A Neural Model for Text Segmentation

Stanford CS224N Custom Project

Ana Sofia Nicholls Gene Tanaka
Department of Computer Science Department of Computer Science
Stanford University Stanford University
anasnich@stanford.edu gtanaka@stanford.edu
Abstract

Text segmentation is the task of dividing a document of text into coherent and
semantically meaningful segments which are contiguous. This task is important for
other Natural Language Processing (NLP) applications like summarization, context
understanding, and question-answering. The goal of this project is to successfully
implement a text segmentation algorithm. We take a supervised learning approach
to text segmentation and propose a neural model for this task. We aim to extend this
task to podcasts by using existing transcription services. Our model obtained a Pk
score (described below) of 6.54 on the Wiki-50 dataset, which was an improvement
over our baseline score of 69.23. In this paper we will discuss experiments with
self-attention as a modification to our model.

1 Key Information to include

* Mentor: Professor Manning
» External Collaborators (if you have any): N/A
* Sharing project: CS210 potentially

2 Introduction

Text segmentation is defined in this paper as the task of dividing text into coherent, contiguous
segments that each represent a change in topic. This task is an important stepping stone to
more complex tasks such as text summarizing and information extraction. One primary issue
in this field of research has been the scarcity of labeled data. In addition to being scarce,
existing data tends to be synthesized automatically, which makes them unreliable metrics for
evaluating models. As a result, many efforts in text segmentation have attempted heuristic-based
and unsupervised learning methods. Past approaches to text segmentation have used Bayesian
probabilistic models in which topics impose distributions over the vocabulary, as well as GraphSeg, an
unsupervised graph method where nodes are sentences connected by edges when semantically similar.

The goal of this project is to successfully implement a supervised text segmentation based
on neural LSTM architecture. Our motivation for this project is two fold: text segmentation is
an important task within NLP, but is also an extremely useful task for a variety of purposes. In
NLP, text segmentation is important for other tasks like summarization, context understanding, and
question-answering. Furthermore, segmentation in general is an extremely useful task. Our main
inspiration for this project was realizing that audio content is exploding across platforms (such as
podcasts, YouTube, Audible, etc) and has become a very popular medium for both learning and
entertainment. While tools for transcription have been developed, audio content remains difficult to
efficiently search, navigate through, and index. For example, podcast episodes can be hours long, and
being able to segment an episode into relevant chunks could greatly increase a user’s efficiency in
learning from podcasts.

Stanford CS224N Natural Language Processing with Deep Learning

3 Related Work

Text segmentation has been explored both in a supervised learning setting and an unsupervised
setting. For the supervised setting, multiple neural models have been proposed. We took inspiration
from Koshorek’s group [1]] and treated the task as a supervised learning. We attempted to recreate
their neural model and adopted their labelled Wikipedia dataset (more details about this dataset in the
Data section) to train our model.

Other groups that have approached this task from a supervised learning standpoint have
proposed different neural models along with different datasets. Badjatiya’s group [2] used an
attention-based neural model which included a convolutional neural network to create the sentence
embeddings instead of an LSTM neural model which Koshorek’s group used. Similarly to Koshorek’s
group, Badjatiya et al used a bidirectional LSTM followed by a fully connected layer for the
output. The approaches have many similarities except for a few important differences. Badjatiya’s
group emphasized their use of attention in their neural models, whereas Koshorek’s group did not
consider attention in their model. We drew inspiration from Badjatiya’s use of attention to include
incorporating self-attention as one of our experiments to be able to combine the two approaches and
provide an extension of Koshorek’s model. Badjatiya’s dataset combined data from different domains,
such as clinical data, fiction novels, and Wikipedia, whereas Koshorek used only Wikipedia data.

Unsupervised approaches have also been explored for this task. Purver’s group [3] used an
unsupervised approach which involved using MCMC and Gibbs Sampling. Their experiments
focused on spoken language, so they used a meeting corpus as their dataset. However, their model did
not perform as well when compared to a supervised model. All of these papers used either window
diff or Py as their evaluation method, and we followed suit so that we could compare our results to
the algorithms described.

4 Approach

For this text segmentation task, we are using a neural model with two LSTM networks. LSTMs
keep longer term memories to be able to encode long range dependencies. They do so using gates
which control what information can flow to a memory cell state. A bidirectional LSTM helps capture
information from both directions into embeddings.

Our first subnetwork, which we will refer to as the Sentence Representation Network, is an
LSTM that generates sentence representations. The Sentence Representation Network is a
bidirectional LSTM with two layers. The input to this network is a tensor of sentences representing a
single document. Each sentence contains a sub tensor of stacked word embeddings pertaining to
each word in the sentence. After running the input tensor through the network, we take the mean of
all the word embeddings pertaining to a sentence so that the output of the LSTM is a single vector
embedding for each sentence.

Our second neural network is a bidirectional LSTM with two layers. We input a sentence
embedding into this LSTM, and obtain a distribution as output. Lastly, we run the output of the
second LSTM through a fully connected layer to obtain a sequence of n vectors in R?, where n is
the number of sentences. During validation/testing, we then apply a softmax function to obtain
segmentation probabilities for each of those vectors. For training, we are using cross entropy loss
with an Adam optimizer.

For one of our experiments, we also implemented a self-attention mechanism into the Sen-
tence Representation Network. Attention allows the network to better determine what parts of the
input are important. Self-attention helps relate different positions within a single sequence to produce
a representation of the same sequence.

‘ SoftMax ‘ ‘ Softl\dax | | SoftMax ‘

1
S T
\ LSTM ﬁ LSiM @M

L]
LSTM LSTM LSTM

averaging

‘ a-n ‘ ‘ ain ‘ ‘ attn% ‘
T T

Figure 1. Diagram of our neural network model with attention.

Originally, we planned to use the same baseline as Koshorek’s group, which involved calculating the
average segment length (k) in the dataset and labelling every k*" sentence as the end of a segment.
However, after further inspection, we decided to change our baseline to the following. We take the
average of all of the word embeddings in each sentence. Looking at two consecutive sentences,
we set a threshold for the difference between them. If the difference between the two sentence
embeddings is greater than the threshold, then we label the first sentence as ending a segment. The
reasoning behind this baseline is that we would expect the average of the word embeddings in a
sentence to encode some semantic information about a sentence. Furthermore, we would expect
sentences belonging to the same segment would have similarities in semantic meaning.

We adapted the code for loading FastText word embeddings from the FastText website [4].
We also based our code for our evaluation metrics on the Pk and WindowDiff implementations in
the NLTK library, though with slight modifications to be compatible with NumPy arrays instead of
Python lists.

5 Experiments

5.1 Data

For this task, we will be using the "Wiki-727K" dataset. It was created by the authors of the paper
"Text Segmentation as a Supervised Learning Task" [[1]]. As described in the paper, the dataset
contains 727,746 Wikipedia documents with segmentations as described by their table of contents.
The documents have had all non-text elements and single sentence segments removed. We wrote a
script that parses each document through the following steps:

* Create tensor of target labels by reading through document sentence by sentence and marking
sentence as a border (1) if it is followed by the string "===", which denotes the start of a
new section. Otherwise mark the sentence with a 0.

* Pad tensor of target labels with Os to match length of longest document in dataset.

* Create tensor of word embeddings by looping through words in each sentence and looking
up FastText word embedding.

* Pad each sentence with zero-vectors to match length of longest sentence in dataset.

We trained our model on 561 randomly selected Wikipedia documents, and evaluated on the same 50
documents ("Wiki-50") used in the Koshorek [1]] paper. There is no overlap between these two sets of
documents.

5.2 Evaluation method

Similar to the paper we referenced in our proposal, we are using the P}, metric [5] for our quantitative
evaluation. Py (ref, hyp) is the probability that a pair of chosen sentences with a distance of k are
inconsistently classified. The possible classifications at each step are:

(a)/(d) "okay": true (ref) break and hyp break both present/both absent within length & window
(b) "miss": true break present but hypothesized break not present within length k£ window
(c) "false alarm": hypothesized break present but true break not present within length k£ window

Each of the classifications are illustrated in the image below [J5]]:

Hypothesized .
segmentation | ’ I ’ ‘
Sentence — - J. ... b ool oo
Reference ’ ’ [I ’ |
segmentation —
okay miss false alarm okay
(a) (b) () (d)

Figure 2. Diagram of possible Pj classifications, adapted from Beeferman, et al [S]]

Since its introduction in 1999, a few papers have critiqued the effectiveness of the P, metric. Due
to Py’s perceived shortcomings, we are also using the WindowDiff metric [6], which is a modified
version of the P, metric that penalizes near-miss errors less than "pure” false positives. The formula
for WindowDiff is as follows:

WindowDiff(ref, dif) = 527 S0 " (b(re fi,refiyw) — b(hypi, hypisr)| > 0)

where b(i, j) denotes the number of boundaries between positions ¢ and j in the text.

(As shown later in our results, P, and WindowDiff can produce the same value under cer-
tain conditions.)

Nonetheless, Py still seems to be the most common metric for text segmentation tasks to-
day (based on number of citations of Beeferman et al). Our P calculations will be useful as they
will allow us to eventually compare our model’s results to the P, values of the models described in
Koshorek 2018. The table is shown below:

WIKI-727K WIKI-50 CHOI CITIES ELEMENTS
Py, variant sentences sentences | sentences | sentences words | sentences words
(Chen et al., 2009) - - - - 22.1 - 20.1
GraphSeg - 63.56 5.6-7.2 39.95 - 49.12 -
Our model 22.13 18.24 26.26° 19.68 18.14 41.63 33.82
Random baseline 53.09 52.65 49.43 47.14 44.14 50.08 42.80
Human performance - 14.97 - - - - -

Figure 3. Table of Py, results from Koshorek, et al [1]]

5.3 Experimental details

We trained our model on a training set of 561 documents for 10 epochs. Our model contains a
Sentence Representation Subnetwork and a Prediction Subnetwork, each containing bidirectional

LSTMs. To start, we made both LSTMs 2 layers deep. We also experimented with a hidden layer
size of 256 for the sentence encoder, and a hidden layer size of 128 for the segmentation prediction
layer. We also added self-attention with an embedding size of 300, with residual dropout of 0.1
and attention dropout of 0.1. For training, we used an Adam Optimizer with a learning rate of 1 x 104,

For our baseline, we experimented with a threshold of 5.0, after finding that it produced
the lowest P score of thresholds between 1.0 and 7.0.

5.4 Results

Our P, results are compared to our baseline in the table below.

Evaluation on Wiki-50 Dataset
Model Py WindowDiff
GraphSeg 63.56 -
Koshorek 18.24 -
Model w/ Attention 7.62 7.52
Model w/o Attention || 6.54 6.54
Baseline 69.23 69.23

Figure 4. Table of Py results from our experiments (GraphSeg, Koshorek, adapted from [L1]])

At first glance, these results are very promising, as our model seems to outperform GraphSeg [7] as
well as Koshorek. However, there are a few important things to note about these results, as discussed
in the following section.

6 Analysis

To start, GraphSeg appears to only do about as well as our baseline, making it a very weak model.
One possible reason is that the GraphSeg model was not trained on the Wiki-727 dataset. This seems
to be evidence that text segmentation models trained on one dataset do not generalize well to other
datasets. Additionally, the GraphSeg model uses an unsupervised graph method, which Koshorek et
al proposed is less effective than supervised methods for text segmentation tasks.

Second, Py values fluctuate greatly depending on the value of k. For example, consider a
document of 10 sentences, which contains 1 break (border). For example, if £ = 10, P, = 1.0 if the
prediction predicts O breaks. On the other hand, if k = 1, P, = %, as only the window containing
the 1 true break would be classified as incorrect. Since we do not know the & value used by Koshorek
et al, it is very difficult for us to conclusively state that our model outperformed theirs. For our

evaluation, we calculated k to be the average segment length within the entire set of documents.

Surprisingly, the model performed better without attention. The P, with attention was
7.62, whereas without attention the corresponding value was 6.54. This could be because the
attention altered the sentence embeddings in a way where certain signals that were actually useful for
segmentation got lost.

Additionally, we were surprised to learn that our baseline performed worse than the base-
line proposed by Koshorek et al. Their proposed baseline starts a new segment after every sentence
with probability %, where k is the average segment size in the dataset. It seems very weak and naive,
yet it achieved a Py of 52.65, while our baseline achieved a Py of 69.23. One possible reason for
this is that we did not have the optimal threshold for difference between two consecutive sentence
embeddings.

Consider the following document, where bolded sentences represent segment boundaries:

0. IceRocket is an Internet search engine which specializes in real-time
search.

1. Based in Dallas, Texas, it launched in 2004 hoping to market itself solely through
word of mouth.

2. IceRocket is backed by Mark Cuban and headquartered in Dallas, Texas.

3. The company has received angel funding from Mr. Cuban.

4. Icerocket launched in 2004.

5. The search engine originally launched with features designed to make web
searches on a PDA much easier, for instance allowing users to email a query to the
engine and receive their results back in response.

6. Icerocket had an early licensing deal with Gofish.com In August 2011, it was
announced that IceRocket had been acquired by the Meltwater Group.

7. IceRocket is generally for blog searches but has expanded into searching
the popular social networking websites Twitter and Facebook as well as al-
lowing searching of news and the world wide web.

8. IceRocket’s Big Buzz feature allows users to search Blogs, Tweets, news, images
etc. all from one page.

9. The IceRocket site is a free resource for people looking to monitor their brand,
it is ad supported. IceRocket has an API that it licenses to social media monitoring
firms as well as PR agencies.

17 [07 17
0 1 0

0 1 0

0 0 1

The target for this document is (1) our baseline predicts 8 , and our model predicts 8 .

0 0 0

1 0 0

0 1 0
0] 1] 10]

If we start by looking at our baseline, we notice that the predictions are somewhat close to
the 1st and 3rd boundaries in the target, but there is a major issue where it predicts consecutive
sentences to be boundaries. Ultimately, it is likely that our technique of averaging word embeddings
to create a sentence representation makes a strong and irrational assumption that all words in the
sentence have relatively the same semantic importance. While this method is useful for being com-
putationally fast, we would likely retain more semantic information by calculating a weighted average.

For this document, our model correctly predicted the 1st boundary, was a near miss for the
2nd boundary, and missed the 3rd boundary. Our model was commonly able to correctly predict
a boundary on the first sentence of the document. This was expected, as many documents in our
training set had a boundary at the first sentence. As shown by our model’s inability to identify the
boundary at the 8th sentence, our model tends to overly predict Os, especially further into a document.
(Even going so far as predicting all Os for certain documents.) This is likely due to the fact that a
wide majority of sentences in each document are labeled 0. This is exacerbated by the fact that
our training data is padded with Os such that all of our target sizes match the length of the longest
document in the training set.

7 Conclusion

Text segmentation, the task of dividing a document into contiguous sections that are semantically
and contextually meaningful, is a field of research that will benefit from advancements in sentence
representation. In turn, text segmentation has great potential to aid the NLP tasks of information
extraction and summarization. While previous work in this domain has primarily investigated
unsupervised methods, there appears to be potential for improvement through supervised methods.

For our model, we focused on a supervised LSTM-based model to predict segmentation. We
successfully incorporated self-attention into the model, although it did not improve our results as we
would have expected. Through trial and error, we learned the importance of a having strong baseline
and consistent evaluation metric. We also recognized that models must be trained and evaluated on
similar data in order to make valid comparisons between results.

As for limitations, despite our model doing very well, we worry that it leans toward predicting O for
all examples (specifically, classifying each segment as not ending a segment). Although this leads
to good evaluation scores, this output is not helpful to obtain accurate segmenations of a particular
document.

For future work, we would like to address the limitations of our baseline by attempting stronger
alternatives for creating sentence representations. One interesting alternative by Arora et al [8] takes a
weighted average of word vectors, then modifies them using Principal Component Analysis/Singular
Value Decomposition. Another potentially interesting method would be to use deep averaging
networks to obtain sentence representations. In addition to improving our baseline, we would like to
experiment with attention in other layers in the neural network.

References

[1] Omri Koshorek, Adir Cohen, Noam Mor, Michael Rotman, and Jonathan Beranty. Text seg-
mentation as a supervised learning task. In Association for Computational Linguistics (ACL),
2018.

[2] Pinkesh Badjatiya, Litton Kurisinkel, Manish Gupta, and Vasudeva Varma. Attention-based
neural text segmentation. In IIIT-H, 2018.

[3] Matthew Purver, Condrad P. Kording, Thomas L. Griffiths, and Joshua B. Tenebaum. Unsu-
pervised topic modelling for multi-party spoken discourse. In Association for Computational
Linguistics (ACL), 2006.

[4] Tomas Mikolov, Edouard Grave, Piotr Bojanowski, Christian Puhrsch, and Armand Joulin.
Advances in pre-training distributed word representations. In Proceedings of the International
Conference on Language Resources and Evaluation (LREC 2018), 2018.

[5S] Doug Beeferman, Berger Adam, and John Lafferty. Statistical models for text segmentation. In
Machine learning 34(1):177-210, 1999.

[6] Lev Pevzner and Marti A. Hearst. A critique and improvement of an evaluation metric for text
segmentation. In Association for Computational Linguistics (ACL), 2002.

[7] Goran Glavas, Federico Nanni, and Simone Paolo Ponzetto. Unsupervised text segmentation
using semantic relatedness graphs. In Association for Computational Linguistics (ACL), 2016.

[8] Sanjeev Arora, Yingyu Liang, and Tengyu Ma. A simple but tough-to-beat baseline for sentence
embeddings. In ICLR, 2017.

	Key Information to include
	Introduction
	Related Work
	Approach
	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion

