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Abstract

Predicting doctor’s impression (summarization) for radiology reports saves doctors
and patients tremendous time from manually digging through the reports. But there
are few pre-trained language models for summarization, especially for radiology
datasets. We solve abstractive summarization for the free-text radiology reports
in the MIMIC-CXR dataset [1] by building ClinicalBioBERTSum, which incor-
porates domain-specific BERT-based models into the state-of-the-art BERTSum
architecture [2]. We give a well-rounded evaluation of our model performance
utilizing both word-matching based metrics and semantic based metrics. Our
best-performing model obtains a ROUGE-L F1 score of 57.37/100 and a Clinical-
BioBERTScore of 0.55/1.00. With comprehensive experiments, we showcase that
domain-specific pre-trained and fine-tuned encoders and sentence-aware embed-
dings could significantly boost the performance of abstractive summarization for
radiology reports. Our work also provides a set of pre-trained transformer weights
that could further facilitate practitioner’s future research with radiology reports.

1 Introduction

Text summarization helps to direct people’s attention to the most important contents and saves
tremendous human labor for digging through the documents. Automatic summarization is especially
significant for radiology reports since it alleviates patients’ great burden of reading through the lengthy
and obscure reports, and it often takes doctors years of training to accumulate enough expertise
to write concise and informative radiology report summarization. Pre-trained BERT-based models
greatly benefits various NLP tasks, but they are rarely applied to text summarization in existing works,
and there is no known language models specially pretrained for radiology datasets. In this project, we
aim to solve the problem of summarizing free-text radiology reports using pre-trained BERT-based
models.

Specifically, using the "Indication" and "Findings" sections in the radiology reports, we aim to
predict the "Impression" section, which corresponds to the doctors’s summarization. (See Figure
3 for an example). We formulate this problem as an abstractive text summarization task, because
doctors’ summarization is generally compressed and comprehensive containing information from a
wide coverage of a radiology report. Our model ClinicalBioBERTSum takes the free-text radiology
reports from MIMIC-CXR dataset [1] as input and uses the seq2seq [3] architecture to generate
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output abstractive summarizations. Inspired by BERTSum [2], our model ClinicalBioBERTSum
utilizes the clinical medical domain-specific pre-trained language model ClinicalBioBERT to learn
sentence-level representations and generates the predicted tokens with a transformer decoder. Based
on the findings in the previous work that combining extractive and abstractive objectives improves
the summarization [4], we also investigate how using the two objectives for a two-stage fine-tuning
affects the performance of our model.

Additionally, we also experiment with Byte-Pair Encoding (BPE) [5] tokenizer to create a customized
vocabulary tokenizer to better fit the radiology reports in our dataset. Moreover, it is challenging
to evaluation abstractive summarization, since different words could convey the same underlying
information. Using ROUGE score as the only metric which captures the n-gram matchings may not
be sufficient. To give a better evaluation of our model, we propose another automatic evaluation
metric ClinicalBioBERT-score based on BERTscore [6], which captures semantic similarities and is
highly correlated with human evaluation.

Our main contributions are three-fold: we built ClinicalBioBERTSum, a domain-specific Bert-based
language model for abstractive text summarization to save doctors’ time to generate concise and
informative summarization for radiology reports, we created a set of pre-trained transformer weights
for future NLP works in the radiology field to build upon, and we explored a new semantics-based
metric to better evaluate abstractive summarization for clinical text.

2 Related Work

Tokenizer. BERT Models rely on a word-slice tokenizer that has been trained on wikipedia and
literature datasets. Custom tokenizers can also be created when datasets are large enough, and the
tokenizers we discuss later on use a technique adapted froom BPE (Byte-Pair Encoding) [5]. This is
a technique that starts with a base vocabulary of symbols, and then uses a greedy merging algorithm
to form a vocabulary by merging existing vocabulary tokens into common larger tokens. This allows
one to fit a tokenizer to a specific dataset, which can be useful when the vocabulary of a domain
is different than the vocabulary of the pretrained model. We used BPE to create a clinical medical
vocabulary to fit our radiology reports.

Pre-trained Language Model. Pre-trained Language models are models that learn the general
language structure from a large amount of unannotated data before being applied to specific NLP
tasks. The most widely used ones such as BERT [7] and DistilBERT [8] have not been pre-trained
on specialty corpora such as clinical text, so they do not perform well on domain-specific texts.
ClinicalBioBERT is a model created from BioBERT [9], which is a BERT model finetuned on
PubMed abstracts and PMC articles. It is then fine-tuned on clinical texts from about 2M notes of
all types in the MIMIC-III [10] to make ClinicalBioBERT, which fits the semantics of the radiology
reports in our dataset well.

Text Summarization. Text summarization approaches have two categories. Extractive summariza-
tion is a binary classification task to select the most relevant sentences to summarize the document.
Several extractive summarization models including NEUSUM [11], BanditSum [12] and STRASS
[13] use different methods to compare and select sentences to capture the gist of the input document.
On the other hand, BERTSum [2] introduces a novel document-level encoder to better embed dif-
ferent sentences on top of BERT. Inspired by BERTSum’s encoder, we performed sentence-level
embeddings to better capture multi-sentences features.

Abstractive summarization generates novel summaries containing sentences that may not appear in
the source document. These models include T5 [14], BART [15], and BERT-based seq2seq [3].Liu
et al. proposes the BERTSum [2] model which improves abstractive summarization performance
by learning sentence-level representations and using a two-stage fine-tune scheme. We use T5 [14]
and a word-level seq2seq [3] as our baselines, and extent BertSum with domain specific pre-trained
language models to further improve radiology report summarization.

Evaluation Metrics.Standard text summarization evaluation techniques include ROUGE [16] and
BERTscore [6]. ROUGE measures text overlaps whereas BERTscore computes token similarity
using contextual embedding. Inspired by BERTscore [6], we use domain-specific encoders to learn
contextual embeddings for the reference and predicted summarization for the radiology reports and
compute their the embedding similarity accordingly for better evaluation.
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Figure 1: ClinicalBioBERTSum Pipeline. It inserts [CLS] tokens and uses interval segment em-
beddings to separate different sentences, learns sentence-level embedding with ClinicalBioBERT
Transformer encoder. Only [CLS] token embeddings are used as inputs for the following layers with
the extractive objective with Sn’s being the predicted scores for each sentence. All token embeddings
are used as inputs for the following layers with the abstractive objective with Yn’s being the predicted
tokens for summarization.

3 Approach

Main Approach. Following BERTSum [2], we insert a [CLS] token at the beginning of each
sentence and use interval segmentation embeddings to distinguish different sentences. Our model
(Fig 1) learns sentence-level embeddings using a pre-tained Transformer Encoder [17] which captures
bi-directional context and inter-sentence relationship. Compared to BERTSum [18], we propose to
replace the BERT Encoder with the ClinicalBioBERT Encoder [17] pre-trained on the MIMIC-III
dataset [10] containing various types of clinical notes, which better fits the semantics of the radiology
reports in our MIMIC-CXR dataset and thus learns better representations.

To perform the abstractive summarization task, we feed the sentence-level embeddings generate by
the encoder to a Transformer decoder (Fig 1) randomly initialized, train the decoder and fine-tune the
encoder in an end-to-end fashion. (model #5 in Table 1) We use NMT loss function that computes
word similarity as the distances in the embedding space.

lemb =

I∑
i=0

K∑
k=0

p(yi|y<i, X)d(E(Vk), E(yi)) (1)

It is a standard softmax cross-entropy loss with a weighted average of distances to a reference word
in the continuous latent space. Yi is the i-th word in the predicted summary and Vk is the k-th word in
the target-side vocabulary. E(w) is a vector word embedding of word w. d is the Euclidean distance
function.

Previous work [4] indicates that combining extractive and abstractive objectives helps improve the
summarization quality. Thus, we investigate two-stage fine-tuning for the ClinicalBioBERT encoder
of our model. In the extractive setting(model #6 in Table 1), we use several Transformer Encoder
layers after the ClinicalBioBERT encoder. The Transformer Encoder takes only the embeddings for
the [CLS] tokens to capture bi-directional context and inter-sentence relationship, which enhances
the expressiveness of our model.Then we use a sigmoid classifer to predict a score for each sentence,
The sentences with scores larger than 0.5 are included in the extractive summarization output. To
train the extractive model, we create the reference summarization by picking sentences from the input
document using a greedy algorithm similar to [19]. Specifically, for each radiology report, we pick
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the sentences from the indication and findings sections which maximize the ROUGE-2 score against
the Impression section. We use standard BCEloss as the loss function. Then in the second stage, we
perform another fine-tuning for the ClinicalBioBERT encoder with the abstractive objective (model
#7 in Table 1). Specifically, we take the fine-tuned ClinicalBioBERT encoder from the model trained
in the extractive setting, add a randomly initialized Transformer decoder and train the entire model
end-to-end with the abstractive summarization task as described above.

Another technique we explore is training a custom model for this problem, paired with a custom
tokenizer that is trained specifically for radiology reports (model #10 in Table 2). The tokenizer was
promising, with tokens including "calcification", "interstitial", and "cardiomediastinal", which are
very specific to our dataset. However, since this tokenizer will necessitate retraining a new model
with a different embedding size, training a smaller model was necessary to comply with compute
and time constraints. We trained MiniBERT [20], a smaller BERT model on our training data for 40
epochs with this custom tokenizer. We include the performance of this model in the appendix.

Figure 2: Seq2Seq BERT model (baseline) architecture.

Baselines. We use a T5 model (model #1 in Table 1) pretrained on the C4 dataset [14] in ab-
stractive summarizer mode without fine-tuning as a baseline. T5 has been explicitly trained in the
abstractive summarization task, so it can be applied without any fine-tuning to get a rough baseline.
As a comparison, we also fine-tune some vanilla Bert-Based Seq2Seq architectures (Fig 2) with
ClinicalBioBERT Transformers [17] (model #2 in Table 1) as the encoder and decoder to evaluate the
efficacy of sentence-level representation learned with the BertSum[2] architecture. The last baseline
is a pre-trained BERTSumExtAbs model [18] (model #3 in Table 1) without fine-tuning. It uses a
BERT Transformer model as the encoder and a randomly initialized Transformer as the decoder,
pre-trained with CNN/DailyMail [21] news articles.

Table 1 gives an overview of the models we considered for the main approach and baseline.

4 Experiments

Data. We use the MIMIC-CXR dataset [1] [22] with free-text reports of patients’ DICOM scans.
The "Findings" and the "Indication" (if present) sections are used as inputs for the summarization
model, and the "Impression" section is the output prediction. We show an example radiology report
in Fig 3. For data preprocessing, we filter out reports without "Findings" or "Impression" sections, or
with "Impression" section longer than the "Findings" and "Indication". We then split the dataset into
train/val/test sets with 95329/11995/11887 reports respectively. Note that our MIMIC-CXR dataset
is mostly different from MIMIC-III ClinicalBioBERT pre-trained on. MIMIC-CXR features only
chest x-ray radiology reports from 2011-2016 derived from 227,835 radiographic studies, whereas
MIMIC-III has a variety of text-based information associated with roughly 40,000 patients between
2001 and 2012.
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Figure 3: An example data record from MIMIC-CXR [1]. We use "Indication" and "Findings" as
input and "Impression" as output. Note that all PII information has been replaced with "___"

Evaluation method.
We evaluate the performance of our summarization model on the test set using Recall/Precision/F1 of
ROUGE score[16]. ROUGE-1 and ROUGE-2 measure the unigram and bigram overlap, and ROUGE-
L measures the common subsequence overlap between the predicted and reference summaries to
evaluate the informativeness of the summary. For example, recall and precision of ROUGE-L are
calculated as

RROUGE−L =
LCS(X,Y )

m
PROUGE−L =

LCS(X,Y )

n
(2)

where X of length m is reference summary and Y of length n is candidate summary. LCS is the
maximum length of the Longest Common Sequence.

One problem with ROUGE is that it only measures exact words overlaps which may be imperfect for
abstractive summarization, since a good abstractive summarization could include words with similar
meanings that do not appear in the reference. Thus, we used another automatic evaluation metric
BERTscore [6] that compares the pair-wise cosine similarity of the pre-trained BERT contextual
embeddings of all the words in candidate and reference summarization. Since it measures soft
overlap between token embeddings, it is good for paraphrase detection and effectively captures distant
dependencies and ordering. It also correlates highly with human evaluations [6]. To better evaluate
how similar reference and prediction summarizations are with respect to the medical semantics, we
use ClinicalBioBERT instead of BERT to generate embeddings for the summarization and compute
the ClinicalBioBERT-scores accordingly.

The numerical range of BERTScore is between -1 and 1, following [6], we rescaled it through a simple
linear transformation of scorerescaled =

Scoreoriginal−base
1−base . The base is calculated by selecting a million

sentences from WMT16 English text data, group two sentences randomly, compute ClinicalBioBERT-
score on the random pairs and take the average. Intuitively, the base is the score the candidate-
reference pair could get, where the candidate is generated by the baseline model that makes random
prediction. The rescaled score is generally between 0 and 1 with a reliable baseline.

Experimental details.

Hyperparameters for ClinicalBioBERT Seq2Seq: (Training 8 hours, eval 15 minutes on a nvidia-T4)

max_length = 128
min_length = 2
no_repeat_ngram_size = 3
early_stopping = True
length_penalty = 2.0
num_beams = 4

epochs = 4
optimizer = AdamW
lr = 1e-3
lr_scheduling = linear warmup, linear decrease
iterations = 120,000
batch_size = 2
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Hyperparameters for ClinicalBioBERTSumExt: (Training 5.5 hours, eval 8 minutes on a nvidia-tesla-v100 GPU)

ClinicalBioBERT Encoder configuration: follows the pre-trained model
Transformer Encoder Configuration:
num_layer = 2; hidden_size = 768; num_attention_heads = 8; feed_forward_filter_size=2048; dropout_rate=0.1
Training:
optimizer: Adam(beta_1=0.09, beta_2=0.999); iterations = 50000; batch_size = 3000;
warming up learning rate: lr=0.002; warmup_steps=10000
accumulate the gradient every 2 steps

Hyperparameters for ClinicalBioBERTSumAbs: (Training 5.5 hours, eval 8 minutes on a nvidia-tesla-v100 GPU)

ClinicalBioBERT Encoder configuration: follows the pre-trained model
Decoder Configuration:
num_layers = 6; hidden_size = 768; num_attention_heads = 8; feed-forward_filter_size = 2048; dropout_rate = 0.2
Training:
optimizer= Adam(beta_1=0.09, beta_2=0.999); iterations = 50000; batch_size = 140;
warming up learning rate: lr_bert= 0.002; warmup_steps_bert 20000; lr_decoder=0.02; warmup_steps=10000
note that the lr_bert is set to be much smaller than lr_decoder since it is pretrained
accumulate the gradient every 5 steps
Evaluation:
beam search length normalization coefficient = 0.95; max_length=200; min_length=3

# Model Encoder FT* Decoder FT*
1 T5 pretrained T5 × pretrained T5 ×
2 ClinicalBioBERT Seq2Seq pretrained ClinicalBioBERT X pretrained ClinicalBioBERT X
3 BERTSumExtAbs BERT pretrained with CNNDM × Transformer pretrained with CNNDM ×
4 ClinicalBioBERTSumAbs pretrained ClinicalBioBERT × Transformer trained from scratch X
5 ClinicalBioBERTSumAbs pretrained ClinicalBioBERT X Transformer trained from scratch X
6 ClinicalBioBERTSumExt pretrained ClinicalBioBERT X N/A X
7 ClinicalBioBERTSumExtAbs pretrained ClinicalBioBERT X* Transformer trained from scratch X

Table 1: Model architecture. FT* is Whether the encoder/decoder is fine-tuned on our MIMIC-CXR
dataset. Model 1-3 are our baselines and model 4-7 are our main models. X* means the encoder is
fine-tuned twice, first with the extractive objective then with the abstractive objective.

Results. We report the performance of the baselines and our main models in Fig 4 and include
results for all the models we experimented with in the appendix. We show the training curves in Fig
5.

Figure 4: Recall, Precision and F1 of ROUGE and ClinicalBioBERT-scores

The moderate performance of the pre-trained T5 model (#1) in abstractive summarizer mode without
finetuning indicates that it is reasonable to formulate predicting doctor’s impressions for radiology
reports as an abstractive text summarization problem. It also serves as a baseline for how a sum-
marization model pre-trained without specifically any medical data may perform on this niche task.
Compared to the model trained in extractive setting (#6), the significantly better performance of
the model trained in the abstractive setting (#5) further validates our formulation for the abstrative
summarization task.

Notice that all of the models using domain-specific pre-trained ClinicalBioBERT (#2, #4,#5,#6,#7)
perform significantly better than the other baselines pre-trained only on common English texts (#1,
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#3). This reveals the efficacy of domain-specific pre-training for language models. Besides, fine-
tuning the pre-trained models on our dataset greatly helps to improve the summarization quality, as
seen in the difference between model #4 and model #5.

Our best performing model (#5) obtains significantly higher precision than the baseline of finetuned
ClinicalBioBERT Seq2Seq model (#2). We think this could be because instead of learning word
embeddings as in the Seq2Seq model, ClinicalBioBERTSumAbs distinguishes different sentences in
the input by adding extra [CLS] tokens and using interval segment embeddings. The sentence-level
embeddings it learns helps to better capture the inter-sentence relationships and thus improves the
overall quality of summarization.

Figure 5: ClinicalBioBERTSumAbs’s training curve, perplexity (left), accuracy (right).

Among models using the pre-trained ClinicalBioBERT[17] encoder, the purely extractive model (#6),
unsurprisingly, struggles to perform well in this task. This is because the reference impressions are
often not sentences directly extracted from the findings or indication. This is especially true in the
examples where the summarization contains doctor’s conclusion based on findings, such as "No acute
cardiopulmonary pathology".

Surprisingly, unlike the findings in [2] that combining extractive and abstrative objetives helps
to improve the summarization quality, we find that the two-stage fine-tuning barely improve the
performance of the abstractive summarization model, as seen by comparing model #7 to model #5.
We think this is because the worddings of the summarization vary a lot from those in the original
radiology report and the performance of the extractive model is relatively bad on its own. The
interesting trend we notice is that for both ROUGE-Based scores and ClinicalBioBERT-Score, the
recall of the ext-abs model with two-stage fine-tuning is higher than the abstractive model. We think
this is because when the model is first trained in the extractive setting, the encoder learns to pay higher
attention to the sentences in the input with the largest overlap with the reference summarization.
Therefore, when the encoder is then trained with the abstractive objective, it would be geared towards
generating summarization mostly based on the sentences in the input that maximally cover the
contents in the reference summarization, and thus yielding high recall rate.

5 Qualitative Analysis

Example Input.

INDICATION: Right lower quadrant pain and recent pneumonia, evaluate for pneumonia.

FINDINGS: PA and lateral views of the chest.
Previously seen pneumonia in the right lower and mid lung are no longer apparent.
The lungs are clear. The cardiac, mediastinal, and hilar contours are normal.
There is no pleural effusion or pneumothorax.
There is no pulmonary vascular congestion.

IMPRESSION: Resolution of previously seen pneumonia. No new consolidations.

Example Output.

Ext Model: Previously seen pneumonia in the right lower and mid lung are no longer apparent.
There is no pulmonary vascular congestion.
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Abs Model: No acute cardiopulmonary abnormality.
Ext + Abs: Previously seen pneumonia in the right lower and mid lung are no longer apparent.

As seen in the example above, all three models gives reasonable summarization predictions. The
extractive model picks the sentences in INDICATION and FINDINGS that are most similar to the
reference IMPRESSION. In contrast, the abstractive model gives concise and informative summa-
rization of the INDICATION and FINDINGS with words like "abnormality", which do not appear in
the input text but capture the essence of the information included in the input context. It is interesting
that the abstractive model generates the well-defined medical word "cardiopulmonary" that accurately
captures descriptions for both cardiac and pulmonary conditions in the Findings section. It is the
only one among the three models that manage to do so. Comparing with the abstrative model, the
Ext-Abs model with two-stage fine-tuning generates more words from the original INDICATION
and FINDINGS.

6 Conclusion

In this project, we build ClinicalBioBERTSum by fine-tuning the ClinicalBioBERT [17] Transformer
encoder and training a Transformer decoder end-to-end. It takes the Finds and Indications sections of
a radiology report as input and predicts the Impression section via abstractive summarization, which
greatly helps reduce the human labor for doctors and patients to manually dig through the documents.
To better evaluate the abstractive summarization generated by our model, we use ROUGE scores
capturing exact word-matching and BERT-based scores taking account of synonyms and different
word-orderings. Our model generates concise and informative abstractive summarization, achieving
a ROUGE-F1 score of up to 57.37/100 and a ClinicalBioBERTScore of up to 0.55/1.00.

With comprehensive experiments, we showcase that pre-trained domain-specific language models
and sentence-aware embeddings significantly improves the quality of summarizing radiology reports.
Our transformer model trained on the radiology reports may serve as good checkpoints for other NLP
models dealing with radiology reports, such as auto-labeling models or models that highlight relevant
parts of lengthier findings sections.

Future work includes using our custom tokenizer to train a BERT-scale model specifically for
radiology reports. Another future direction is to fully evaluate the performance of our model by
using the resulting summarization in downstream NLP tasks. Alternatively, incorporating human
evaluation, especially from doctors, could offer further insights into the quality of the summarizations
our model generates.
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A Appendix (optional)

# Model Encoder FT* Decoder FT*
1 T5 pretrained T5 × pretrained T5 ×
2 BERTSumExtAbs BERT pretrained with XSUM × Transformer pretrained with XSUM ×
3 BERTSumExtAbs BERT pretrained with CNNDM × Transformer pretrained with CNNDM ×
4 ClinicalBioBERTSumAbs pretrained ClinicalBioBERT × Transformer trained from scratch X
5 BERT Seq2Seq pretrained BERT X pretrained BERT X
6 ClinicalBioBERT Seq2Seq pretrained ClinicalBioBERT X pretrained ClinicalBioBERT X
7 ClinicalBioBERTSumAbs pretrained ClinicalBioBERT X Transformer trained from scratch X
8 ClinicalBioBERTSumExt pretrained ClinicalBioBERT X not decoder(n/a) X
9 ClinicalBioBERTSumAbsExt pretrained ClinicalBioBERT X* Transformer trained from scratch X
10 custom MiniBERT MiniBERT from scratch X MiniBERT from scratch X

Table 2: The architecture of all the models we experimented with

Model # ROUGE-1 ROUGE-2 ROUGE-L
R P F1 R P F1 R P F1

1 20.86 19.10 17.07 9.11 7.19 6.94 18.45 17.58 15.4
2 6.93 6.93 5.99 0.88 0.87 0.76 6.37 6.23 5.42
3 31.69 18.82 21.00 13.17 8.66 9.31 30.01 17.60 19.70
4 52.79 65.28 55.18 42.05 51.35 43.71 51.53 63.63 53.85
5 57.15 47.41 48.76 40.82 34.32 35.03 53.84 44.99 46.16
6 58.20 46.96 48.84 43.44 36.00 36.94 55.33 45.02 46.67
7 57.96 66.95 58.97 46.44 53.37 47.06 56.38 65.09 57.37
8 48.31 20.97 26.60 23.36 11.07 13.70 45.64 19.60 24.92
9 58.75 65.87 58.91 46.70 51.89 46.52 57.07 63.84 57.18
10 67.26 10.35 16.5 47.98 5.62 9.18 60.38 8.45 13.69

Table 3: The performance of all the models we experimented with
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