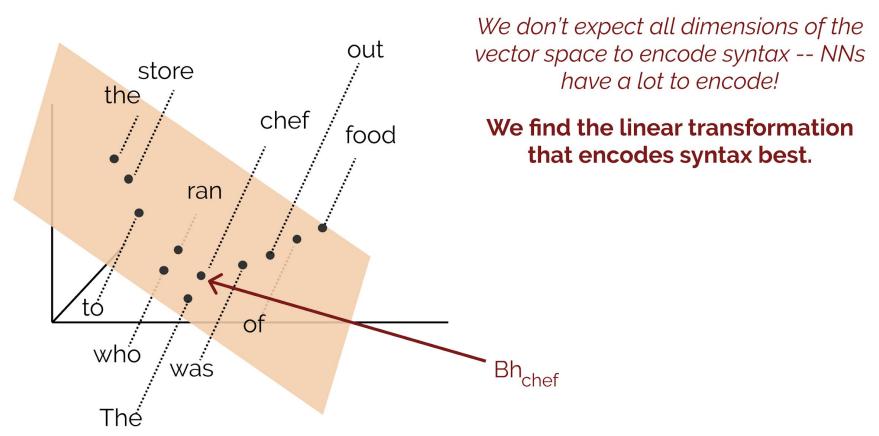


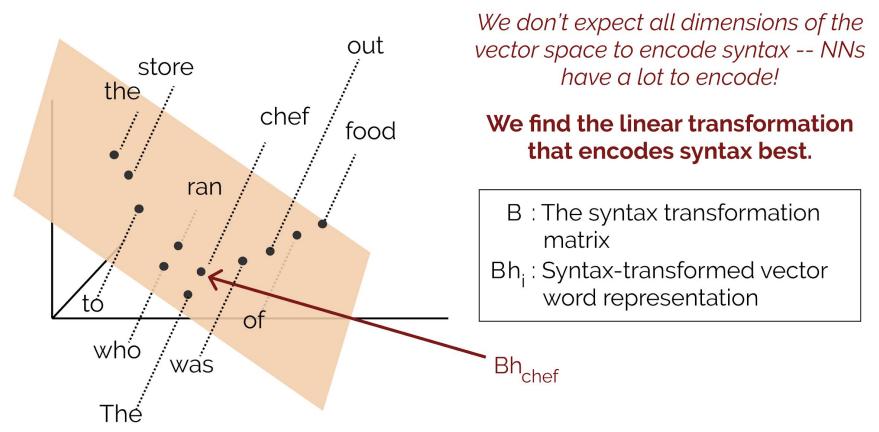
Finding trees in vector spaces

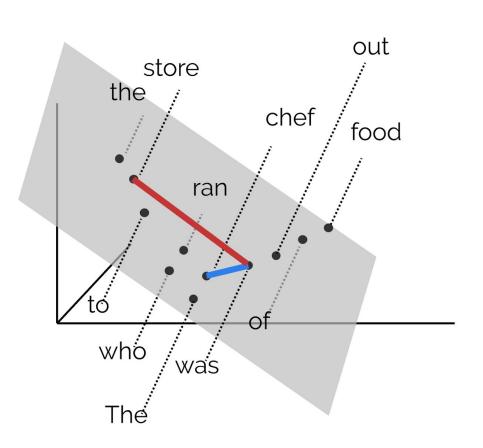


Finding trees in vector spaces

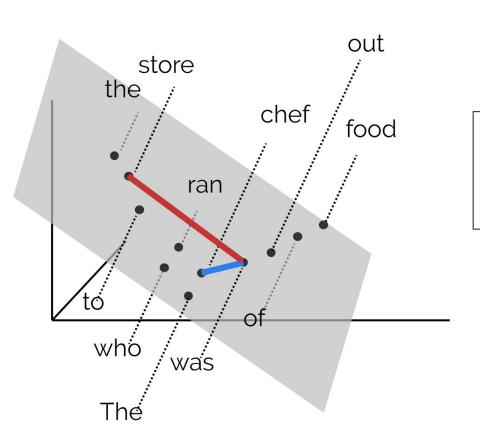






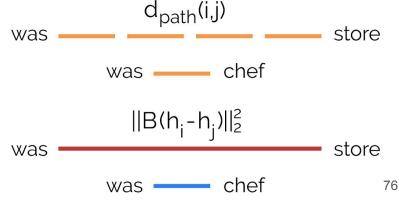


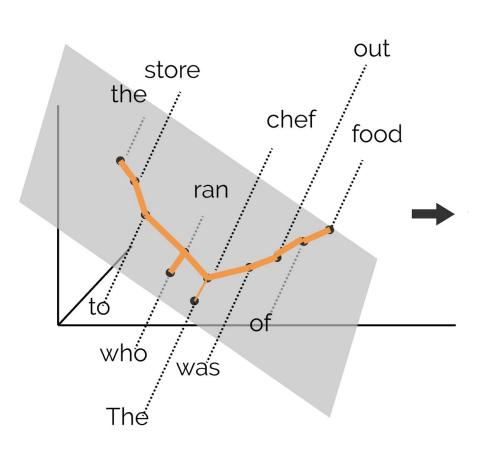
In the transformed space, (squared) L2 distance approximates tree distance.



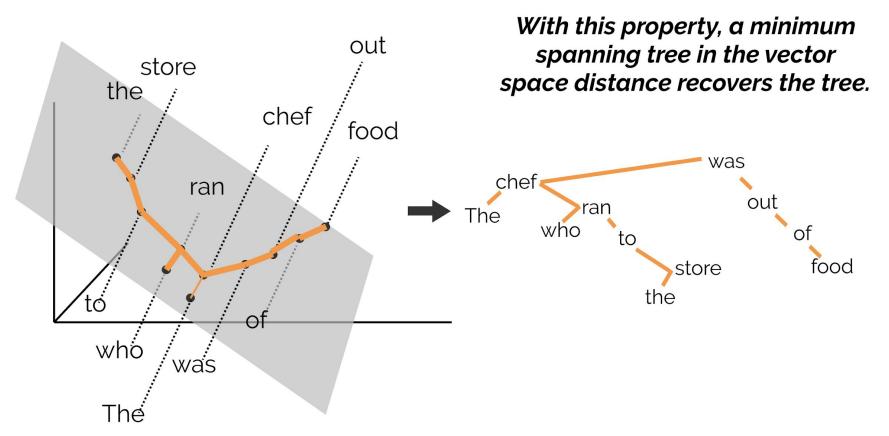
In the transformed space, (squared) L2 distance approximates tree distance.

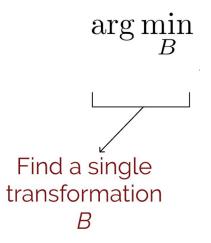
 $d_{path}(i,j)$: Tree path distance $\|B(h_i - h_j)\|_2^2$: Squared Vector space distance ($\|h_i - h_j\|_B^2$)

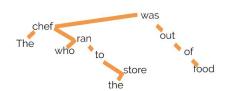


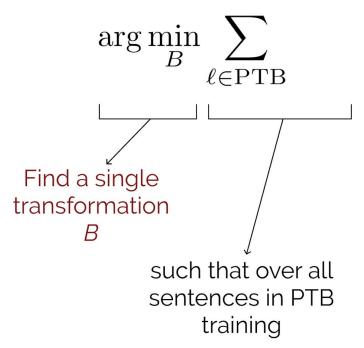


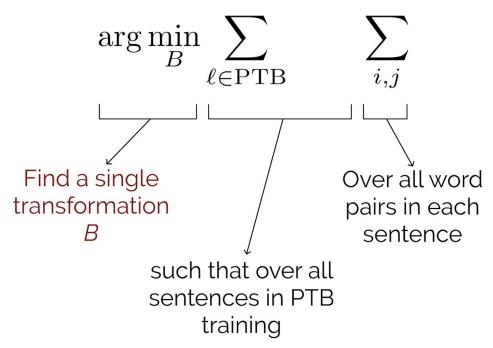
With this property, a minimum spanning tree in the vector space distance recovers the tree.

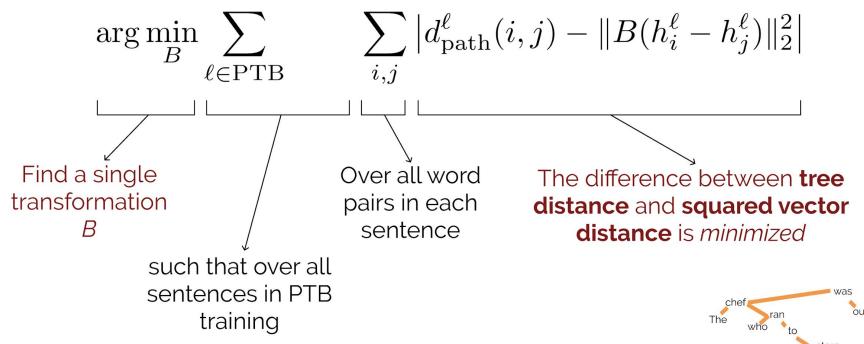


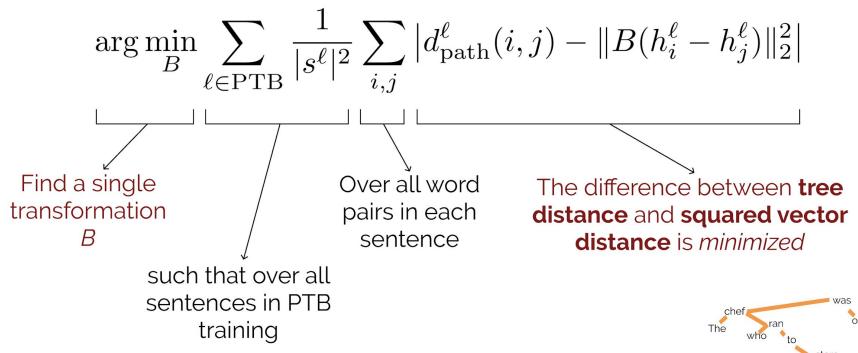




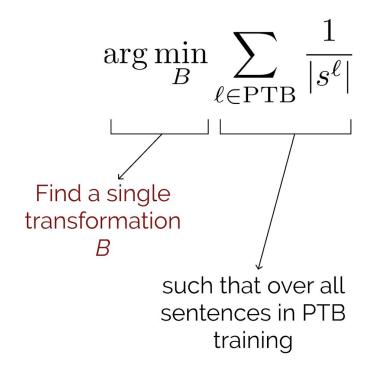


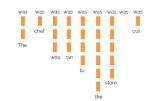




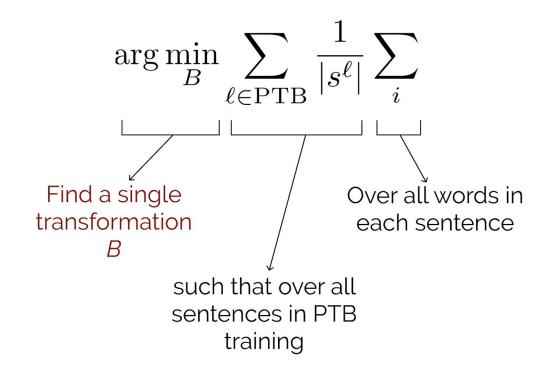


Does BERT encode edge directions -> does there exist a *depth* transformation?

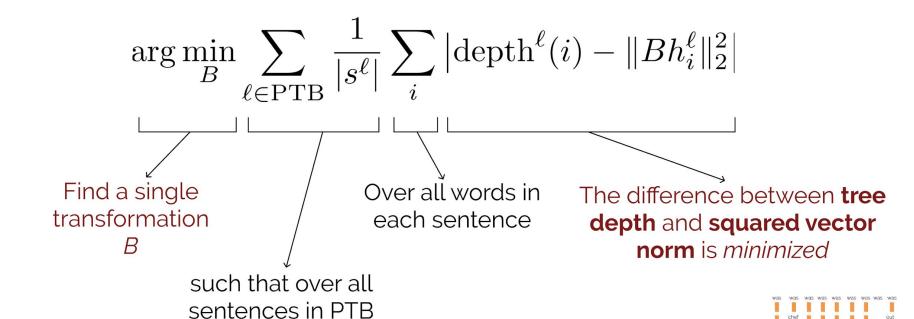




Does BERT encode edge directions -> does there exist a *depth* transformation?



Does BERT encode edge directions -> does there exist a *depth* transformation?



training

experiments & results

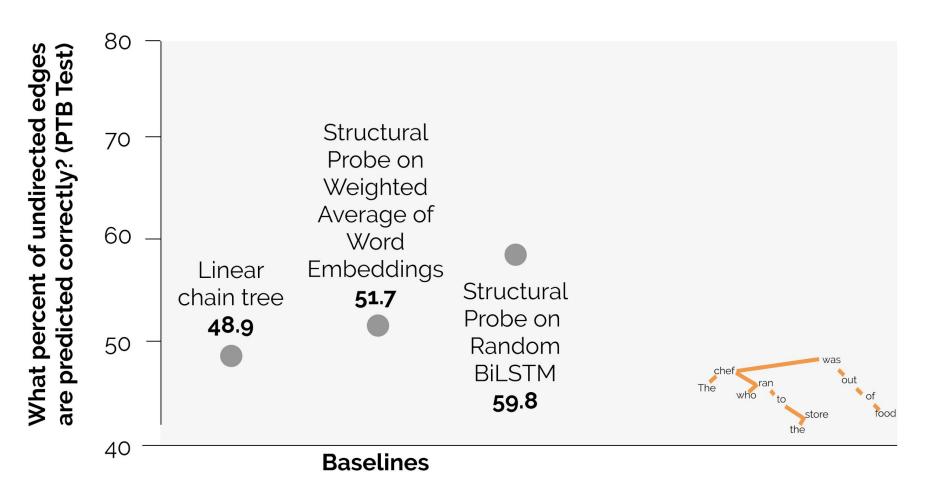
Evaluating ELMo, BERT, and baselines Training structural probes on PTB train, evaluating on test.

Evaluate by comparing structural probe minimum spanning trees to human-annotated parse trees.

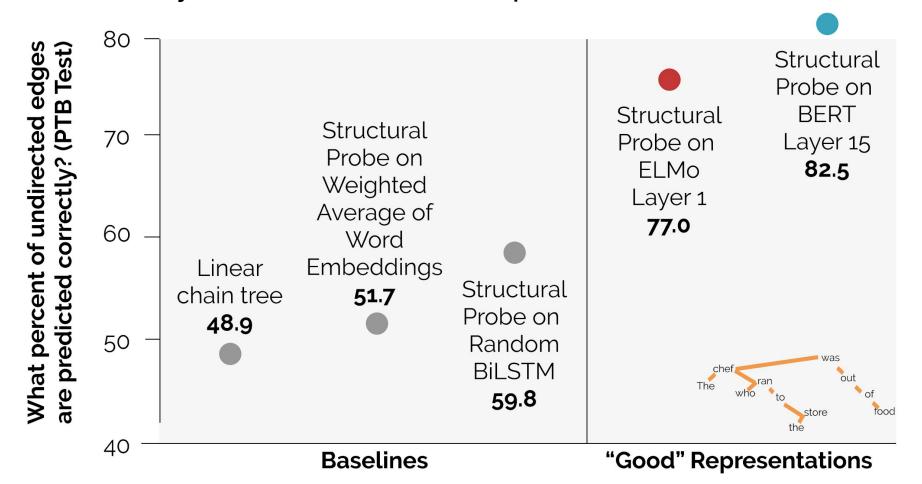
Metrics:

Spearman correlation: true vs predicted distances/depths **UUAS**: Unlabeled Undirected Attachment Score, minimum spanning tree vs. gold tree

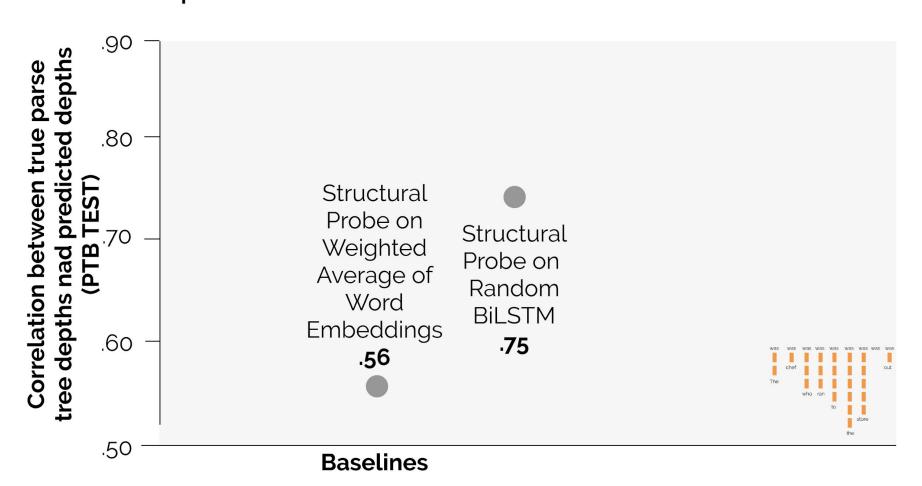
Trees aren't well-encoded in baselines



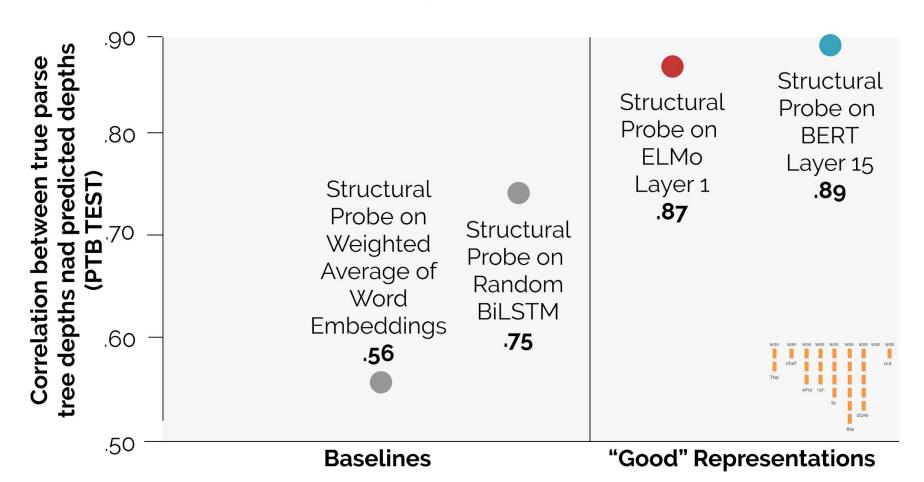
But they are in trained representations!



Tree depth isn't well-encoded in baselines



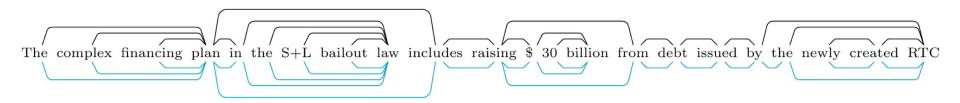
But it is in trained representations!



Trees from structural probe parse distances approximate parse trees pretty well!

Black (above sentence): Human-annotated parse tree

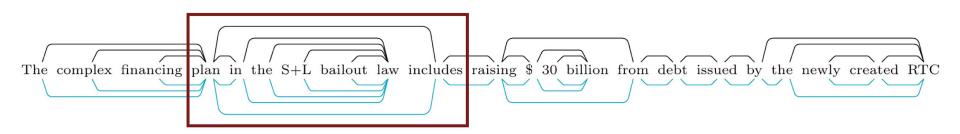
Teal (below sentence): Minimum spanning tree, structural probe on BERT



Trees from structural probe parse distances approximate parse trees pretty well!

Black (above sentence): Human-annotated parse tree

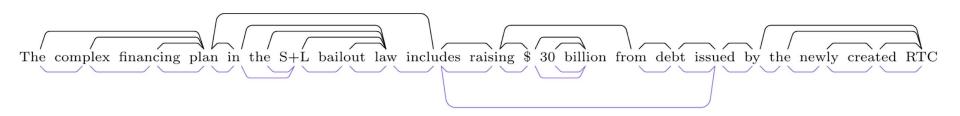
Teal (below sentence): Minimum spanning tree, structural probe on BERT



Trees on baseline representations don't approximate gold trees well!

Black (above sentence): Human-annotated parse tree

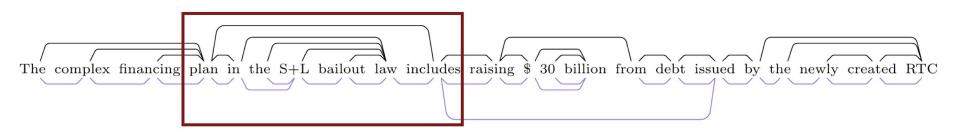
Purple (below sentence): MST, structural probe on random-weights BiLSTM



Trees on baseline representations don't approximate gold trees well!

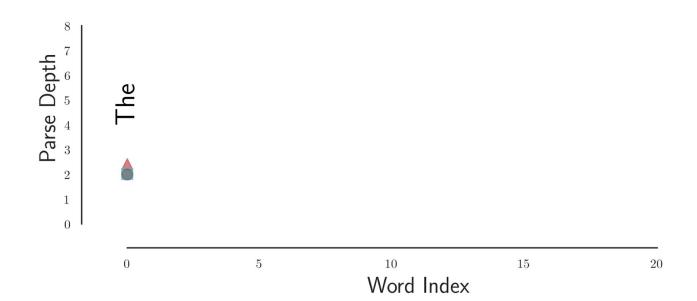
Black (above sentence): Human-annotated parse tree

Purple (below sentence): MST, structural probe on random-weights BiLSTM



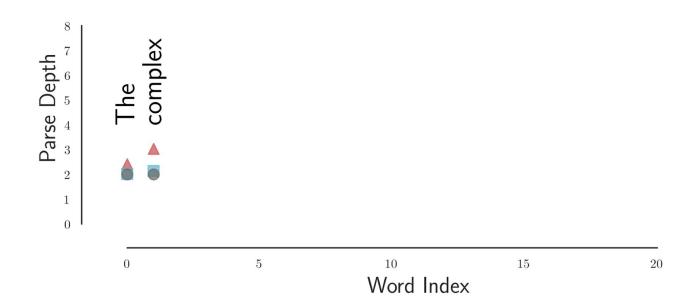
grey circle: gold parse depth

red triangle: ELMo1 squared norm



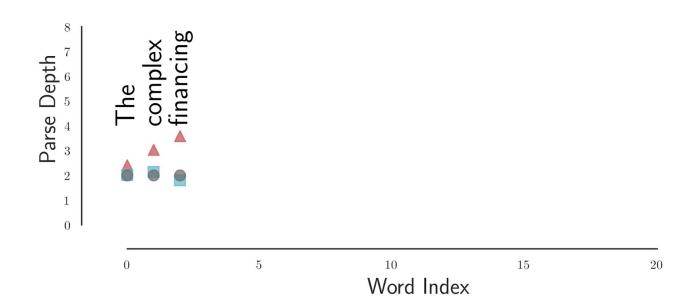
grey circle: gold parse depth

red triangle: ELMo1 squared norm



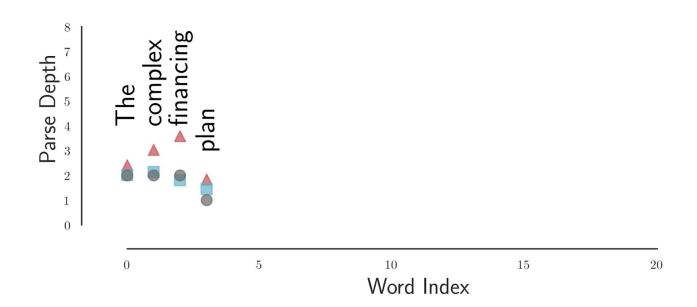
grey circle: gold parse depth

red triangle: ELMo1 squared norm



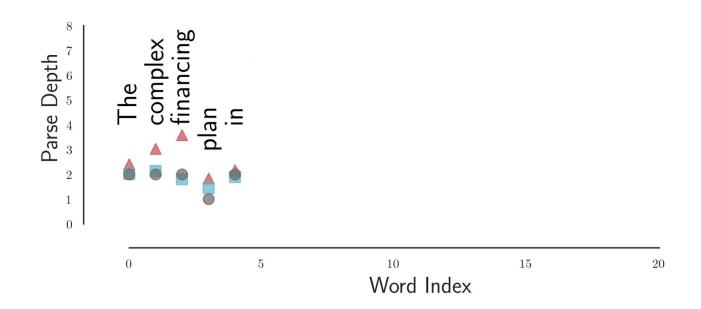
grey circle: gold parse depth

red triangle: ELMo1 squared norm



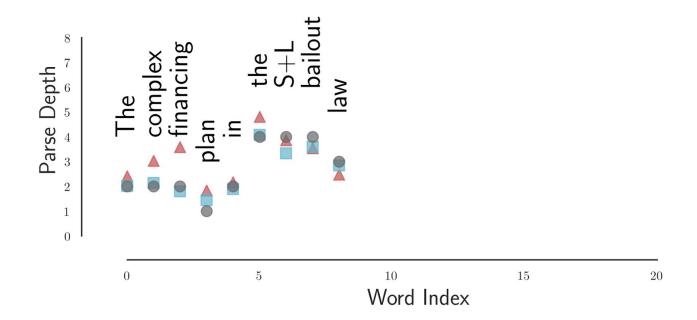
grey circle: gold parse depth

red triangle: ELMo1 squared norm



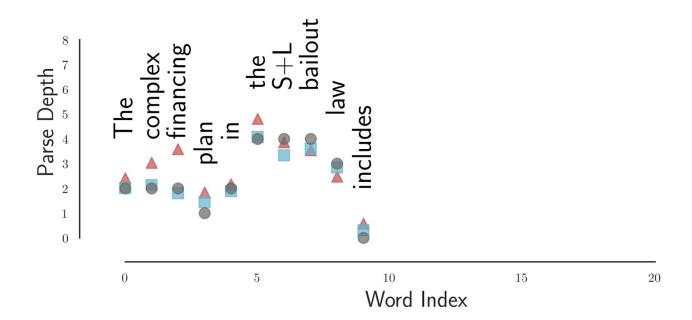
grey circle: gold parse depth

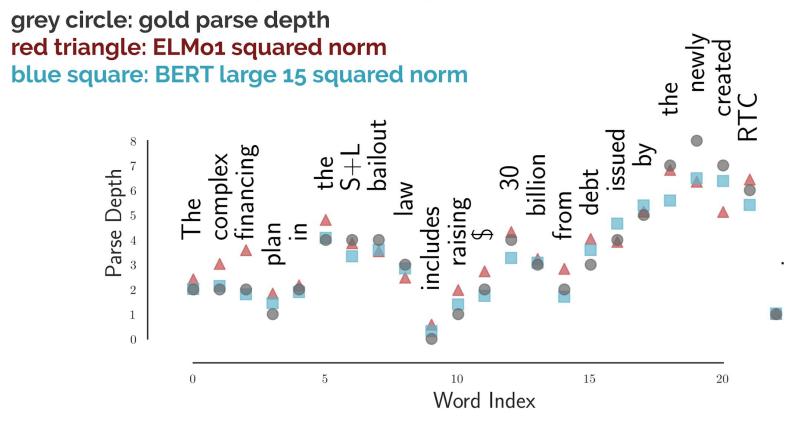
red triangle: ELMo1 squared norm



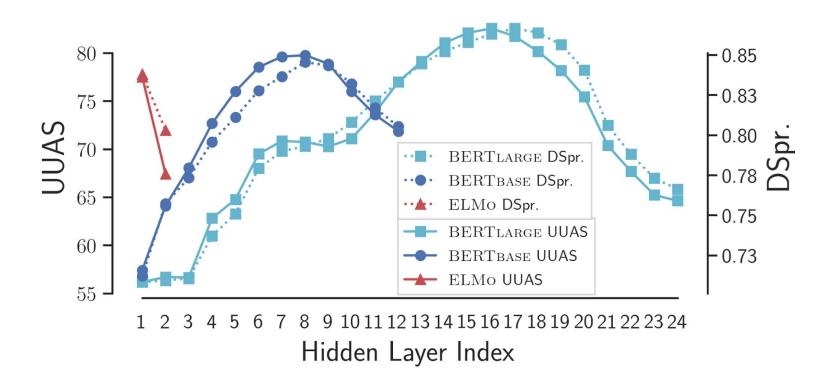
grey circle: gold parse depth

red triangle: ELMo1 squared norm





Syntax geometry differs between layers



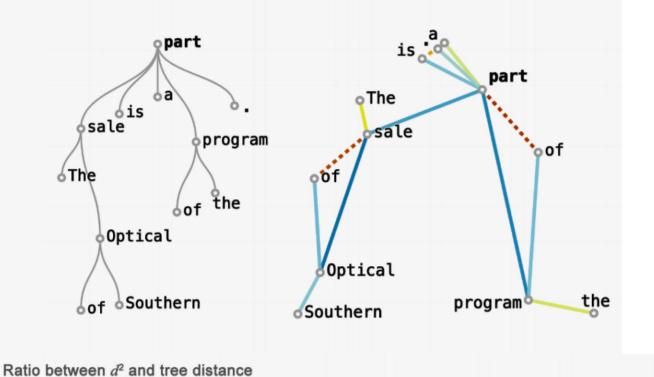
More visualizations of structural probe

Visualizing and Measuring the Geometry of BERT

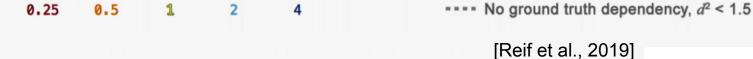
Andy Coenen, Emily Reif, Ann Yuan*
Been Kim, Adam Pearce, Fernanda Viégas, Martin Wattenberg
Google Brain
Cambridge, MA

{andycoenen,ereif,annyuan,beenkim,adampearce,viegas,wattenberg}@google.com

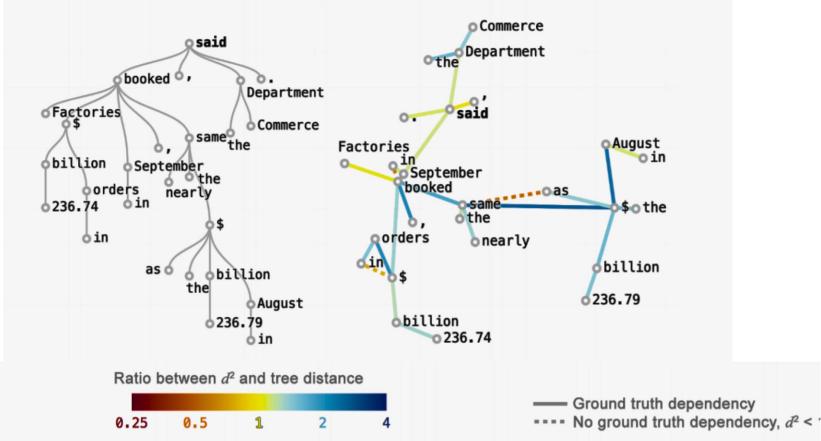
"The sale of Southern Optical is a part of the program."



Ground truth dependency



"Factories booked \$236.74 billion in orders in September, nearly the same as the \$236.79 billion in August, the Commerce Department said."



Probing results can be hard to interpret

Supervised classifiers are powerful even when simple, and it can be unclear what you're learning about the representation itself.

You can learn good classifiers on top of lots of representations. How do we know what a probing accuracy means?

Lecture Outline

Lecture 20: Analysis and Interpretability of Neural NLP

- Motivation: what are our models doing?
- 2. Neural networks as linguistic test subjects
- 3. Careful ablation studies and architecture modifications
- 4. Analysis of inherently interpretable architectures
- 5. Playing the adversary: breaking NLP models
- 6. Analyzing representations using supervised methods
- 7. Aggregating analysis insights across studies

Aggregating analyses in surveys and toolkits

Each analysis paper asks a very specific question.

How do we ask, what does the field currently know about BERT?

Answer: meta-studies compiling results

Analysis Methods in Neural Language Processing: A Survey

Yonatan Belinkov¹² and James Glass¹

¹MIT Computer Science and Artificial Intelligence Laboratory

²Harvard School of Engineering and Applied Sciences

Cambridge, MA, USA

{belinkov, glass}@mit.edu

A Primer in BERTology: What we know about how BERT works

Anna Rogers, Olga Kovaleva, Anna Rumshisky

Department of Computer Science, University of Massachusetts Lowell Lowell, MA 01854

{arogers, okovalev, arum}@cs.uml.edu

Reduced Hypothesis:

Aggregating analyses in surveys and toolkits

politics

How do we ask, what can I easily find out about my model?

Answer: interpretability toolkits!

AllenNLP Interpret:
A Framework for Explaining Predictions of NLP Models

Eric Wallace¹ Jens Tuyls² Junlin Wang² Sanjay Subramanian¹
Matt Gardner¹ Sameer Singh²

¹Allen Institute for Artificial Intelligence ²University of California, Irvine ericw@allenai.org, sameer@uci.edu

Input Reduction

Input Reduction removes as many words from the input as possible without changing the model's prediction.

Original Premise: Two women are wandering along the shore drinking iced tea.

Original Hypothesis: Two women are sitting on a blanket near some rocks talking about politics

Takeaways

Neural models are complex, fascinating objects that we don't currently understand, but we're making strides to understand them better!

A wide variety of analysis methods have been developed, for:

- Understanding a model's behavior on specific phenomena
- Understanding what a model learns about a topic or task
- Understanding what seemingly innocuous input changes make a model fail
- Many other things, with more coming every day!

These methods can be integrated into your future NLP projects!