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1 Overview

1.1 Motivation
Over the last few years, we have seen tremendous progress on fundamental natural language un-
derstanding problems. At the same time, there is increasing evidence that models learn superficial
correlations that fail to generalize beyond the training distribution [1, 2, 3, 4]. On the other hand,
humans can easily generalize beyond their training distribution–while not strictly from our training
distribution, we can effortlessly understand novels set in fictional worlds and quickly understand
the meanings of new words. How can we build NLP systems that generalize like humans? From a
practical perspective, robustness to out-of-distribution data is critical for building accurate NLP
systems in the real world since train and test data often come from distinct user interactions.

In this project, you will be building a question answering system that can adapt to unseen
domains with only a few training samples from the domain. This will expose students to a more
real world scenario where test examples are rarely IID with the training data. To build such a
system, you are given three separate question answering datasets. In addition to the Stanford
Question Answering Dataset (SQuAD) [5], you are also given Natural Questions [6] and NewsQA
[7], preprocessed in the same format as SQuAD. At test time, you will be given examples from
unseen question answering datasets, along with a small training set of 128 examples for additional
finetuning.
This year, the default final project consists of two tracks. In the IID SQuAD track, you will be
building a QA system for the SQuAD dataset, and in the Robust QA track, you will be building
a QA system that is robust to domain shifts. Note that for the IID SQuAD track, you are not
allowed to use pre-trained transformer models, and for the RobustQA track you are allowed to use
only DistilBERT [8] as the pre-trained transformer model.

1.2 Question Answering
In the task of reading comprehension or question answering, a model will be given a paragraph,
and a question about that paragraph, as input. The goal is to answer the question correctly.
From a research perspective, this is an interesting task because it provides a measure for how well
systems can ‘understand’ text. From a more practical perspective, these systems (Figure 1) have
been extremely useful for better understanding any piece of text, and serving information need of
humans.

As an example, consider the SQuAD dataset. The paragraphs in SQuAD are from Wikipedia.
The questions and answers were crowdsourced using Amazon Mechanical Turk. There are around
150k questions in total, and roughly half of the questions cannot be answered using the provided
paragraph (this is new for SQuAD 2.0). However, if the question is answerable, the answer is a
chunk of text taken directly from the paragraph. This means that SQuAD systems don’t have to
generate the answer text – they just have to select the span of text in the paragraph that answers
the question (imagine your model has a highlighter and needs to highlight the answer). Below is
an example of a 〈question, context, answer〉 triple. To see more examples, you can explore the
dataset on the website https://rajpurkar.github.io/SQuAD-explorer/explore/v2.0/dev/.

Question: Why was Tesla returned to Gospic?
Context paragraph: On 24 March 1879, Tesla was returned to Gospic under police guard
for not having a residence permit. On 17 April 1879, Milutin Tesla died at the age of 60 after
contracting an unspecified illness (although some sources say that he died of a stroke). During
that year, Tesla taught a large class of students in his old school, Higher Real Gymnasium, in
Gospic.
Answer: not having a residence permit

In fact, in the official validation and test set, every answerable SQuAD question has three
answers provided – each answer from a different crowd worker. The answers don’t always com-
pletely agree, which is partly why ‘human performance’ on the SQuAD leaderboard is not 100%.
Performance is measured via two metrics: Exact Match (EM) score and F1 score.

• Exact Match is a binary measure (i.e. true/false) of whether the system output matches
the ground truth answer exactly. For example, if your system answered a question with
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Figure 1: Google’s question answering system is able to answer arbitrary questions and is an
extremely useful tool for serving information needs

‘Einstein’ but the ground truth answer was ‘Albert Einstein’, then you would get an EM
score of 0 for that example. This is a fairly strict metric!

• F1 is a less strict metric – it is the harmonic mean of precision and recall1. In the ‘Einstein’
example, the system would have 100% precision (its answer is a subset of the ground truth
answer) and 50% recall (it only included one out of the two words in the ground truth output),
thus a F1 score of 2×prediction×recall/(precision+recall) = 2∗50∗100/(100+50) = 66.67%.

• When evaluating on the validation or test sets, we take the maximum F1 and EM scores
across the three human-provided answers for that question. This makes evaluation more
forgiving – for example, if one of the human annotators did answer ‘Einstein’, then your
system will get 100% EM and 100% F1 for that example.

Finally, the EM and F1 scores are averaged across the entire evaluation dataset to get the final
reported scores.

1.3 This project
As mentioned earlier, you will be building a question answering system that works well on out-of-
domain datasets. We have provided code for preprocessing the data and computing the evaluation
metrics, and code to train a fully-functional neural baseline. Your job is to improve on this baseline.

In Section 5, we describe several models and techniques that are commonly used in building
fewshot systems – most come from recent research papers. We provide these suggestions to help
you get started implementing better models. Note that this is a fairly new field, and so these
suggestions may not all lead to improvements over the baseline.

Though you’re not required to implement something original, the best projects will pursue
some originality with improvements over the baseline. Originality doesn’t necessarily have to be a
completely new approach – small but well-motivated changes to existing models are very valuable,
especially if followed by good analysis. If you can show quantitatively and qualitatively that
your small but original change improves a state-of-the-art model (and even better, explain what
particular problem it solves and how), then you will have done extremely well.

Like the custom final project, the default final project is open-ended – it will be up to you to
figure out what to do. In many cases there won’t be one correct answer for how to do something
– it will take experimentation to determine which way is best. We are expecting you to exercise
the judgment and intuition that you’ve gained from the class so far to build your models.

For more information on grading criteria, see Section 7.

1Read more about F1 here: https://en.wikipedia.org/wiki/F1_score
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2 Getting Started
For this project, you will need a machine with GPUs to train your models efficiently. For this, you
have access to Azure, similarly to Assignments 4 and 5 – remember you can refer to the Azure
Guide and Practical Guide to VMs linked on the class webpage. As before, remember that Azure
credit is charged for every minute that your VM is on, so it’s important that your VM is only
turned on when you are actually training your models.

We advise that you develop your code on your local machine (or one of the Stanford
machines, like rice), using PyTorch without GPUs, and move to your Azure VM only once you’ve
debugged your code and you’re ready to train. We advise that you use GitHub to manage your
codebase and sync it between the two machines (and between team members) – the Practical Guide
to VMs has more information on this.

When you work through this Getting Started section for the first time, do so on your local
machine. You will then repeat the process on your Azure VM. Once you are on an appropriate
machine, clone the project Github repository with the following command.

git clone https://github.com/MurtyShikhar/robustqa.git

This repository contains the starter code as well as the datasets that we will be using. We encour-
age you to git clone our repository, rather than simply downloading it, so that you can easily
integrate any bug fixes that we make to the code. In fact, you should periodically check whether
there are any new fixes that you need to download. To do so, navigate to the robustqa directory
and run the git pull command.

Note: If you use GitHub to manage your code, you must keep your repository private.

2.1 Code overview
The repository robustqa contains the following files:

• args.py: Command-line arguments for train.py.

• environment.yml: List of packages in the conda virtual environment.

• train.py: Top-level entrypoint for training as well as performing inference.

• util.py: Utility functions and classes.

In addition, you will notice two directories:

• data/: Contains the datasets organized in separate folders (indomain_train, indomain_val,
oodomain_train, oodomain_val, oodomain_test). Within each folder, we have separate
JSON files for each dataset.

• save/: Location for saving all checkpoints and logs. For example, if you train the baseline
with python train.py --run-name baseline --do-train, then the logs, checkpoints, and
TensorBoard events will be saved in save/baseline-01. The suffix number will increment
if you train another model with the same name.

2.2 Setup
Once you are on an appropriate machine and have cloned the project repository, it’s time to run
the setup commands.

• Make sure you have Anaconda or Miniconda installed.

• cd into robustqa and run conda env create -f environment.yml

– This creates a conda environment called robustqa.

• Run source activate robustqa

– This activates the robustqa environment.
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– Note: Remember to do this each time you work on your code.

• Download datasets from the link provided in the README and unzip them with tar -xvzf
datasets_50k.tar.gz

• (Optional) If you would like to use PyCharm, select the robustqa environment. Example
instructions for Mac OS X:

– Open the robustqa directory in PyCharm.

– Go to PyCharm > Preferences > Project > Project interpreter.

– Click the gear in the top-right corner, then Add.

– Select Conda environment > Existing environment > Click ’...’ on the right.

– Select /Users/YOUR_USERNAME/miniconda3/envs/robustqa/bin/python.

– Select OK then Apply.

Once you have unzipped datasets_50k.tar.gz, you should now see many additional folders in
save/ (see Section 3 for more details):

• indomain_train/{newsqa,squad,nat_questions}: These are JSON files corresponding to
the in-domain training data.

• indomain_val/{newsqa,squad,nat_questions}: These are JSON corresponding to in-domain
validation data.

• oodomain_train/{race,relation_extraction,duorc}: Training data for the out-of-domain
datasets. These may be used for additional finetuning.

• oodomain_val/{race,relation_extraction,duorc}: Validation data for the out-of-domain
datasets. These may be used for setting various hyperparameters.

• oodomain_test/{race,relation_extraction,duorc}: These correspond to the test set on
which your system will be evaluated.

If you see all of these files, then you’re ready to get started training the baseline model (see Section
4.3)!
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3 Training Datasets

3.1 Data splits

Dataset Question Source Passage Source Train dev Test

in-domain datasets

SQuAD [5] Crowdsourced Wikipedia 50000 10,507 -
NewsQA [7] Crowdsourced News articles 50000 4,212 -
Natural Questions [6] Search logs Wikipedia 50000 12,836 -

oo-domain datasets

DuoRC [9] Crowdsourced Movie reviews 127 126 1248
RACE [10] Teachers Examinations 127 128 419
RelationExtraction [11] Synthetic Wikipedia 127 128 2693

Table 1: Statistics for datasets used for building the QA system for this project. Question Source
and Passage Source refer to data sources from which the questions and passages were obtained.
Table borrowed from [12]

In this project, you are provided with three in-domain reading comprehension datasets (Nat-
ural Questions, NewsQA and SQuAD) for training a QA system which will be evaluated on
test examples from three different out-of-domain datasets (RelationExtraction [11], DuoRC [9],
RACE [10]). For all of the three training datasets provided, we have an indomain_train set
as well as an indomain_val set. In addition to this, we also provide an oodomain_train set
consisting of a small number of examples for all the out-of-domain datasets for additional train-
ing, along with a validation set (oodomain_val). Taken together, we refer to the union of all
the indomain_train and oodomain_train sets as simply the train set, and the union of the
indomain_val and oodomain_val sets as the validation set.

Your QA system will be evaluated on a held out test set (oodomain_test) from the eval
datasets. For simplicity and scalability, we are running this track in a ‘Kaggle-style’ leaderboard,
i.e., we release test sets (context, question) for each of the eval datasets to students, and they
submit their model-produced answers in a CSV file. We then compare these CSV files to the true
test set answers and report scores in a leaderboard. You may only use our training and validation
set to train, tune and evaluate your models. Dataset statistics are in Table 1. If you want to use
any additional data please create a private post on Ed and check with the TAs

You will use the train set to train your model and the validation set to tune hyperparameters
and measure progress locally. Finally, you will submit your test set solutions to a class leaderboard,
which will calculate and display your scores on the test set – see Section 6 for more information.

3.2 Terminology
The training set contains many (context, question, answer) triples2 – see an example in Section 1.2.
Each context (sometimes called a passage, paragraph or document in other papers) is an excerpt
from Wikipedia. The question (sometimes called a query in other papers) is the question to be
answered based on the context. The answer is a span (i.e. excerpt of text) from the context.

2As described in Section 1.2, the dev and test sets actually have three human-provided answers for each question.
But the training set only has one answer per question.
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4 Baseline
As a starting point, we have provided you with the complete code for a baseline model, which
finetunes a BERT based pre-trained transformer. In this section we will describe the baseline
model and show you how to train it.

4.1 Processing and chunking
We processs all datasets in the same format as SQuAD. In the directory, we have jsons correspond-
ing to the training data.

Chunking: Since the maximum context size that can be encoded by BERT is 512, we convert
each (question, paragraph) into multiple chunks of size 384 with a stride of 128. To understand
this procedure, consider the following example. Let (q, p) be a question, paragraph pair where
q = {q0, q1, ...q10} and p = {p0, p1, ..., p500}. We convert this into chunks c1 and c2 where c1 =
[CLS]q[SEP]p1[SEP] with p1 = {p0, p1, . . . , p371} and the c2 = [CLS]q[SEP]p2[SEP] with p2 =
{p128, p129, . . . , p499}. Each chunk is then labeled with a start position and end position based on
its offset. For chunks that do not contain the answer span we set the start and end positions as
(0, 0)

Caching: Since the tokenizenation and preprocessing steps are time consuming and slow for very
large datasets, we cache the tokenized representations of the data once they are processed. If you
would like to create these from scratch, make sure to run train.py with the flag create-features.
An easy to miss bug is changing the preprocessing functions and failing to recompute cached
features.

4.2 Baseline Model
The baseline system finetunes DistilBERT (a smaller, distilled version of the original BERT model
[8]) on all the training data.

Loss Function

Our loss function is the sum of the negative log-likelihood (cross-entropy) loss for the start and
end locations. That is, if the gold start and end locations are i ∈ {1, . . . , N} and j ∈ {1, . . . , N}
respectively, then the loss for a single example is:

loss = − log pstart(i)− log pend(j)

During training, we average across the batch and use the AdamW optimizer [13] to minimize the
loss.

Inference Details
Given a question paragraph pair (q,p), we first convert the pair into multiple chunks {c1, c2, . . . , ck}
following our chunking procedure. Then, we pass ci through our model to get corresponding start
and end logits. Then, we select the logits with the highest sum. Concretely, we choose the pair
(i, j) of indices that maximizes pstart(i) ·pend(j) subject to i ≤ j and j− i+1 ≤ Lmax, where Lmax
is a hyperparameter which sets the maximum length of a predicted answer. We set Lmax to 15 by
default.

4.3 Train the baseline
Before starting to train the baseline on your VM, consider opening a new session with tmux or
some other session manager. This will make it easier for you to leave your model training for a
long time, then retrieve the session later. For more information about TMUX, see the Practical
tips for final projects document.

To start training the baseline, run the following commands:
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source activate robustqa # Activate the robustqa environment
python train.py --do-train --run-name baseline # Start training

After some initialization, you should see the model begin to log information like the following:

19\%|### | 45344/242304 [30:59<1:42:14, 32.23it/, NLL=1.45, epoch=1]

You should see the loss – shown as NLL for negative log-likelihood – begin to drop. On a single
Azure NC6 instance, you should expect training to take about 3-4 hours per epoch.

You should also see that there is a new directory under save/baseline-01. This is where you
can find all data relating to this experiment. In particular, you will (eventually) see:

• log_train.txt: A record of all information logged during training. This includes a complete
print-out of the arguments at the very top, which can be useful when trying to reproduce
results.

• events.out.tfevents.*: These files contain information (like the loss over time), which our
code has logged so it can be visualized by TensorBoard.

• checkpoint/: The best checkpoint throughout training. The metric used to determine which
checkpoint is ‘F1’ score. Typically you will load this checkpoint for use later.

4.4 Tracking progress in TensorBoard
We strongly encourage you to use TensorBoard, as it will enable you to get a much better view of
your experiments. To use TensorBoard, run the following command from the squad directory:

tensorboard --logdir save --port 5678 # Start TensorBoard

If you are training on your local machine, now open http://localhost:5678/ in your browser. If
you are training on a remote machine (e.g. Azure), then run the following command on your local
machine:

ssh -N -f -L localhost:1234:localhost:5678 <user>@<remote>

where <user>@<remote> is the address that you ssh to for your remote machine. Then on your
local machine, open http://localhost:1234/ in your browser.

You should see TensorBoard load with plots of the loss, EM, and F1 on the validation set.
EM and F1 are the official SQuAD evaluation metrics. The validation plots may take some time
to appear because they are logged less frequently than the train plots. However, you should see
training set loss decreasing from the very start.

4.5 Inspecting Output
During training you will also notice a tab in TensorBoard labeled Text. Try clicking on this tab
and you should see output similar to the following:

Viewing these examples can be extremely helpful to debug your model, understand its strengths
and weaknesses, and as a starting point for your analysis in your final report.
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5 Adaptation methods to explore
In this section we provide you with an overview of techniques that are used to improve out-of-
domain performance as well as better fewshot adaptation. Your job is to read about some of these
techniques, understand them, choose some to implement, carefully train them, and analyze their
performance – ultimately building the best system you can. Implementation is an open-ended
task: there are multiple valid implementations of a single model, and sometimes a paper won’t
even provide all the details – requiring you to make some decisions by yourself. To learn more
about project expectations and grading, see Section 7.

5.1 Mixture-of-Experts
Appears in: Adaptive Mixtures of Local Experts [14]

One way to train an effective multitask learner is via the Mixture-Of-Experts (MoE) technique.
Here, we train k models (called experts) along with a gating function (that controls the mixture).
The conditional distribution over labels given an input x is given as

p(y | x) =
∑
i

gi(x)fi(x)

where fi(x) is the conditional distribution output by the ith expert e.g. the softmax of logits
at the final layer, and gi(x) is the mixture weight for this expert produced by the gating function.
The gating function itself can be parameterized by a neural network. A concrete way to apply MoE
to robust question answering is to have a separate DistilBERT model for each of the datasets, and
a small MLP as the gating function. By carefully controlling which examples update any expert,
the experts can learn specialized behavior leading to a more effective multitask model that can
potentially extrapolate better.

5.2 Task Adaptive Fine Tuning
Appears in: Don’t Stop Pretraining: Adapt Language Models to Domains and Tasks [15]

Another approach to adapt a BERT based question answering system to a new domain, is to jointly
optimize the QA based loss along with the original masked language modeling (MLM) loss over the
inputs. To create instances for MLM training, tokens in a given input x = (q, p) can be randomly
converted into [MASK] tokens. This techinque, known as Task Adaptive Fine Tuning (or TAPT)
has been shown to be effective for adapting a pre-trained model to a task from a new domain.

5.3 Robustness via Data Augmentation
Appears in: An exploration of data augmentation and sampling techniques for domain-agnostic
question answering [16], Semantically Equivalent Adversarial Rules for Debugging NLP models
[17]

Many works show that state-of-the-art neural models learn brittle correlations that hurt their out-
of-domain performance. One way to prevent the model from learning such brittle correlations is to
encode label preserving invariances via data augmentation. For instance, given an input x = (q, p)
with a label y, one could create an augmented example x′ = (q′, p′) where q′ and p′ are paraphrases
of q and p respectively. Such paraphrases could be produced either via back-translation, or via
word substitutions. To get q′ via backtranslation, q is first translated into a “pivot" language (say
Russian), and then translated back to the original language to produce a paraphrased version.
In word substitution based data augmentation, individual words in the input are replaced with
either synonyms from a lexicon [18], or replaced with [MASK] tokens which are then filled with
BERT [19] to obtain an augmented input. Additionally, [17] consider several meaning preserving
perturbations that could be effectively used to augment the training data, resulting in improved
robustness.
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5.4 Domain Adversarial Training
Appears in: Adversarial Training for Cross-Domain Universal Dependency Parsing [20]

The goal of Domain Adversarial Training is to learn domain invariant features that do not encode
spurious, domain dependent information thorough an adversarial learning framework. Concretely,
given an input x from a domain di, the features output by the model f(x) are fed into a discrim-
inator g that attempts to classify the domain of x. g is trained to maximize the probability of
predicting the correct domain, and the model f requires a signal to maximally confuse the discrim-
inator. [21] apply this to the BERT based QA setting by training g to identify the representations
output by BERT at the [CLS] token.

5.5 Few Sample Finetuning
Appears in: Revisiting Few-sample BERT Fine-tuning [22]

Many recent works [22] explore the effect of important hyperparameters such as learning rates,
number of gradient update steps, number of layers to freeze etc. on fewshot accuracy. These can
drastically improve instability due to the small size of the out-of-domain training data, and we
encourage students to study and analyze the effect of these choices on fewshot performance.

5.6 Meta Learning
Appears in: Investigating Meta-Learning Algorithms for Low-Resource Natural Language Under-
standing Tasks [23], Learning to few-shot learn across diverse natural language classification tasks
[24]

One dominant technique for building fewshot models is meta learning, where the objective is to
build a parameterized meta learnerMθ, that takes a small number of samples from a task (called
the support set) as input and outputs an adapted model that can make accurate predictions on new
examples from the task (the query set). The training data for meta-learning consists of (support,
query) pairs from a collection of training tasks and the objective is to maximise accuracy on the
query set after adapting to the support set. Recent works [23, 24] have shown empirical success
with meta-learning for fewshot adaptation in the context of NLP.

5.7 Fewshot adaptation with in-context learning
Appears in: Making Pre-trained Language Models Better Few-shot Learners [25]

The impressive fewshot abilities of GPT-3 [26] are achieved via in-context learning. To make a
prediction on an input x from an unseen task, the language model receives additional context
c which comprises of a small number of input, output pairs appended together with a prompt.
[25] show that in-context learning is more broadly applicable to even MLMs, and automatically
discover useful contexts given a small training dataset.
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6 Submitting to the Leaderboard

6.1 Overview
We are hosting two leaderboards on Gradescope, where you can compare your performance against
that of your classmates. F1 score is the performance metric we will use to rank submissions,
although both EM and F1 scores will be displayed. The leaderboards can be found at the following
links:

1. oodomain-val TODO

2. oodomain-test: TODO

You may submit to the dev leaderboard as many times as you like, but you will only be allowed
3 successful submissions to the test leaderboard. For your final report, we will ask you to
choose a single test leaderboard submission to consider for your final performance. Therefore you
must make at least one submission to the test leaderboard, but be careful not to use up your test
submissions before you have finished developing your best model.

Submitting to the leaderboard is similar to submitting any other assignment on Gradescope,
except that your submission is a CSV file of answers on the dev/test set. You may use the starter
code’s test.py script to generate a submission file of the correct format, or see lines 128-135 for
example code to generate a submission file. At a high level, the submission file should look like
the following:

Id,Predicted
001fefa37a13cdd53fd82f617,Governor Vaudreuil
00415cf9abb539fbb7989beba,May 1754
00a4cc38bd041e9a4c4e545ff,
...
fffcaebf1e674a54ecb3c39df,1755

The header is required, and each subsequent row must contain two columns: the first column is a
25-digit hexadecimal ID for the question/answer example (IDs defined in {dev,test}-v2.0.json),
and the second column is your predicted answer. The rows can be in any order.

6.2 Submission Steps
Here are the concrete steps for submitting to the leaderboard:

1. Generate a submission file (e.g., by running train.py in the starter code) for either the
validation or test set:

• To generate a submission file on the validation set leaderboard, run:
python train.py --do-eval --eval-dir datasets/oodomain_val
--sub-file val_submssion.csv --save-dir SAVE-DIR

• To generate a submission file on the test set leaderboard, run:
python train.py --do-eval --eval-dir datasets/oodomain_test
--sub-file test_submssion.csv --save-dir SAVE-DIR

where SAVE-DIR is the folder where the checkpoint is created.

2. Use the URLs above to navigate to the leaderboard. Make sure to choose the correct
leaderboard for your split (VALIDATION vs. TEST).

3. Find the submit button in Gradescope, and choose the CSV file to upload.

4. Click upload and wait for your scores. The submission output will tell you the submission
EM/F1, although the leaderboard will keep scores for the submission with the highest F1
score thus far.

There should be useful error messages if anything goes wrong. If you get an error that you cannot
understand, please make a post on Ed.
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7 Grading Criteria
The final project will be graded holistically. This means we will look at many factors when
determining your grade: the creativity, complexity and technical correctness of your approach,
your thoroughness in exploring and comparing various approaches, the strength of your results,
the effort you applied, and the quality of your write-up, evaluation, and error analysis. Generally,
implementing more complicated techniques represents more effort, and implementing more unusual
ideas (e.g. ones that we have not mentioned in this handout) represents more creativity. You are
not required to pursue original ideas, but the best projects in this class will go beyond the ideas
described in this handout, and may in fact become published work themselves!

There is no pre-defined F1 or EM score to ensure a good grade. Though we have run some
preliminary tests to get some ballpark scores, it is impossible to say in advance what distribution of
scores will be reasonably achievable for students in the provided timeframe. As in previous years,
we will have to grade performance relative to the leaderboard as a whole.

For similar reasons, there is no pre-defined rule for which of the models in Section 5 (or else-
where) would ensure a good grade. Implementing a small number of things with good results and
thorough experimentation/analysis is better than implementing a large number of things that don’t
work, or barely work. In addition, the quality of your writeup and experimentation is important:
we expect you to convincingly show that your techniques are effective and describe why they work
(or the cases when they don’t work).

In the analysis section of your report, we want to see you go beyond the simple F1 and EM
results of your model. One way to analyze your system is to break down the scores. For example,
can you analyze why your model does better on some of the held out domains than others? What
are the types of examples that the model gets consistently wrong and why? How does accuracy on
the in-domain dev set correlate with accuracy on the oo-domain dev set?

As with all final projects, larger teams are expected to do correspondingly larger projects. We
will expect more complex things implemented, more thorough experimentation, and better results
from teams with more people.
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8 Honor Code
Any honor code guidelines that apply for the final project in general also apply for the default
final project. Here are some guidelines that are specifically relevant to the Robust QA track of the
default final project:

1. You may not use a different pre-trained model other than DistilBERT for your system.
However, if you want to use smaller pre-trained models and believe you have a good reason
to do so, please make an Ed post to get permission.

2. You also may not use pre-existing implementations of various methods for improving ro-
bustness / fewshot adaptation (including those mentioned in Section 5) as a starting point
unless you wrote the implementation yourself. Please make an Ed post if you believe you
have a good reason to do so.

3. As described in Section 3.1, it is an honor code violation to use any other data for training
(or development) apart from the provided training files.

4. You are free to discuss ideas and implementation details with other teams (in fact, we en-
courage it!). However, under no circumstances may you look at another CS224n team’s code,
or incorporate their code into your project.

5. Do not share your code publicly (e.g., in a public GitHub repo) until after the class has
finished.
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