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Abstract

In this project, we aim to classify songs into genres using their lyrics. It is chal-
lenging for humans to perform this task, and there often is debate where a song
fits since boundaries are not clearly defined and genres are overlapping. After
preprocessing our data, we trained our own GloVe embeddings of the song lyrics
and created different visualizations to better understand our data. As a baseline, we
used our GloVe embeddings in two logistic regression models to classify them into
genres. Then, we balanced our dataset so that there was a very similar number of
lyrics for each of the genres. Finally, using our GloVe embeddings, we trained an
LSTM model and bidirectional LSTM model. Our best LSTM model achieved an
accuracy of 68%.

1 Introduction

Music genres organize music into collections by indicating similarities between songs. Often times,
songs belong to multiple genres, suggesting that genre isn’t always well-defined. Technologies like
Spotify have high incentive to automate this categorization process since some estimate they have
60,000 songs added to their site everyday [1]. Music genres could be used to suggest new songs of the
same genre to users. Spotify and other music streaming services use metadata such as acoustics and
emotional tone for this genre classification [2]. They currently ignore lyrics, since it is challenging
to collect large amounts of lyrics. However, utilizing lyrics could be useful in genre classification.
Although it would seem that audio files are more useful than song lyrics to classify the genre of a
song, due to the high dimensionality of audio data and low dimensionality of lyrics, we aim to see
how well we can classify songs into genres using just their lyrics.

Current methods involve classifying genre using musical features as well as feeding lyrics into neural
networks. Some of these approaches fail to take into account word order which we think can be really
important. This has motivated us to use an LSTM, which performed at an accuracy of 68% for our
best model. Current methods also utilize word embedding techniques such as GloVe and Word2Vec.
We want to continue using word embedding methods as we think word similarity can be super useful.

2 Related Work

Many papers have focused on classifying music genre using rhythm, timbre, and pitch as opposed
to lyrics. Other papers even use techniques such as album customer reviews. A paper which fed in
audio features and timbre to their model used a two-layer neural network and achieved an accuracy
of up to 39% [3]. It seems like using lyrics could increase the accuracy of the models.

More recently, multiple papers have utilized lyrics for automatic genre classification. When em-
bedding the lyrics, the papers we found used a variety of techniques such as GloVe embeddings,
Word2Vec with TFIDF, and Bag-Of-Words with TFIDF. They also then ran their models through
various neural networks and achieved a range of accuracies.
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Tsaptsinos’s paper implemented a hierarchical attention network with an input of lyrics on a 20-genre
dataset and achieved accuracies close to 50% [4]. Kumar et al’s paper that achieved very high
precision of 80.16% fed in lyrics to classify 4 genres using a XGBoost [2]. In Rajanna et al’s paper
[3], they utilized Word2Vec with TFIDF on a three layer neural network and achieved a high accuracy
of 74%. We wanted to build off the neural networks employed and use an LSTM because we think
that word order without a limited window size could improve performance.

3 Approach

3.1 Word Embeddings

Simpler techniques like Bag-Of-words fail to capture position in text, semantics, and frequency
of co-occurrences. We decided to create GloVe embeddings since that allows us to take in word
similarity as opposed to just word count and use our own lyric corpus because the distribution of text
for lyrics is different than GloVe’s default Wikipedia text.

3.2 Baselines

For our baseline, we decided to implement 2 logistic regression models because they are often used
with categorical outputs. We wanted to start with a simpler model to get an understanding of how
difficult this task would be and to gauge what kind of performance we expect form our final LSTM.
Essentially, a logistic regression model uses the Logistic function to model the conditional probability
for each of the outputted classes. For each song, and each genre, this method will return a probability
that the song fits in that class. This could be helpful for artists who fit in multiple genres, as we may
see that two genres have very close output probabilities using logistic regression.

We used our GloVe embeddings in different ways for the models. For one model, we embedded
each word for each lyric using our GloVe embeddings and then concatenated those embeddings
together. Because all the lyrics had to be the same length, we padded the lyrics with a pad token
(a 100 dimensional vector of 0’s). While the longest lyric was 4571 words, we only padded lyrics
up to 500 words because the average song length was 278 words. We were worried that the model
performance would degrade if we padded up to 4571 tokens, as for many of the lyrics, most of the
embedding would be dedicated to just pad tokens. This could lead the model to predict genre based
on number of pad tokens. Therefore, for our second model, we averaged all the GloVe vectors for all
the words in each lyric.

3.3 Main Approach

In Rajanna’s paper [2] , which also performed lyric classification, they found that their three layer
deep neural network had the highest accuracy compared to their other non-neural network approaches.
We want to build further on their work with neural networks and use an LSTM model because unlike
many other neural networks which have a limited window when taking into account prior words,
the LSTM has no limit as it can process any length input. The LSTM also uses the same weight
matrix regardless of position in text and has a hidden representation that encodes previous words
seen. Additionally, we found that a lot of the same words most frequently appeared in pop and rock,
so we think that word order will be especially important beyond word count. Then, we also used a
bidirectional LSTM because it increases the amount of input information available to the network by
running over the input forwards and backward simultaneously.

4 Experiments

4.1 Data

Our dataset from Kaggle [5] contains 160,000 songs in multiple languages from 6 genres and includes
its lyrics and its corresponding genre. The artists of some songs are marked under multiple genres.
The dataset comes as two different tables, one for artists and their genre and one for songs, their artist,
and their lyrics. Our input for the model is the lyrics embedded with our GloVe embeddings and our
output is the one-hot-encoded genre.
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4.2 Preprocessing

Using part of the code from Kaggle [5], we merged the two tables, dropped all non-English songs
(which led to dropping 3 out of 6 genres), and removed duplicate songs. In total there were 7580
songs in our dataset that were labelled under more than one class. In one method, we decided to add
multiple genres for lyrics marked under multiple genres, since if we had picked only one genre, it
would have been unclear which genre was more accurate for an artist and our model would be less
accurate. In one LSTM model, we counted a song genre prediction as correct if the model predicted
any of the genres that a song fell under. For the rest of the models, we considered whatever the
labeled genre in the test set was as the correct genre. Because Pytorch doesn’t take in categorical data
for the loss function we are using, we also one-hot-encoded the 3 output genres. Also, after realizing
that the model was performing with extremely high accuracy for rock compared to the other 2 genres,
possibly because there were 3 times as many rock lyrics as compared to pop lyrics and 2 times as
many rock lyrics as compared to hip hop lyrics, we oversampled pop and hip hop to generate new
datasets such that the three genres had a roughly equal number of lyrics. Additionally, we tokenized
the punctuation so that punctuation would be recognized as its own word when we performed GloVe
embedding. Then, we generated our own GloVe embeddings trained on our lyric corpus using code
from Stanford NLP’s GitHub [6].

We split our dataset into a training, validation, and test dataset (80-20-20 split). The oversampled
training set had 123,428 rows.

4.3 Evaluation method

After creating word embeddings using GloVe, we created a visualization of the word vectors of the
top 200 most frequently appearing words in the lyrics to gauge if the GloVe embeddings made sense.
In order to understand different the words used in the genres were, we plotted commons words from
each genre. Beyond calculating accuracy of the model, we also created confusion matrices in order to
see which genres were more likely to be confused with one another.

4.4 Experimental details

Using the GloVe vectors generated, we converted the song lyrics into the vectors and padded them
appropriately and concatenated them for one model and took the average of the vectors for another
model. Very small amounts of this code was based off of Assignment 4. Using the these vectorized
lyrics, we implemented a logistic regression model on PyTorch from scratch. We used a learning
rate of 0.001, used cross entropy loss and the Adam optimizer and ran both models on 200 epochs.
We also coded an LSTM and ran it on a combination of various epochs (we generated training loss
graphs to determine when to stop running the model), learning rates, and batch size and ultimately
found that our best model used a learning rate of 0.001, batch size of 128, and 60 epochs. Running
the LSTM with those parameters took approximately two hours. We used cross entropy loss and the
Adam optimizer. For the logistic regression models, we only used our unbalanced dataset and for the
LSTM, we used both the unbalanced and balanced dataset. Because some of the songs in the dataset
were under multiple genres, we classified the prediction from the model as correct if it predicted any
of the genres the song belongs to.

4.5 Results

The GloVe embedding plot (Figure 13) seemed to make sense overall (similar words tended to be
near one another). In order to determine which models or word embedding techniques might work
best, we also analyzed word counts for each genre and found significant overlap between the 3 genres.
Only 27 of the rock words and 10 of the pop words out of the 300 most frequently appearing words
for those genres were unique to those genres, suggesting that a bag-of-words embedding or a machine
learning model that didn’t utilize the order of the words would not be very effective. This led us to
want to use GloVe and an LSTM for our final model.

As shown in the table below, the LSTM using the correct genres according to the test label had
an equal accuracy with our baseline GloVe Average model (0.64). The GloVe Average model
outperformed the GloVe Concatenation model by 0.09 likely because many of the lyrics probably had
a high amount of padding which could cause the model to learn things like song length or to ignore
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the tokens at the end of a long song. The confusion matricies are quite similar for both baselines;
rock clearly performed the best, potentially because there were more rock lyrics in our corpus. Our
confusion matrices were more balanced in the LSTM models compared to the logistic regression
model. The LSTM models all had a higher accuracy for genres besides rock, suggesting that the
logistic regression performance was actually poorer even though the overall accuracies were almost
the same. While the rock category’s performance went down, the performance of hip hop improved
significantly and the performance of pop improved somewhat in all LSTM models, especially the
bidirectional model.

We are not surprised that rock performed the best in the models with the unbalanced dataset - because
it had the most samples in the dataset, we think our model potentially could have just been predicting
rock mostly when it wasn’t sure what genre it was.

We expected hip hop to perform slightly better considering that it had the most unique words in its
lyrics as shown in figure 8. It also had the longest average lyrics out of the genres (480).

When we expanded our definition of a correct classification to include a prediction of any class that
the song belonged to, we also saw an increase in accuracy (0.68) as there were 7580 total songs with
multiple genres.

Overall, we would have expected the LSTM models to perform better than the logistic regression
model because they can remember information for long periods of time (some lyrics can be several
hundreds of words long). We also would have expected the bi-directional LSTM to outperform the
normal LSTM because the bi-directional LSTM preserves information from both past and future.

Model Accuracy

Baseline with GloVe Concatenation 0.55
Baseline with GloVe Average 0.64

LSTM with Unbalanced Dataset 0.64

LSTM with Balanced Dataset 0.57

LSTM with Balanced Dataset and Multiple Correct Genres 0.68

Bi-directional LSTM with Balanced Dataset 0.55

Figure 1: This table documents the accuracy of the models we have implemented.

Figure 2: This is a confusion matrix for the lo-
gistic regression model using average GloVe
embeddings. The rows represent true genre
while the columns represent predicted genre.

Figure 3: This is a confusion matrix for the
logistic regression model using concatenated
GloVe embeddings. The rows represent true
genre while the columns represent predicted
genre.
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Figure 4: This is a confusion matrix for the
LSTM model using an unbalanced (the orig-
inal) dataset. The rows represent true genre
while the columns represent predicted genre.

Figure 5: This is a confusion matrix for the
LSTM model using a balanced dataset. The
rows represent true genre while the columns
represent predicted genre.

Figure 6: This is a confusion matrix for the
bidirectional LSTM model using a balanced
dataset. The rows represent true genre while
the columns represent predicted genre.

Figure 7: This is a confusion matrix for the
LSTM model using a balanced dataset where
the prediction was correct if the predicted
class fell under any of the song’s genres. The
rows represent true genre while the columns
represent predicted genre.

Figure 8: These are the results of our hyperparameter tuning experiments with the LSTM model
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Genre Average Lyric length

All genres 278
Hip Hop 480

Pop 287

Rock 208

Figure 9: This table documents the average lyric lengths for each of the genres.

Figure 10: This plots the words and their respective counts in the hip hop genre that are not part of
the top 300 words for pop or rock. While there were 97 total unique top words for hip hop, we chose
to plot only 25 so that their words would be large enough on the bar graph.

Figure 11: This plots the words and their respective counts in the pop genre that are not part of the
top 300 words for hip hop or rock.
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Figure 12: This plots the words and their respective counts in the rock genre that are not part of the
top 300 words for pop or hip hop.

Figure 13: This plots the GloVe vectors that we generated on our lyric corpus for the top 200 most
frequently appearing words in our lyrics. The code to generate this plot was based off of code from
the 224n website.

5 Analysis

When inspecting our labelled dataset, we noticed multiple instances of hip hop songs that were
mis-classified as pop. The data our models were using as "ground truth" had obvious mistakes. When
we investigated some of the mis-classifications our model had made, we found several that were the
true genre but were misidentified in the database. Our model predicted Time is Money by Akon, Bang
it To The Curb by Far East Movement, and Angels by Mac Miller as Hip Hop, which is the genre we
determined that these artists belong to, but the dataset labeled them as pop. It is possible that there
are a lot more of instances of these misclassifications in the dataset, leading to poorer accuracy for
the pop label. As shown in figure 5, there were 1968 songs that were predicted as hip hop but should
have been pop. Based on the analysis we did with our outputs, it’s likely that many of those songs are
actually belong in the hip hop category.

As shown in figure 8, the average length of a song lyric is 278. For our LSTM model with a balanced
dataset, we found that the average length of a misprediction was 306 words, suggesting that the model
had a slightly harder time predicting genre for longer lyrics. This result is surprising - we would have
expected that longer lyrics would have provided the model with more information and led to a better
prediction.
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6 Conclusion

Our main goal was to most accurately identify the genre of a song based off its lyrics. After
preprocessing our data and creating GloVe embeddings, we were able to reach impressive performance
with logistic regression baselines. Then, by adding memory and word order to our model in the form
of an LSTM, we were able to achieve equal accuracy. When we saw unequal performance among
our three classes, we rebalanced our dataset and observed more even distribution of accuracy for
pop, rock, and hip hop but a lower accuracy overall. Finally, by adding both backwards memory in
addition to forward in a bidirectional LSTM, we were surprised to see a drop in accuracy overall.
With additional time, we could investigate why a bidirectional LSTM would have worse performance.
Also because our dataset has inaccuracies, it’s hard to trust the accuracy scores of our model. If we
had time to go through the dataset and fix the mistakes or use a different dataset entirely, it would
be interesting to run our models again to see if some of the models have bumps in performance. In
the future, we also hope to try running the experiments on already trained GloVe embeddings on a
Wikipedia dataset to see if our pre-trained embeddings made a difference.
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