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Abstract 

Automatic text summarization has been a well-researched NLP topic in recent 
years. It is possible to build machine learning models that are capable of distilling 
crucial information from a larger piece of text and condensing it to a smaller one. 
Text summarization using deep neural networks has become an effective approach 
and there are many use cases for that technique. One possible use case is text ads 
generation in online search advertising. Many advertisers are publishing text ads 
with ad titles that are not effective. Less effective ad titles will result in a lower 
chance of user conversion (clicks), which is harmful to the advertisers, and also a 

waste of hosting resources to the ads marketplace. It is meaningful to build a model 
that could rewrite the adtitle by summarizing the ad content. In this paper, we will 
study and leverage several state-of-the-art text summarization models, compare 
their performance and limitations, and finally, propose our own solution that could 
outperform the existing ones. 
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2 Introduction 

Sponsored advertising is an industry in which the most advanced predictive modeling techniques are 
applied because improvement in predictive capability can directly increase revenue. Using state-of- 
the-art machine learning techniques, the advertisers are able to attract more users and better advertise 
their brand. It is also beneficial to ads marketplaces like Microsoft and Google because it will help 
them conserve computing power and generate more revenue. 

As a suggested application area of text summarization, text ads generation is not a trivial problem. 
The challenges we are facing can be summarized into three categories. The first one is lack of 
pre-training context. In recent years, many text summarization systems include encoders pre-trained 
on massive text corpus with self-supervised objectives. However, the text corpus in the publicly 
available pre-training data, like CNN/Daily Mail, is very different from text ads in both vocabulary 
and syntax, and thus a pre-trained model does not work well in generating high quality ad titles. 

The second challenge is that there is no such thing as "golden-standard" text ads in the marketplace. 
In general text summarization tasks, we can rely on human-written summaries, which have important 
features like accuracy, fluency, and relevance. In ads marketplaces, there is not a quantitative way 
to measure the quality of an ad title. Our task to improve the ad title quality by summarizing ad 
description could be difficult if the data used to train the model are not high-quality. Lack of reliable 
training data is always a problem to supervised learning. 
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The third challenge is that an ad title generated by machine can contain misleading information if the 
decoder is free to search for words that are not in the original ad descriptions. For example, "free 
shipping" is a common term in ad titles to attract buyers, and the model trained on massive ad corpus 
can generate "free shipping" in ad titles while in reality the advertiser is not willing or able to do that. 

In general, a text ad includes an ad title and an ad description. In the following example, the blue font 
at the beginning is "ad title", and the grey font below the link is "ad description". 

GEICO Car Insurance | Get a Free Rate Quote 
https://www.geico.com/car-insurance + 605,500+ followers on Facebook 

Ad In just 15 minutes, you could save $500 or more on car insurance. Get a quote! 

geico.com has been visited by 10K+ users in the past month 

Insurance coverage: Auto, Motorcycle, Home, Boat 

Get A Free Quote - Get A Quote Online - Get a Quote - Contact Us 

Figure 1: A simple text ad consists of ad title "GEICO Car Insurance ..." and ad description "In just 
15 minutes, you could save ..." 

Our task is to build a deep learning model which takes in ad descriptions and generate ad titles 
correspondingly. Trained on massive ads data from Bing Ads, a RNN-based encoder-decoder model 
could make fairly good summarization of the ad descriptions. 

3 Related Work 

There are many techniques published in recent years that achieved success in text summarization 
tasks. In general, there are two categories: extractive and abstractive. Extractive methods choose 
tokens or sentences from the source and directly copy to the target [1]. Depending on the design of 
such systems, they could also do a ranking or rearranging of the selected tokens to make sure that 
the target text is grammatically correct. On the other hand, abstractive models [2] consume source 
texts and generate target texts. They are capable of generating words that are not in the source texts. 
In this paper, we will focus on the recent research on sequence-to-sequence (seq2seq) models for 
abstractive text summarization. 
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Figure 2: Sequence-to-sequence model structure (Seq2seq)



The attention mechanism has been widely used in natural language processing (NLP) [3] tasks like 
machine translation and image caption. Attention takes in two sentences and computes the correlation 
between each token in the two sentences. In case the two sentences are the same one, it is called 

"self-attention". The key of Attention mechanism is the vector of alignment scores. For each output 
hidden state to be generated in the decoding stage, we calculate the alignment scores between the 
previous output hidden state and every input hidden state to locate the tokens that the model should 
focus on. Eventually we generate the context vector by multiplying the encoder hidden states and 
their respective alignment scores. Then we concatenate the context vector with the previous decoder 
output, and we feed the result, together with the decoder hidden state, to decoder RNN to generate 

the next decoder output. 
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Figure 3: Sequence-to-sequence model with Attention 

4 Approach 

4.1 Neural Machine Translation with RNN 

Although machine translation is a different topic from text summarization, they both can be solved 

using sequence-to-sequence models. A well-designed NMT model could be used to generate 
summarized text with minor changes. We start with studying the attention based encoder of Bahdanau 

et al. (2014)[4]. Bahdanau introduced an RNN-based encoder-decoder neural machine translation 
(NMT) system which allows the model to automatically search for relevant parts in the source 
sentence when generating each part of the target sentence. A basic encoder-decoder system consists 
of an encoder, which reads the input sentence, and a decoder, which generates the output sentence. A 

simple RNN-based encoder takes in sentence z: 

ht = f(&t,he-1) (1) 

and outputs vector c: 
c=q(h1,...,hr,) (2) 

where h,; € R” represents the hidden state at time ¢ and c represents the output vector of the encoder. 

A RNN-based decoder is trained to predict the probability distribution of y; at each time ¢ given all 
previously predicted token {y1,..., yz—1} and c:



T 

p(y) = [[ pluil{s----. 9a}, (3) 

and in a basic RNN setting, we use some non-linear functions g to output y;: 

P(Yel{Yrs---,Ye-1},€) = 9(Ye-1, St,€), (4) 

where s; is the hidden state at time ¢ from RNN. In the next step we will investigate an advanced 
approach based on this model. It includes LSTM to serve as the g function in (4) and applies a global 
attention mechanism at each decoding step. 

4.2 Abstractive Text Summarization with Attention 

We study the attention-based NMT system[5], modify the published code implemented by Pencheng 
Yin [6] to make it compatible with text summarization tasks, and train the model with ad description 
as source sentence and ad title as target sentence. 

As the baseline of our research, a vanilla attention-base NMT is directly used as text summarizer. 
The technique and code are from [6] with minor change to conform our company infrastructure. The 
training and testing data are from Bing Ads marketplace and randomly sampled. This approach 
introduces a global attention mechanism: 

_ exp(score(hz, hs)) _ ] hs SS SE az(s) = align(he, hs) >, exp(score(hz, hs’) " 

where hh; is the current hidden state for target sentence and hg is each of the hidden state for source 

sentence. The author[5] lists three implementation for the score function, which is considered as a 

"content-based" function. In our approach, we used the "general" one: 

score(h;,hs) = hy” Wahs (6) 

Eventually the hidden state h; is used to compute the attention vector hy: 

hy = tanh(W.[c;; hi]) (7) 

and then the y; is calculated using 

D(yly < t,x) = softmax(W.hr) (8) 

Our objective is to maximize the log-likelihood of observed sequences, 

T 

logPo (glx) = }° logPo(GlG-<t, 2), (9) 
t=1 

which is equivalent to minimizing the cross entropy (XENT) loss, lossxenr = —logPo(g|x). 

In this approach, we notice that the ad titles generated are not good enough. For example, an ad piece 
from an insurance company is: 

  

  

    

Ad Description Save up to 78% on Auto Insurance Quotes. 
Bundle & Save with rates from $16.08! 

Ad Title (Ground truth) Senior Car Insurance(Quotes) - Cheap Se- 

nior Auto Insurance 

Ad Title (Pred) Auto Auto Insurance - Save Up to Quotes       

and the predicted ad title has duplicate terms "Auto" and the second part "Save Up to Quotes" make 
little sense.



4.3 The pointer-generator network 

The pointing/copying mechanism [7] proposed by Vinyals et al. provides a new solution to text 
summarization. In text ads, ad titles tend to include the same words from ad descriptions. The 
pointing mechanism generates output tokens by first calculating the attention weights of input tokens 
and then copy the important ones directly to the output. One popular alternative of this mechanism is 
Pointer Softmax [8]. At the decoding step t, a short-list softmax P,ocap, calculated by Equation (8) 

is used to predict output tokens in the vocabulary. The location softmax gives locations of tokens that 
will be copied directly from the source sentence x to the target y, based on the attention weight a‘. 

Pgen,t = o(W, 22; +r Wa rhe + By) (10) 

As we can see in equation (9), the probability of copying a token from vocab at time t, P,en, t is 

calculated using the context vector z¢ and the hidden state h?. The final probability of producing the 
target token y; is calculated by the concatenation of vectors PgentPouocab,t and (1— Prev at. 

5 Experiments 

5.1 Data 

The dataset is a sampled subset of Bing Text Ads Corpus. It is a collection of all text ads published on 
Bing Ads marketplace. There are ads in different languages targeting different markets, but in order 
for our model to perform better, we only sample ads in English. In theory, the mechanism should 
work in general as long as the training set and the test set are in the same language. In Bing Ads 
marketplace, ad title is limited to 30 characters while ad description is limited to 90 characters. 

In the first stage we sample 50 thousand text ads. Afterward, we trained the model on a much larger 
dataset which consists of 200 thousand text ads. We can see that increasing the size of the training 
dataset results in better performance in the holdout. 

After training and validating with Bing Ads data, we also crawl publicly available Google Ads data. 
All example ads in this paper are crawled from google.com and because Google Ads is in the same 
format as Bing Ads (ad title and ad description), our model is capable of inferencing high quality ad 
titles. Since many advertisers publish to both marketplaces (Microsoft and Google), we remove the 
sample if it appears in training data to avoid leaking information. 

5.2 Evaluation method 

We measure perplexity as a sanity check for our experiments. To compare the performance of different 
approaches we use common evaluation metrics like ROUGE score and BLEU score. 

5.3 Experimental details 

5.3.1 Abstractive Text Summarization with Attention 

In the baseline model we sampled 50 thousand English text ads for training and 5 thousand for testing. 
The ads are randomly sampled so even tail ads (the ads rarely shown to users) could be included. We 
use the vanilla summarizer implemented based on Yin’s code[6] and train the model on a V100 GPU 

with Ir = 5e-5 and it takes 30 minutes to train 9 thousand iterations. We record the performance in 
row | in the results table below. 

5.3.2 The pointer-generator network 

In the next step we use Shi et el.’s implementation of RNN-based encoder-decoder model plus Pointer 
network [9] to better summarize the ads. We modify the pipeline to accommodate the Bing Ads 
dataset and our GPU infrastructure. The model is trained with 50 thousand text ads on a V100 GPU 
with Ir = le-4 and it took 2 hours to finish the training. We can see that with the help of pointer 
generation, we successfully copy the crucial token directly to the output ad titles, and improve our 
model in both precision and recall. The performance is recorded in row 2.



5.4 Results 

The baseline experiment with randomly sampled ads shows unsatisfactory results, as we can see in 
the first row. The BLEU is very low, which means that the generated ad title is not good enough. We 
will work further to improve the system performance from both model and dataset perspectives. 
  

  

  

Results 

System Ppl BLEU | ROUGEI 

Baseline: LSTM + Attention 8.18 1.44 6.34 

Baseline + Pointer Network - (1) 7.55 1.92 10.63 
(1) trained on massive data 743 2.12 11.87               

6 Analysis 

One big problem in generating the ad title is that the real ad title may contain information not shown 
in ad description. For example, the title may contain the brand name like "Nike" and in description it 
will not repeat itself. In this way, it is very hard for our model to figure out the brand is "Nike" based 
on the ad description unless the model has huge amount of parameters and simply memorizes the ad 
content. 

  

  

    

Ad Description Earth’s biggest selection of books, electron- 
ics, apparel & more at low prices. 

Ad Title (Ground truth) Amazon.comA(r) Official Site - Fast Free 

Delivery with Prime     
In the example above, only human beings with extensive knowledge can realize that the "biggest 
selection of books" refers to amazon.com and our model is not capable of doing that. Also, the "Fast 
Free Delivery with Prime" is novel information that does not appear in the ad description. 

We learn from the failed inference that in case the ad title has many words in common with the ad 
description, we better use extractive text summarization, or Pointer network which seeks to directly 
copy words from source to target. In case the ad title does not share the same words, we can benefit 
from generating words that are not presented in the ad description, which is what abstractive text 
summarization can better handle. 

7 Conclusion 

From the experiments we can see that even though we attempt multiple approaches to improve the 
model performance, simply condensing information from an ad description usually can not provide 
an ad title of better quality than the original one. One reason could be that there is some valuable 
information we are missing. For example, we can crawl the landing page (the web page loaded when 
the user clicks the ad) and parse the HTML components for the model to train on. In this way, the 
model is capable of better understanding what product or service the advertiser is providing. 

Another reason that text summarization fails to generate good ad titles is because we do not have 
a pre-training process, so the model lacks an overall understanding of text ads. It is possible for us 
to pre-train on the all text ads so the model knows what an ad title usually looks like. There are 
limitations on pre-training the summarization model on more general data sources like wikipedia and 
New York Times because the language and writing style of such corpses are quite different from that 
of sponsored ads. The model could not learn much from them. 
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