Government Document Classification

Stanford CS224N Custom Project

Andrew Tang
Department of Computer Science
Stanford University
andrewht@stanford.edu

March 17, 2021

Abstract

This project was proposed by USAFacts, an organization founded by
former Microsoft CEO Steve Ballmer dedicated to leveraging data and
quantitative methods to provide insight into the US government. The
organization believes that having labelled government document data
is important towards its mission. But, currently, employees have been
classifying laws manually. The process is thus very time-consuming and
slow. This project attempts to use the large corpus of federal legislation
and automate the classification process with a trained NLP model. Other
potential applications could include tracking how the amount of legislation
by topic area has shifted over time and between Democratic and Republi-
can controlled governments.

In this paper, I explore various methods of inputting long text docu-
ments into multiple models, and subsequently discuss trade-offs between
performance and processing time. I also discuss the modification of various
model features and their impact on model performance. The highest
accuracy achieved was a 84% score with a fastText model.

Key Information

e Mentor: Tyler Mallon (USAFacts), Markus Pelger (MS&E108), Andrew
Wang (CS224N)

e External Collaborators: Marlies Michielssen (marliesmstanford.edu),
Brooke Tran (btranlstanford.edu),
Kasha Akrami (kakramistanford.edu)

e Sharing project: MS&E108

2 Introduction

USAFacts is an organization dedicated to providing transparency into the work-
ings of the US government. They continuously publish research and statistics
aimed at explaining what the government is doing. For the past two years,
the team has been manually classifying government documents into specific
topic areas. These efforts are very laborious and slow, and the team has only
been able to classify around 500 documents total (while more than 14,000 bills
were introduced in the 116th Congress). The organization is very interested in
automating the classification process with a trained NLP model.

After initial research, I discovered a huge amount of model types and began
applying many of them to this problem. Most of the existing classification
literature revolves around applying models to the same large document datasets,
namely reviews taken from websites such as Yelp (Tang et al., 2015), IMDB, and
Amazon, rather than long, specifically-written and formatted federal legislation.
Additionally, during the process of creating a new, custom labelled dataset, I
found that government legislation falls into a very large number of categories:
32, as opposed to reviews, which either range from 1-5 or 1-10. I thus had to
discover which models would work best with a large amount of categories and
long federal documents.

3 Related Work

Papers that inspired my approach are DocBERT (Adhikari et al., 2019), in
which the authors describe a variety of document classification methods that
they compare their DocBERT model to and HAN (Yang et al., 2016). I was
able to have a baseline comparison across many different datasets (including the
Yelp and IMDB datasets mentioned above), to see how the models performed on
other datasets. I was also able to get a sense of document processing of the input
text: for example, the DocBERT paper describes truncating text after a certain
length, while other papers discuss breaking up the text into overlapping chunks.
Overall, it was beneficial to have a sense of how models in these various papers
performed, as well as descriptions of the respective architectures. Overall, most
of these papers explore different approaches and model architectures revolving
around the same problem of document classification.

4 Approach

After reading through a number of papers and discussing with the organization,
I decided on creating a baseline logistic regression model using tf-idf scores
as input. This was suggested by my external mentors. I then replicated a
Hierarchical Attention Network (Adhikari et al., 2019 and Yang et al., 2016),
a convolutional neural network (Adhikari et al., 2019 and Kim 2014), and a
fastText model Joulin 2016). I was able to use the University of Waterloo’s

Hedwig database (Hedwig) and use/modify their hierarchical attention network
and convolutional neural network, adding features as discussed in subsequent
parts of the paper. The LR and fastText models, along with the dataset creation
scripts and additional features of the HAN and CNN were all written by myself.
The HAN and CNN all ran using PyTorch, and all other code was written in
Python using various libraries such as Pandas.

I made various changes to the existing HAN model which differed from Hedwig
and the referenced paper: the original model was a bidirectional model using
GRU and word2vec embeddings. I first ran the HAN with various different word
embeddings: word2vec downloaded from GoogleNews in 300 dimensions, GloVe,
and fastText subtext embeddings. Additionally, I changed the bidirectional-
ity of the RNNs in the HAN, and tweaked the GRU to a LSTM at the very
end. Overall, I had bidirectional GRU word2vec, GloVe, and fasttext models, a
bidirectional LSTM word2vec model, and a non-bidirectional GRU word2vec
model.

5 Experiments

This section contains the following.

5.1 Data

Although the USAFacts team was able to assemble a dataset of a few hundred doc-
uments, it soon became clear that this was nowhere near enough data to properly
train and evaluate. The other related papers had tens of thousands of documents.
I thus decided to not touch the USAFacts dataset and use it to test the models
instead. I then decided that I had to create my own labelled dataset, with suffi-
cient volume for creating the NLP models. I then wrote Python scripts to scrape
bill text data from Congress.gov, as well as the policy areas for each of those bills.
Currently, many federal legislative documents are manually labelled by Congres-
sional Researchers and assigned a specific policy area, with 32 policy areas in total.
I managed to put together a labelled dataset of 10,000 documents, with each
category having proportional representation. To calculate the percentage for each
category, I computed an average of the number of documents in each category
across the past decade (116th, 115th, 114th, 113th, and 112th Congresses). The
first figure below show the number of documents per category in the final scraped
dataset. The second figure shows the categories and their relevant encodings.

Agriculture and Food

Animals

Armed Forces and National Security
Arts, Culture, Religion

Civil Rights and Liberties, Minority Issues
Commerce

Congress

Crimes and Law Enforcement
Economics and Public Finance
Education

Emergency Management

Energy

Environmental Protection

Families

Finance and Financial Seclor

Foreign Trade and International Finance
Government Operations and Politics
Health

Housing and Community Development
Immigration

International Affairs

Labor and Employment

Law

Native Americans

Public Lands and Natural Resources
Science, Technology, Communications
Social Sciences and History

Social Welfare

Sports and Recreation

Taxation

Transportation and Public Works
Water Resources Development

0 250 500 750 1000

Legislative Category

Number of Documents

{'Science, Technology, Communications': 0, 'Public Lands and Natural Resources': 1, 'Education': 2, 'Housing and Comm
unity Development': 3, 'Congress': 4, 'Foreign Trade and International Finance': 5, 'Commerce': 6, 'Emergency Managem
ent': 7, 'Arts, Culture, Religion': 8, 'Environmental Protection': 9, 'Finance and Financial Sector': 10, 'Crimes and
Law Enforcement': 11, 'Immigration': 12, 'Water Resources Development': 13, 'Taxation': 14, 'Sports and Recreation':
15, 'Energy': 16, 'Families': 17, 'Labor and Employment': 18, 'Transportation and Public Works': 19, 'Agriculture and
Food': 20, 'Government Operations and Politics': 21, 'Armed Forces and National Security': 22, 'Social Sciences and H
istory': 23, 'Social Welfare': 24, 'Health': 25, 'Economics and Public Finance': 26, 'Civil Rights and Liberties, Min
ority Issues': 27, 'International Affairs': 28, 'Animals': 29, 'Native Americans': 30, ‘Law': 31}

Data cleaning was the next step, given that the scraped data was directly
from a website and often contained meaningless characters and was sometimes
strangely formatted given the HTML structure. This included removing non-
alphanumeric characters, removing excess spaces, removing stop words, etc. The
final structure of the data was one column for the cleaned text of each bill, and
a label associating that text with one of 32 categories. The categories were
sometimes encoded as integers, and are shown in the below graphic. The average
word length was around 5,000 words.

Before inputting the text into the model, I pre-processed the data in several
different ways: I attempted truncating after 30,000 characters, as well as split-
ting longer documents into 25,000 chunks with 5,000 character overlap between
chunks. However, I did not get much of a difference in accuracy, and my reported
results are on the 25,000 length with 5,000 overlap dataset (which initially had
the best results on the logistic regression and fastText models on the dev set).

However, in the code I wrote, there is a very easy way to change these parameters.
Nevertheless, the final dataset consisted of 13865 rows, and I did a 60,/20/20
ratio for train validation test splits.

5.2 Evaluation method

Given the large number of categories and dataset size, I simply replied on
accuracy as my metric. I thought of false positives and false negatives as equal,
and thus avoided precision and recall. Thus, for the test set, I simply looked at
the number of correct predictions over the number of total documents.

5.3 Experimental details

The logistic regression baseline model took under 5 minutes to run, and ran for
500 iterations. The fastText model took under 2 minutes to train and ran with
word embedding dimensions of 20, 30 epochs, and a Ir of 0.95. It ran on word
bigrams, although there is an option to change the size of n-grams.

The CNN was run with batch size 32, learning rate 0.01, and ran for 15 epochs.
It ran for about twenty to thirty minutes.

Finally, each of the HAN models (word2vec, GloVe, fastText subtext, LSTM, and
non-bidirectional) ran for around two hours. I ran with batch size 32 and learning
rate 0.01. The non-bidirectional was slightly faster. The fastText subtext model
ran for 30 epochs since it kept learning at each epoch, whereas the other HAN
models stopped early and I thus ran them for only 15 epochs.

All models were run on Microsoft Azure, with the exception of the logistic
regression baseline and fastText models, which I ran on my local machine.

5.4 Results

The baseline model ROC curves are below.

ROC curve of class 0 (area = 0 99)
ROC curve of class 1 (area = 0 99)
ROC curve of class 2 (area = 0 99)
ROC curve of class 3 (area = 0.99)
ROC curve of class 4 (area = 0 97)
ROC curve of class 5 (area = 0 99)
ROC curve of class 6 (area = 0 98)
ROC curve of class 7 (sres = 0 99)
ROC curve of class 8 (srea = 1 00)
ROC curve of class 9 (area = 0 99)
ROC curve of class 10 (area = 1 00)
ROC curve of class 11 (area = 0 99)
ROC curve of Class 12 (area = 0.99)
ROC curve of class 13 (area = 1 00)
ROC curve of class 14 (area = 0 99)
ROC curve of class 15 (area = 1.00)
ROC curve of class 16 (area = 1.00)
ROC curve of class 17 (area = 0 99)
ROC curve of class 18 (area = 0 98)
ROC curve of class 19 (area = 1.00)
ROC curve of Class 20 (area = 0 98)
ROC curve of class 21 (area = 0 98)
ROC curve of class 22 (area = 0 98)
ROC curve of class 23 (area =] 00)
ROC curve of class 24 (area = 0.99)
00 r T r T ROC curve of class 25 (area = 0 99)
00 02 04 06 08 10 ROC curve of class 26 (area = 0 95)

LAl ROC curve of class 27 (area = 0 98)
False Positive Rate ROC curve of class 28 (area = 0.99)

ROC curve of class 29 (area =] 00)
ROC curve of class 30 (area = 1.00)
ROC curve of class 31 (area = 0 99)
e & micro-average ROC curve (area = 0 99)
s & macro-average ROC curve (area = 0 99)

ROC Curves

TFue Positive Rate

The results (reported in terms of accuracy on the test set) are as follows. The
first table compares the four types of models, while the second table shows the
various HAN models against one another.

Model Test Set Accuracy
Logistic Regression tf-idf baseline 78.54%
Hierarchical Attention Network (GRU, word2vec, bidirectional) | 82.29%
Convolutional Neural Network 72.08%
fastText 84.31%
Model Test Set Accuracy

GRU, word2vec, bidirectional 82.29%

GRU, GloVe, bidirectional 81.21%

GRU, fastText subtext, bidirectional | 77.46%

LSTM, word2vec, bidirectional 83.38%

GRU, word2vec, non-bidirectional 81.82%

6 Analysis

Surprisingly, the baseline logistic regression model that only took into account
tf-idf scores performed extremely well. This may suggest that a simple measure
taking into account only the relative importance of a word to each document
(discarding the effects of word context/meaning, order, etc.) is enough to accu-
rately classify the majority of documents.

The most accurate model, the fastText model, seems to also leave behind
much of the more complicated RNN architecture of the hierarchical attention
network, relying on a simple shallow neural network with word vectors. Thus,
this may suggest that many of the more advanced features of the HAN (such
as the bidirectional RNNs taking into account word order and the attention
mechanism) may not be as important for the task of categorizing long documents.
Furthermore, various features of the fastText model seem to improve model per-
formance with large numbers of labels, such as adding in a hierarchical softmax
function, as well as averaging of word vectors with subword vectors. It seems that
fastText is also a model that was specifically designed for the purposes of text
classification, while the hierarchical attention network was adapted from existing
RNN architectures and applied to the task. Overall, however, the improvement of
the word vector based models over the tf-idf score baseline suggests that a repre-
sentation of word meaning is a better input that a metric based off of word counts.

Looking at specific misclassified examples, it seems that the improvements
over the baseline tf-idf model occur with regard to the interpretation of particu-
lar words. As one example, a document that mentions "Hawaii" many times gets
incorrectly classified by the tf-idf model as "Armed Forces and National Security"
most likely due to the fact that the word appears so often and most often appears
in defense bills (due to the large presence of the military in the state) when the
bill is actually in the "Law" category. However, word-vector and attention-based
models deduce that the meaning of Hawaii is merely a place, and that other
words in the document are more important. In terms of misclassified examples for
the HAN and fastText models, the toughest category was "Economics and Public
Finance." Large, omnibus spending bills with many provisions and thus many
categories often go in this category, limiting the effectiveness of our predictive
models in this particular area.

It seems also that the fastText model is superior in terms of speed as well,
due to various adaptations such as hashing and not having a linear structure
(like the RNN-based models). Finally, interestingly, removing the bidirectionality
from the HAN model resulted in a slightly faster training time while having
comparable accuracy. This suggests that bidirectionality in the HAN model
may not be as important of a characteristic to have. I have thus shown that

both advanced, neural-network based models and simpler regression models all
perform relatively well on the task of document classification: in existing papers
that I referenced, the accuracy is comparable.

7 Conclusion

In summary, over the course of this project, I managed to develop a number
of models that achieved high levels of accuracy in classifying legislative action
documents to their respective topical categories. I believe that the project was
successful because I assisted USAFacts with delivering a project true to their
mission and research: developing and utilizing data science and technology to
further understanding of governance.

These trained models can easily be applied to categorize other kinds of docu-
ments, such as executive actions, state legislation, and legislation from other
countries. Furthermore, I demonstrated that many existing models will work
when applied to a significantly different type of document, and that such NLP
models can be useful for organizations operating in the social science space. In
the future, large pre-trained attention-based models such as BERT could also be
applied to this specific classification task, to see how performance compares to
the models already considered in this paper.

8 References

Ashutosh Adhikari, Achyudh Ram, Raphael Tang, Jimmy Lin. 2019. DocBERT:
BERT for Document Classification. arXiv.

Duyu Tang, Bing Qin, and Ting Liu. 2015. Document modeling with gated
recurrent neural network for sentiment classification. In Proceedings of the
2015 Conference on Empirical Methods in Natural Language Processing, pages
1422-1432.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. 2016.
Bag of Tricks for Efficient Text Classification. arXiv.

Hedwig. GitHub Repository. https://github.com/castorini/hedwig/tree/master /models

Yoon Kim. 2014. Convolutional neural networks for sentence classification. In
Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing, pages 1746-1751.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard
Hovy. 2016. Hierarchical attention networks for document classification. In

Proceedings of the 2016 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, pages
1480-1489.

A Appendix

Code Repository: https://github.com /brooketran/USAFacts

	Key Information
	Introduction
	Related Work
	Approach
	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion
	References
	Appendix

