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Abstract 

Sarcasm is a form of verbal irony, in which a writer or speaker states the opposite of 
their intended message in order to mock or show contempt. Sarcasm is commonly 
used online, and being able to detect sarcasm is crucial to understand and classify 
online pieces of text. In this work, we attempt to classify Reddit comments (from 
the SARC corpus) as either sarcastic or sincere. Sarcasm is heavily reliant on 
context — information about the world or a text author. Therefore, we propose a 
BERT model, augmented with three different context types: discourse context, 
user context, and community context. After testing this model, we found that 
the addition of user context shows increased performance compared to training 
without user context. However, incorporating community context did not improve 
performance. We were able to achieve a maximum accuracy of 75.8 percent. 

1 Key Information to include 

¢ Mentor: Rachel Gardner 

2 Introduction 

Sarcasm is a form of verbal irony, in which a writer or speaker states the opposite of their intended 
message to mock or show contempt. For example, a speaker might say "I totally agree with you," to 
convey that they disagree with someone. Sarcasm can be present in both spoken and written language. 

Detecting sarcasm is key to understanding a passage of text — if one interprets all statements at face 
value, they might receive the exact opposite message that a sarcastic speaker intended. Furthermore, 
sarcasm detection is an important subset of sentiment classification, or determining the tone or mood 
of a piece of writing. The online communities like Facebook or Twitter on which sentiment classifiers 
make predictions commonly employ sarcasm. Because sarcasm can flip the polarity of text sentiment 
relative to its literal meaning, sentiment classification algorithms to recognize sarcasm in order to 
perform optimally. Typically, the task is set up as a binary classification problem, in which a model 
receives a written piece of text (sometimes including metadata) as input, and produces a binary label 
as output (sarcastic or nonsarcastic). 

Sarcasm detection is also an especially difficult task, for several reasons. First, it is commonly 
performed using written, not oral, datasets because of relatively difficulty collecting spoken data. 
Consequently, any model or human attempting to make predictions cannot rely on the tonal or facial 
expressions that indicate a speaker is being sarcastic. Furthermore, sarcasm often requires a great 
deal of topic-specific or speaker-specific context to understand correctly. For example, to classify 
the sentence "I think Reagan was one of the best Presidents of our lifetime" correctly, a model or 
human needs to understand (a) who Reagan was and (b) what the writer’s personal views on Reagan 

are. This can be an especially difficult when the topic at hand is niche. As a consequence of these 
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factors, sarcasm detection is challenging even for humans. On one dataset, humans were only able to 
label sarcastic sentences with 82% accuracy. 

Because sarcasm is so heavily dependent on context, many prior works attempt to leverage context 
to make prediction. For example, the CASCADE model created embeddings for every author and 
every online community in their dataset before training. When the text is in context of an ongoing 
discussion (e.g. a Twitter thread), other works attempt to train on both the text and surrounding 
discussion [1]. Indeed, Joshi et al. found that incorporation of context is one of three major milestones 
in sarcasm was incorporating context beyond the target text into decision making [2]. 

In addition, Vaswani et al. recently proposed the transformer architecture, which relies on attention 
units to establish long-range dependencies within a text [3]. Transformer-based architectures have 
been shown to achieve remarkable performance on many NLP tasks, including question answering, 
translation, and text classification [3]. BERT is one variety of transformer that was pre-trained on a 
very large text-corpus, and has has been shown to achieve very high accuracy NLP benchmarks, while 
simultaneously requiring minimal fine-tuning for specific tasks [4]. BERT has also been previously 
shown to perform well on sarcasm detection tasks [1, 5]. 

In this work, we attempt to determine if augmenting BERT with additional context beyond the 
target text improves performance. We use a dataset taken from Reddit, an online forum that users 
use to discuss a wide variety of topics. We augment BERT with three additional types of context: 
the discussion context (other comments the user is in conversation with), the user context (other 

comments a particularly user has made), and the community context (or how other people in the same 
community talk). The user and community context are based on embedding vectors created by the 
CASCADE model. 

We found that the augmenting the model with user embeddings caused a one percentage-point 
improvement over training the model without context; however, the subreddit embeddings were not 
shown to have any significant performance impact. 

3 Related Work 

The first attempts at sarcasm detection involved hand-engineered sets of rules to determine if a 
piece of text is sarcastic. For example, Riloff et al. noticed that sarcasm was often the result of a 
negative situation combined with a positive sentiment, and trained a classifier based on this pattern 
[6]. Another rule-based approach attempted to to capture instances of hyperbolic expressions (i.e. 
"Oh wow!") that occur together [7]. Other early strategies have involved hand-engineered feature 
sets based on word shape, the presence of synonyms, punctuation, frequency of rare words, etc. [2]. 
These rule-based or feature-based approaches were often combined with classical machine learning 
methods, such as logistic regression on support vector machines [2? ]. 

However, recently the trend in natural language processing is to use less feature engineering, and 
let deep-learning models learn more appropriate representations in a "hands-off" approach. For 
example, the architecture proposed by Khotijah et al. uses a Long Short Term Memory model to 
make predictions on a set of input embeddings [8]. Another approach, proposed by Potomias et al., 
fed the hidden outputs of the roBERTa transformer model through a bidirectional LSTM to achieve 
strong performance on the Reddit dataset [5]. These "hands-off" models have been shown to make 
high-accuracy predictions. 

In the last four years, a specific class of deep learning model, transformers, have become especially 
prominent both in sarcasm detection and natural language processing as a whole [3]. In the 2020 
Sarcasm Detection shared task at the Figurative Language Processing workshop, the top performing 
models all used some combination of transformers, generally a variation of a transformer model 
[9]. For example, Lee et al., the top performing team, implemented a classifier composed of BERT, 
followed by a BiLISTM and NeXtVLad, (an alternative to mean or max pooling) [10]. Other 

approaches included using roBERTa large, and off-the-shelf BERT models. 

Another common pattern in top-performing prior works is various attempts to leverage context. 
Indeed Joshi et al. claims that leveraging context has been one of the major milestones in sarcasm 
detection [2]. For example, Lee et al. proposed a novel mechanism to incorporate the discussion 
context of a piece of text (or the chain of comments a response is responding to) [10]. They use an



ensemble model to determine what the optimal length of context to include in the model is. With this 
model, they were able to easily outperform other models that did not use context. 

The model CASCADE, proposed by Hazarika et al., also leveraged multiple types of context to 
achieve state-of-the-art performance (at the time), without the use of transformers [11]. CASCADE 

operates on two types of context: user context (other comments a user has posted) and community 
context (other comments posted in the same community). They concatenate all comments a user has 
posted, and feed them into the ParagraphVector algorithm to create a user embedding vector. They do 
a similar thing for each community. They then train a CNN on these two embedding vectors along 
with the actual target text. 

4 Approach 

Given the success of both transformer-based methods and context-based methods, we sought to 
understand if existing transformer models could be improved by concatenating the transformer output 
with an embedding vector representing a target’s context. 

The the model used was a pre-trained BERT model [4]. BERT is a transformer with a pre-trained 
encoder trained on the Wikipedia corpus. Relying on bi-directional context, it trained using masked 
language models to predict random tokens on an unlabeled input corpus. At the time of its publication, 
BERT achieved state-of-the-art performance on several NLP benchmarks, including raising the GLUE 
score by 7.7 percentage points from the previous state of the art. 

The BERT model was augmented with three different types of context: discussion context, user 
context, and community context. The dataset used was based on Reddit, meaning every labeled target 
text was a response to a different ancestor comment (see Section 5.1). We name this the "discussion 

context." This discussion context and the target text are used as the input to the BERT classifier, 
according following formula, where the CLS token denotes a classification task and the SEP token 
denotes boundaries between sentences: 

<CLS> ANCESTOR COMMENT <SEP> TARGET COMMENT <SEP> 

The user context are the comments by the same author of a text, and the community context is based 
on all comments posted in the same community. These were generated using the same method 
proposed by Hazarika et al. in their CASCADE model [11]. Unlike Hazarika et al., however, the 
proposed architecture uses the embeddings as part of a transformer instead of a convolutional network. 

To create a user embedding, every comment by a particular user was concatenated into one large 
document. This document was fed into the ParagraphVector algorithm, an unsupervised algorithm 
that creates a fixed length embedding based on a variable-length input [12]. Two separate versions of 
this algorithm were created, one to represent the user’s writing style and another to represent the user’s 
personality. The personality embedding also relied on a pre-trained CNN designed to recognize Big-5 
personality traits. These two representations were combined using canonical correlation analysis, or 
CCA, which infers correlations between the two vectors to produce the final user context embedding. 
A similar process was applied to every community (or subreddit) in the datase to create the community 
context embeddings. 
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Figure 1: Embedding Generation 

The final model tokenized the input sentence and its discussion context, which was passed through 
BERT. BERT’s output was concatenated with the two user and community context embeddings, and



finally fed through through two linear layers and a softmax layer to create the final prediction (see 
Figure 3). Since the subreddit embeddings were a very high magnitude, they were passed through a 
BatchNorm layer to normalize them. Although the embeddings were generated using pre-existing 
work, concatenating with the transformer output is a novel approach. 
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Figure 2: Proposed Model Architecture 

  

Several sarcasm detection models have been able to achieve better performance by leveraging an 
LSTM layer on top of a transformer [1, 5]. Potomias et al. used an "RCNNRoberta model", which 
fed the hidden output of a RoBerta transformer into a Bi-LSTM before the max-pooling layer. This 
architecture was shown to achieve better performance than an out-of-the-box BERT classifier [5]. 

Therefore, this architecture was also implemented in order to determine if it would have higher 
performance than a BERT + context embeddings approach. 

We used several baselines for comparison. The first is random chance: since the dataset was balanced, 
it’s expected that a model making random predictions would have an accuracy of 75%. The second 
baseline was a bag-of-words model proposed and implemented by Khodak et al., in which a logistic 
regression classifier was trained on a vector composed on the word counts of the input [13]. The third 
baseline was human performance, also measured by Khodak et al. Finally, a BERT model without 
any additional context embeddings served as the final baseline. 
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Figure 3: Potomias et al. Architecture 
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5 Experiments 

5.1 Data 

We used the Self-Annotated Reddit Corpus, which is one of the largest datasets for sarcasm detection 
[13]. SARC was scraped from Reddit, an internet discussion board with over 30 million active users 

[14]. Reddit is organized around a series of subreddits, each of which is dedicated to a different 

theme or community. For example, /r/politics contains discussion about politics. On each subreddit, 
users post comments, which other users can reply to and discuss. 

SARC is structured as a list of comment threads. Each comment thread has a list of ancestor 
comments, a list of replies, and binary labels for each reply (sarcastic or not sarcastic). One datapoint 
might look something like the following:



ANCESTOR COMMENT 1: "I wonder how this announcement will impact Rockstar Gaming’s 
bottom line" 
ANCESTOR COMMENT 2: "I think we will have to wait until the game is released to see major 
changes." 
REPLY COMMENT 1: "They seem to be taking their time to iron out all the bugs" (Label: non- 
sarcastic). 

REPLY 2: "Yeah, a major gaming company would obviously never promise more than they can 
deliver" (Label: Sarcastic). 

Each comment, both ancestor and replies, also has associated metadata in addition to the raw text. 

This includes the date is was posted, the amount of likes it received, and the board it was posted in. 
All text was lower case, and had no formatting (e.g. italics). The dataset is self-annotated. Reddit 
users have a convention of appending "/s" to a comment to indicate sarcasm, so comments with "/s" 
were labeled as sarcastic. 

The balanced version of this dataset was used, which contained equal number of sarcastic and 
non-sarcastic responses. It contains 2.6 million datapoints. We subdivided the given test set into a 
validiation and a hold-out set. 

Some preprocessing steps were also necessary before the data could be used by our model. Each reply 
was tokenized along with its most direct ancestor, as described in Section 4. The label for the reply was 
converted into a one-hot vector. Finally, every user and community context embeddings in the dataset 
was pre-computed, and at training time, they were queried using the response metadata. Therefore, 
each datapoint fed into the model was a tuple of (tokenized text, user embeddings, community 
embeddings). Since not every response was associated with a valid user, the data had to be filtered 
and subsequently re-balanced. 

5.2 Evaluation Metrics 

The evaluation method used was accuracy. This method was chosen because the data set had an 
even amount of datapoints in each class, so there was no class imbalance problem. This was also the 
primary metric used by other models training on this dataset, which allows for easy comparison to 
prior works. 

5.3 Experimental details 

Several model configurations were tested in order to determine if additional user or discourse 
embeddings would improve performance. We tested BERT without using any embeddings, BERT 
with just user embeddings, BERT with just community embeddings, and BERT with both context 
embedding types. All models tested used discourse context. We also testedand implemented the 
model proposed by Potomias et al., to see if it had the potential to furhter improve performance. 

Hyperparameters were tuned using random search. Ultimately, it was found that the following 
combinations of hyperparameters produced the best results. 

yer Size 

  

Figure 4: Selected Hyperparameters 

Initially, the model was overfitting to the training data. To solve this, several strategies were employed. 
First, a weight decay term was added to introduce L2 regularization into the model. Furthermore, 
dropout was employed in the linear layers in order to reduce overfitting. Finally, filtering for user 
embeddings before balancing the data let us use a much larger portion of the available data.



Empirically, it was found that the performance stopped increasing after three epochs, so the model 
was only trained for three epochs. It took roughly two hours to train one model. 

5.4 Results 
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Figure 5: Accuracy of various models on SARC dataset 

AS we can see, using user embeddings improves the performance by around one percentage point over 
a vanilla BERT classifier. This makes sense, as having more context about a usersf personality and 
writing style seems like it would help determine sarcasm. However, this was not a huge difference, 
implying that the pre-trained BERT model is still doing the brunt of the work. 

Surprisingly, however, using subreddit embeddings does not improve the model’s performance. This 
is despite Hazarika et al. finding that using subreddit embeddings actually significantly helped 
improve performance of their model [11]. This could be because the transformer based architecture 
proposed is much less receptive to the additions of these embeddings than the CNN architecture 
proposed by Hazarika et al. Also, since the subreddit embeddings were added after the BERT model, 
the remaining two linear layers might not have had the complexity necessary to succesfully learn 
anything based on the subreddit embeddings. Finally, the BatchNorm layer added could have also 
hindered the performance - perhaps it would have been better to normalize the data as a part of 
pre-training, rather than within the model. These are all avenues for future experiments. 

Furthermore, replicating the architecture specified in Potomias et al. did not have a significant 
improvement over the BERT baseline [5]. This was also unexpected, as Potomias et al. reported very 
high accuracies for their model. In addition, Potomias et al. reported an accuracy of 77.00 for an 
out-of-the-box BERT classification model, which was also higher than our experimental results. The 
reason for this discrepancy is unclear; however, they used a much lower learning rate (1e-5) than us 
(1e-3), although our model performed even worse when replicating their hyperparameters. 

It’s also interesting that the bag-of-words baseline is remarkably high, compared to both much more 
sophisticated technques and human performance. This could indicate that the presence of certain 
words is a relatively strong indicator of sarcasm, and could be what the BERT-based model is using 
to make predictions. 

6 Analysis 

Looking at the confusion matrix, we can see that the errors are evenly distributed across the two 
classes. This means it’s not over-predicting sarcastic or non-sarcastic datapoints. However, it is 
slightly more accurate predicting sincere datapoints. 

The attention weights for two example sentences were also visualized (Figure 7). We can see some 
attention heads pay attention to all of the words. However, a few key words are weighted more 
heavily, such as patriot, american, and mosque. It might be inferred that these words are crucial to 
understanding the sentence, and thus, making a prediction. In the right example, we can also see that 
smart and reasonable are weighted highly. This makes sense, as sarcasm is often the presence of an 
over-the-top positive phrase in the presence of a situation or context that’s actually negative. This 
would also explain why the bag-of-words baseline performed so well. 

We can also do further analysis by looking at which examples were predicted incorrectly or correctly. 
Take the following example, which the model predicted incorrectly:
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Figure 6: Confusion Matrix 

Ancestor 1 Which song would make a good plot for a movie? 
Response "christmas shoes" (Label: Sarcastic) 

To correctly predict this, the model requires the world context that most humans might not know — 

that the song "christmas shoes" is widely considered cheesy. Furthermore, the user did not give us 
any information beyond the two word phrase, meaning the model would have to make a prediction 
based solely on world context it did not have. In general, lack of world context was one of the largest 
sources of errors. 

Furthermore, the dataset is self-labeled. It’s taken from Reddit users who annotate their comments 

with "/s" to indicate sarcasm. However, each user might have a different definition of sarcasm, as 
compared to data consistently annotated by a consistent group of people. For example, consider the 
following comment: 

Ancestor: What will we call Bill Clinton if Hillary is elected president? 
Response: I can think of a few names (Label: Sarcastic) 

This comment was labeled as sarcastic, but it’s really using an idiom, not verbal irony, to convey 
insulting sentiment towards former President Bill Clinton. Therefore, many people wouldn’t consider 

it sarcasm. In essence, this is a major problem with self-labelling — sarcasm does not necessarily have 
a strict definition and different users might have different personal definitions. 

Another problem with self-labelling is users might not feel the need to label a comment they feel 
is clearly sarcastic, although the authors of the dataset took some measures to prevent this [13]. 

Nevertheless, there are some obviously sarcastic examples that weren’t labeled, such as the following: 

Ancestor: God i hate reddit because of s** like this... bring the downvotes all you libt***s - i just 
don’t give a shit anymore... grow the f*** up. 

Response: Eloquent (Label: Non-Sarcastic.) 

Although these mislabeled data points are in the minority of the errors, they are still present and are 
also inevitable given the dataset collection method. 

There are a wide variety of issues a sarcasm detection model must overcome to produce good 
predictions. Even given unlimited information, some datapoints are still impossible to predict because 
they depend solely on a users personal opinions. Therefore, we can see sarcasm detection is a very 
difficult task for a human or model to perform well on; in other words, the Bayes error is very high. 
Future work might focus on eliminating some of these sources of error, either through leveraging 
more context or spending more time cleaning the dataset.
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Figure 7: Attention Head visualization 

7 Conclusion 

Sarcasm detection is an important task both on it’s own and as a part of semantic classification. 
However, it is also an especially difficult task. To successfully detect sarcasm in a piece of text, a 
model needs a wide range of context about the discussion the text was produced in, the author of the 
text, the platform the text is posted on, and even about the world at large. Even humans can have a 
very difficult time determining if a piece of text is sarcastic or not. 

In this paper, we sought to improve the amount of context a model could leverage by augmenting an 
existing BERT model with embeddings representing the author of the post and the community they 
were posting to to an existing BERT model. Although the community embeddings did not improve 
performance, we show that adding user embeddings could create a small performance boost in the 
resulting predictions. 

In the course of the project, I learned about how to build an end-to-end NLP model, putting techniques 
like early stopping, dropout, L2 regularization, and hyperparameter tuning into practice. I learned 
about some of the development techniques that help create a successful model. Finally, I got 
experience doing background research of existing papers, which helped me successfully come up 
with new ideas to achieve better results. I look forward to doing more NLP research in the future. 

The embeddings created have the potential to be applied to future work as well. The model used was 
relatively simple, but in many competitions like SemEval, large transformer models are combined 
with LSTMs and other architectures. Perhaps similar embeddings could be used along with these more 
complex models, to achieve even greater performance this was shown in this paper. Alternatively, it 
was demonstrated that many failures were due to not having enough context about the real world. 
For example, in the "christmas shoes" what the model really needs to determine is if the user 

thinks "christmas shoes" is a good song. This problem could be ameloriated by leveraging even 
more world context, i.e. from Wikipedia or social media, to create a representation of whether the 
topics mentioned in a text generally have positive or necessary associations open-domain sentiment 
classification model. Finding ways to leverage even more world context is another promising avenue 
for future research. 
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