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Abstract 

Spoken audio sentiment classification continues to be a difficult task in natural 
language processing. Currently, there does not exist a consensus on the best input 
features nor the best model architectures for neural emotion classification. In 
the following experiments, we employed the RAVDESS (Ryerson Audio-Visual 
Database of Emotional Speech and Song) dataset to probe speech sentiment clas- 
sification. We demonstrate the outcome of a series of experiments to identify the 
optimal combination of neural model inputs for emotion classification, specifically 
examining MFCCs (Mel-frequency cepstral coefficients), Mel spectrogram, chro- 
magram, spectral contrast, and Tonnetz representation. Second, we construct three 
new model architectures, integrating our results from the feature exploration. Our 
new model architectures consist of an extension of ResNet-50, an extension of 

DenseNet-201, and a novel combination of ResNet-50 and DenseNet-201 outputs 
along with custom architectural units that we call MultiNet. Our new proposed 
architectures and input feature combinations perform better than previous published 
results on the RAVDESS dataset, demonstrating an exciting novel contribution to 
the field of speech emotion classification. Finally, we demonstrate that MFCCs 
and Mel spectrograms are the most important audio representations for the audio 
sentiment classification task and that Tonnetz representation can aid with a minor 
boost in accuracy. 
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2 Introduction 

Speech emotion recognition is a difficult task that is critical for many human-computer interaction 
applications. Accurate speech emotion detection systems open up new possibilities in virtual assistant 
conversational design. Currently, many virtual assistants ignore important sentiment and rely solely 
on speech transcription. To learn if the user is satisfied with its most recent action, a system must 
prompt the user for explicit confirmation, instead of implicitly inferring satisfaction based on user’s 
vocal emotion. As an alternative, we envision a system that can use emotion detection to realize it 

has made a mistake without asking the user if it has done so. 

While there has been some work in this space, much of the existing work relies on sentiment analysis 
of the transcribed text. This is not surprising as written sentiment analysis is accompanied by a 
significantly larger body of work [1] compared to raw audio and researchers have achieved near 
perfect accuracy on datasets such as Yelp & IMDb. Unfortunately, transcription discards a plethora 
of features present in audio. 

Stanford CS224N Natural Language Processing with Deep Learning



Despite recent advances in machine learning and deep learning research, modern networks still 
struggle to achieve near perfect accuracy on speech emotion recognition tasks. As an example, the 
state-of-the-art accuracy on the Ryerson Audio-Visual Database of Emotional Speech and Song 
(RAVDESS) dataset is 71.61% (human accuracy = 67%) [2, 3]. Previous works [4, 5, 2] demonstrate 

that a combination of advanced deep neural network techniques and an intentional selection of audio 
representations may help advance accuracy levels on three speech emotion recognition datasets. 

Previous research outlines the advantages of past emotion recognition architectures, including 
Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and long-short term 

memory models (LSTMs). Previous exploration leaves substantial room for improvement with 
respect to audio feature representation in combination with model architecture selection. We aim 
to resolve some of the extreme ambiguity as to how to best represent input audio and construct a 
model optimized for emotion classification which can outperform the current state-of-the-art model’s 
71.61% test accuracy. 

In this research, we perform an extensive search over various combinations of input features and 
model architectures to identify the combinations of features and existing architectures that achieve 
the highest validation accuracies and use these results to inform the construction of three new 
architectures with which we set a new state-of-the-art for RAVDESS emotion classification accuracy. 
Additionally, we show that classification accuracy varies based on gender. We further demonstrate 
that transfer learning using ImageNet trained models does work for the sentiment classification 
sub-task of audio classification problems. To our knowledge, this is the first granular investigation to 
empirically demonstrate the effects of specific audio input features on sentiment classification using a 
variety of model architectures. 

3 Related Work 

Issa et al.’s (2020) [2] top performing model (evaluated on RAVDESS) combines multiple models in 

an ensemble and uses the ensemble to output the final classification. The ensembling was especially 
interesting to us as it led us to consider approaches in which we would train models on separate sets 
of inputs and combine them to produce better overall classifications. We used their proposed model 
as a variant baseline and to determine whether their model was hyperoptimized to their input features. 

The authors combine five different audio features (MFCCs, Mel spectrogram, chromagram, spectral 
contrast, and Tonnetz representation) to create a stacked input. This informed our input feature 
selection and our decision to compare all models using combinations of these five features. We did 
not find comprehensive research detailing relative effects of each of these features on accuracy. 

Palanisamy et al. (2020), presents preliminary work on the use of CNN-based models for audio 
classification. ImageNet [6] has become a classic pretraining set for image models focused on 
classification. The authors examine whether standard image classification models pretrained on 
datasets like ImageNet can be used for audio classification tasks without significant fine-tuning. 

Palanisamy et al. (2020) show that using pretrained weights for a standard model performs better 
than using randomly initialized weights. They show than an ensemble of ImageNet pretrained 
DenseNet achieves state-of-the-art on both the ESC-50 [7] and the UrbanSound8K [8] datasets and 

they establish that employing transfer learning assumptions on image models holds for spectrograms. 
These results informed our DenseNet & ResNet approaches to the audio sentiment classification task. 

Luo et al. (2019) propose an utterance-based deep learning model with a parallel combination of 
CNN and LSTM based networks to obtain an Audio Sentiment Vector (ASV) [4]. In this network, the 

CNN branch of the network takes in spectrum graphs as input, while the LSTM branch takes spectral 
centroid, MFCC, and other traditional acoustic features as input. The authors merge the outputs of 
the LSTM and CNN branch into the ASV using attention, which acts as a regulator. 

For the CNN branch, a ResNet was the best architecture empirically. Furthermore, they found that 
MECC, spectral centroid, spectral contrast and chroma stft, produced the highest model accuracy 
which informs our feature selection. Finally, the authors show that their multimodal model performed 
better than the state-of-the-art model at the time [9], which only used MFCC as input. 

Luo et al. demonstrate the value of merged outputs and selection of different input feature sets for 
each of the pre-merge architecture branches. This is the basis of our MultiNet architecture.



4 Approach 

We first experimented with our input representations (Mel spectrogram, MFCC, spectral contrast, 
Tonnetz representation, and chromagram) to determine the relative importance of each. In total, there 
were 19 distinct combinations of input features tested: each individually, all five together, and various 
combinations of 2-4 features. 

In order to enable this amount of experimentation efficiently, we built our code infrastructure to 
support a plug-n-play model with inspiration from Palanisamy et al. (2020) [5]. With our robust back- 
end, feature sets and model choices could be controlled by editing just two parts of a configuration 
JSON file for each experiment. We reconstructed the Issa et al. codebase to adapt to our infrastructure, 
used the Torchvision model zoo for the DenseNet/ ResNet base architectures, and adapted an author- 

provided codebase for Vision Transformer. Our novel models, dataloader, and preprocessing pipeline 
were built from scratch. 

Our two baselines were a simple logistic regression model and the network in [2]. We then tried our 
own simple five layer convolutional neural network shown in Fig. 7, a Vision Transformer (ViT) [10], 

ResNet-50 [11], and DenseNet-201 [12]. ViT, ResNet-50, and DenseNet-201 were all pretrained 

on ImageNet. We extended ResNet-50 and DenseNet-201 to create two of our novel architectures. 
Finally, we created a new variant of model architectures, MultiNet, which builds on [4]. 

The Vision Transformer is composed of 12 encoder blocks and one classification head. It takes as 
input a linear projection of flattened patches, which are spliced from the original image. We treat 
each feature or stacking of features as a N by T image, where N is the sum of the number of Mels, 
MFCCs, etc. dependent on the feature types used, and T is the input length representing time. 

The simple convolutional network outlined in Fig. 7 takes as input 32 x 1 x 301 x 250 arrays. Each 
convolutional layer has 32 filters with kernel size 4 x 4, stride of 1, and no padding. The first block 
consists of a convolutional layer followed by a leaky ReLU activation. Next, a block consisting of 
a convolutional layer, leaky reLU activation, and batch normalization is repeated four times. The 
output is flattened and fed into a linear layer that has eight classes. 

Our first new ImageNet architecture consisted of ResNet-50 trained on all five input features with 
three fully connected linear layers followed by ReLUs [13] built on top of the network. The second 
new ImageNet architecture consisted of DenseNet-201 trained on the Mel-scaled spectrograms, 
MFCCs, and Tonnetz representations with three fully connected linear layers followed by ReLUs 
built on top. We use leaky ReLU as suggested by [14] for its observed performance on neural network 
acoustic models. 
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Figure 1: Stitched ResNet-50 Architecture Figure 2: Stitched DenseNet-201 Architecture 

4.1 MultiNet 

To surpass the previous state-of-the-art performance, we constructed a novel architecture (MultiNet) 
that is a conglomeration of the ResNet and DenseNet model architectures and which takes inspiration 
from [4]. Let X' = [Xj X3...X},] represent the inputs to the Model A, and let X? = [X?, X3...X?] 
be inputs to the Model B. Specifically, X' and X? are the inputs that perform best with respect 
to each network. In the case of equivalent performance, we choose the smaller number of input 
features. In our experiments, the input features are the combination of all five input representations 
for ResNets and only the combination of the Mel spectrogram, MFCC, and Tonnetz representation 
for DenseNets. For our experiments specifically, let Model A be any DenseNet and Model B be any 
ResNet architecture. We experiment with ResNets 18 and 50 and DenseNets 121 and 201. 

These individual architectures output [J}, [3...[5] and [I?, I3...I7], where p and q represent the final 
output dimensions of Model A and Model B, respectively. We concatenate these vectors to form 
[I 13, ---Lp,49], which is then fed into a downstream fully-connected architecture unit. For this unit,



we experiment with permutations of Dropout [15], Linear, and ReLU layers. The output of this final 
architectural unit is [E), F2...E] representing the eight emotion classes in RAVDESS. 
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Figure 3: MultiNet Model Architecture 

5 Experiments 

5.1 Datasets 

Our primary dataset is RAVDESS [3]. It consists of audio-visual recordings of speech and song 
utterances of 12 male & 12 female North American English speaking actors. Actors demonstrated 
each of these emotions: happy, sad, angry, fearful, surprise, disgust, calm, and neutral. We used only 
the .wav audio speech files, which yielded 1,440 samples. 

The researchers noted that in human labeling, ’calm’ was often misidentified as *happy’, and ’sad’ 
was misidentified as *neutral’ or ’calm’. These human classification errors provide a baseline which 
we should aim to overcome in our neural systems. 

Using the state-of-the-art model’s input data [2] as inspiration, we preprocessed the raw audio 
data into normalized Mel-scaled spectrograms, Mel-frequency Cepstral Coefficients, chromagrams, 
spectral contrast features, and Tonnetz representations using a custom preprocessing framework. In 
forming each of these features, we used 2048 FFTs, a hop length of 512, and set the max frequency 
to 4096 Hz. For the Mel spectrogram, we set the number of Mel bands to 256. We generated 20 
MFCCs. Finally, we zero-padded each of our features’ time dimension to a length of 250. 

In summary, our input features were images and output labels were the eight different emotion labels 
listed above. We split our preprocessed data into an 80-10-10 split and stratified splits by emotion, 
intensity, statement, repeat, and gender to prevent distribution mismatch. 

5.2 Evaluation 

We primarily used validation and test accuracy to evaluate success. We selected validation accuracy 
as an evaluation metric because it is employed in previous literature to compare model success. 
Additionally, we know the human accuracy level on the RAVDESS dataset, and thus wanted to be 
able to gauge our success relative to human performance. Finally, it allows us to decompose accuracy 
by subclass, such as gender, and report on discrepancies between groups. We also use confusion 
matrices to better visualize per class and between class accuracies. 

5.3. Experimental Details 

For all of the initial networks except ViT, we trained with Adam optimization and used cross entropy 
loss [16]. For ViT, we used the AdamW optimizer provided by Hugging Face’s Transformers package 
[17]. The learning rate, weight decay, and number of epochs for each trained model is in Table 1. 

We trained ViT for 40 epochs originally, opting for 400 epochs after noticing how loss had not 
converged after 40 epochs. In general, to conserve training time and compute, we froze all of the 
model’s weights except for the classification head. However, for each combination of features tested 
on ViT, we trained an additional model where the last of the 12 encoder blocks was unfrozen. 

For both the novel stitched ResNet and stitched DenseNet networks, we performed an extensive 
hyperparameter search over learning rates [10~*, 10~*, 10°, 10~©] and weight decays [10~°, 107°, 
10-4]. For both the stitched ResNet and stitched DenseNet, the optimal hyperparameter pair was



  

                  
  

    

Model Learning Rate | Weight Decay | Batch Size | # of Training Epochs 

Logistic Regression 10-7 10-3 32 100 
Five-Layer CNN 10-4 10-3 32 80 

Issa et al. 10~° 10-° 16 700 
Vision Transformer 5*10-° 0 32 400 

ResNet-50 10-4 10-4 32 40 
DenseNet-201 10-4 10-3 32 40 

Table 1: Model Hyperparameters 
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Figure 4: Validation Accuracy and Test Accuracy For All Model Architectures 

learning rate of 10~°, weight decay 10~°. Both models were trained with learning rate 10~°, weight 
decay 10~%, and batch size 32 for 40 epochs with cross entropy loss and Adam optimization. 

For MultiNet, we tested learning rates 10~3 and 10~*. We conducted 11 unique experiments with 
MultiNet that were all based on different MultiNet architectures with hyperparameters held constant. 
We further tested on a wide range of DenseNet and ResNet output sizes as well as intermediate linear 
layer in and out sizes. For DenseNet and ResNet output sizes, our values ranged between 32 to 1024. 
First linear layer in sizes were a function of the sum of the ResNet and DenseNet out sizes, and linear 
layer out sizes were extremely varied. Our dropout layers had varied rates between 0.5 and 0.9. Table 
5 lists the various pieces of MultiNet architecture. 

The stopping criteria was to train until convergence or <1% average improvement over 10 epochs. 

5.4 Results 

Our full feature-architecture grid search results are listed in Tables 2, 3, and 4 of the Appendix and 
MultiNet model results are in Table 6. 

The best logistic regression model was created using Mel-scaled spectrogram, MFCCs, Chromagram, 
Spectral contrast feature, and Tonnetz representation as input features. This model achieved 51.38% 
validation accuracy and 22.22% test accuracy. The best CNN model was created using Mel-scaled 
spectrogram, MFCCs, and Spectral contrast as input features. This model achieved 65.28% validation 
accuracy and 13.19% test accuracy. The network in [2] achieved maximum validation accuracy of 
71.61% using Mel-scaled spectrogram, MFCCs, Chromagram, Spectral contrast features, and 75.69% 
test accuracy with MFCCs, Chromagram, and Tonnetz representation. The vision transformer (ViT), 
with all but the classification head frozen, achieved a 34.03% maximum validation and 15.28% test 

accuracy with all five features as inputs. With the last encoder block unfrozen, ViT reached a 58.33% 
maximum validation and 15.28% test accuracy with Mel-scaled spectrogram, MFCCs, and Tonnetz 
representation as input features. ResNet-50 reached 80.56% validation accuracy and 76.39% test 
accuracy with Mel-scaled spectrogram, MFCCs, Chromagram, Spectral contrast feature, and Tonnetz



representation as input features. DenseNet-201 reached 81.94% validation accuracy and 73.61% test 
accuracy with Mel-scaled spectrogram and MFCCs as input features. 

  

Figure 5: Test Set Confusion Matrices. Left To Right: Stitched ResNet-50, Stitched DenseNet-201, 

MultiNet. Labels In Order: neutral, calm, happy, sad, angry, fearful, disgust, surprised 

We surpassed our previous models’ validation accuracies for all three novel, ImageNet based archi- 
tectures. For the stitched ResNet model, we achieved 81.94% validation accuracy and 74.30% test 
accuracy. For the stitched DenseNet model, we achieved 87.5% validation and 79.17% test accuracy. 
For the best MultiNet, we reached 84.72% validation and 77.78% test accuracy. Accuracies are 
shown in Fig. 4, and the true and false positive rates for each emotion class, are in Fig. 5. 

6 Analysis 

These results indicate that the combination of features and neural architecture choices can have a 

substantial impact on the emotion classification task as we hypothesized. 

6.1 Feature Representations 

Specifically, we found three input features that consistently outperformed all other features combina- 
tions across network architectures: the Mel-spectrogram, the MFCC, and the Tonnetz representation. 
Below, we provide insight into why they perform so well, and what information they provide. 

¢ The Mel-spectrogram transforms a spectrogram non-linearly to reflect how a human per- 
ceives relative frequencies. This last part is important because how a human perceives 
relative frequencies often reflects how a human perceives emotion, which makes it the 

appropriate starting point for a model to learn latent emotion representations from. 

¢ The MFCC is essentially a compressed, decorrelated version of the Mel-spectrogram, 
primarily used for Gaussian Mixture Models. Oftentimes it is sufficient to train stronger 
classifiers like CNNs with just the Mel-spectrogram since the CNN should be able to learn 
the complex representations within the spectrogram itself. However, we find that with 
limited data, our models do not have enough training examples to learn such representations. 
Including MFCCs provides a head start for the model to learn latent representations from. 

¢ The Tonnetz representation splits frequencies into tonal centroids, specifically a 6- 
dimensional basis representing the perfect fifth, minor third, and major third each as 
two-dimensional coordinates. While Mel-scaled representations are commonly used to 

capture timbral aspects of music, they provide poor resolution of pitches and pitch classes 
[18], so this representation provides the model information about pitch and harmony. 

6.2 Model Performances 

In our baseline logistic regression and the simple CNN architectures, we see that we do not reach 
human accuracy levels on the task. Both of these architectures lack the complex parameter represen- 
tations that are necessary to emulate many of the neural connections in the human brain.



Interestingly, while ResNet-50 has approximately 5 million more trainable parameters than DenseNet- 
201, it did not perform as well in either our initial experiments or stitched experiments. Furthermore, 
it appears that the structural differences in the two networks, stemming from the dense connections in 
DenseNet, had a sizable impact on the number of features and types of features required for adequate 
training and validation. This might suggest why the addition of several dense layers in our stitched 
models led to higher accuracies. 

Compared to similarly sized models, ViT fell significantly short of the mark. By freezing the entire 
model except for the classification head, ViT was unable to fit to the training data, earning a 38.02% 
accuracy at best. By unfreezing the last encoder block, ViT overfit to the training data. The highest 
train accuracy across all the different input features we tried was 72.92%, while the highest validation 
accuracy was 58.33%. No matter whether the last encoder block was unfrozen or not, ViT could not 
generalize, earning a test accuracy slightly better than chance. Much like Transformers in general, 
ViT suffered due to the lack of data. Transformers trained on text data train optimally when given 
58 million sentence pairs, and research has shown that decreasing the training corpus to 16 million 
sentence pairs significantly decreases performance [19]. From another point a view, given that we are 
working with a little more than 800 training examples and an architecture with 86 million parameters, 
it isn’t hard to see that the model could have easily memorized those examples. 

As opposed to what we had expected, 
MultiNet did not perform better than 
the sum of its parts. Indeed, final 
MultiNet test accuracy is nearly right 
in the middle between DenseNet-201 
and ResNet-50 test accuracy. This 
would suggest that poorer performing 
models may actually diminish perfor- 
mance of a merged model. Potential 
solutions here could look at weighting 
the different outputs of the early mod- 
els differently, splitting loss functions, 
or adding basin hopping (Monte Carlo 
minimization) to randomly perturb the 
model’s location in the loss landscape 
in case it is stuck in a local mini- 
mum. Interestingly, both ResNet-18 Figure 6: Best MultiNet Training Curves 

and DenseNet-121 performed nearly 
as well or better than their more complex counterparts and had smoother training curves which leads 
us to believe that our dataset was too small and our learned functions were not approximating our 
validation sets well, even if training accuracy was hitting 100%. Additionally, we were surprised to 
notice that the addition of regularization through dropout did not help validation performance, nor 
did the addition of multiple linear + ReLU layers. The best final architectural unit turned out to be a 
single linear layer. Of all of the different experiments we ran, the best overall model was actually 
DenseNet-121 and ResNet-18, both with output sizes of 32 which were then stitched together and fed 
through a linear layer of in size 32 and out size 8. This model achieved 84.72% validation accuracy. 
As shown in Fig. 6, most of our ImageNet training curves looked quite stable. However, validation 
accuracy and loss curves had abundant noise regardless of model complexity, regularization, or 
hyperparameters. We hypothesize this is due to the size of our dataset. Since the validation set only 
has 100 examples, and the training set has 800 examples, we believe our learned functions do not 
truly approximate our data and that this could be mitigated by significant dataset expansion. 

  

Across all of our experiments, we found that the Mel-Spectogram and Mel-frequency cepstral 
coefficients were undoubtedly the most valuable extracted features from our initial audio clips. This 
implies that knowledge about individual frequencies, the frequencies’ amplitudes, and phoneme 
representation are pertinent to doing well on our task. Furthermore, our explorations indicate the value 
of using a visual image-based representation of audio data and the superiority of large, ImageNet 
pretrained models. We do additional complexity analysis in Fig. 11 where we show that there is a 
definite tradeoff being made between computational resources and a few percent of accuracy. Issa et 
al. (2020) perform nearly as well as us, but using significantly less computation.



From the confusion matrices (Fig. 5) for the test set results on the stitched ResNet-50, stitched 

DenseNet-201, and MultiNet, we can see that anger and disgust are classified with the highest 
accuracy and neutral, happy and sad have the lowest classification accuracy. These patterns follow 
previous behavior in literature analyzing emotion classification, specifically with relations to the 
ambiguity between neutral and sad. 

6.3 Gender 

As the RAVDESS dataset is also labeled by gender, one of the post-hoc analyses we did was looking 
more closely at gender differences among each model. For the holdout evaluation set, we can see 
discrepancies in performance across gender more clearly in Table 7 and Fig. 9. Notably, the ResNet 
and stitched ResNet architectures both had test accuracies for women that were over 20 points greater 
than the accuracies for men. For other models, there was also a large discrepancy, though not as 
large - for example, the DenseNet architectures both had a nearly 10 point difference. Across all 
models, performance for women was an average of 10.5 points higher. For baseline architectures like 
logistic regression and the simple convolutional network, while accuracy was higher for women, the 
difference was not as substantial. 

While it is not immediately clear why this discrepancy exists, this may be something to look at 
in future analysis. An initial investigation shown in Fig. 10 suggests a relationship between the 
complexity of a model (determined by number of parameters) and the size of the gap in accuracy. 
However, without additional runs of each model, we cannot conclude a relationship here. 

7 Conclusion 

Overall, we have identified the importance of three speech audio representations: MFCCs, the 
Mel-Spectogram, and the Tonnetz Representation for emotion classification. We have also identified 
the importance of image-based features and image models for performing well on speech sentiment 
classification. We have provided three novel architectures, all of which are expansions on or com- 
binations of previous image models (ResNet and DenseNet), that increase validation accuracy on 
the emotion label of the RAVDESS dataset. We have been able to analyze a variety of different 
network structures and increase the field’s understanding of the interactions between these structures 
and different audio features. Lastly, we have advanced on the state-of-the-art for our dataset in the 
emotion classification task. 

The main limitation of our work is the inclusion of only a single, generally small speech dataset 
for training and evaluating our models. Without further testing and the introduction of additional 
data, we cannot conclude that the results will extrapolate to all other speech data. Additionally, the 
RAVDESS dataset is limited to two short utterances, both spoken in English. Going forward, we 
would like to test that our findings generalize to datasets which contain more expressive utterances 
and other languages to better understand the implications for the broader speech audio sentiment 
classification objective. 

To address some of these limitations and other anomalies we saw during experimentation, there are 
a few next steps that we can take. As a first step, as we saw in Fig. 6, to address the noise in the 
validation accuracy and loss curves, we may want to do bootstrapping in order to get error bars to 
better understand the curves. Additionally, to explore the gender imbalance in performance, we 
would like to perform spectral augmentation as proposed in [20], and to shift the pitch of male voices 
to see what effect that may have on the accuracies of the different models. 

In the future, we would also like to use these research findings to classify voice assistant responses 
based on user emotions. We wish to conduct transfer learning on our best models to identify whether 
a voice assistant has executed a user’s intended task based on the user’s emotion when responding to 
the voice assistant.
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Appendix 

  

Figure 7: Convolutional Neural Network Model Architecture 

Vision Transformer (ViT) ' Transformer Encoder 
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Figure 8: Vision Transformer (ViT) Architecture 
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Key D1 D2 D3 RI R2 

Model DenseNet-201 DenseNet-201 DenseNet-121 ResNet-50 ResNet-50 
oue Output size: 1024 Output size: 32 Output size: 32 | Output size: 1024 | Output size: 32 

Key R3 Al A2 A3 A4 

ResNet-18 Li = OMB, 512) Linear Linear Dropout Model oN ee a a” In- 2048 In- 64 a ropeu 
Output size: 32 ReLU Out- 8 Out- 8 Linear 64,8) 

Linear (512,8) 

Table 5: MultiNet Architecture Selected Layer Options 

Final ar 

Model A | Model B | Architectural Notes Validation 
Uni ccuracy 

nit 

Dropout 0.5 
DI RI Al LR = le-3 74.31 

Dropout 0.9 
DI RI Al LR = le-4 75.00 

Dropout 0.5 
DI RI Al LR = le-4 74.31 

Dropout 0.5 
DI RI A2 LR = le-4 79.17 

Dropout 0.5 
D2 R2 A3 LR = le-4 79.17 

Dropout 0.5 
R2 D2 A3 LR = le-3 79.17 

Dropout 0.5 
D3 R3 A3 LR = le-3 83.33 

Dropout 0.5 
D2 R2 A4 LR = le-3 80.56 

Dropout 0.5 
D3 R3 A3 LR = le-3 84.72 

Dropout 0.5 
D2 R2 A3 LR = le-3 81.25 

Dropout 0.5 
D2 D2 A3 LR = le-3 77.28 

Table 6: Selected MultiNet Results 

Models Test Acc TestLoss Test Acc(W) Test Loss(W) Test Acc(M) Test Loss (M) 

Logistic Regression 22.22 9.16 22.86 8.51 21.62 10.13 
CNN (full dataset) 13.19 2.09 15.07 2.09 11.27 2.11 
Transformer 15.28 2.12 16.44 2.10 14.08 2.16 
DenseNet 73.61 0.95 78.08 0.85 69.01 1.30 
ResNet 76.39 0.78 86.30 0.45 66.20 0.96 
Issa et al. 75.69 0.96 80.82 0.82 70.42 1.11 
DenseNet ++ 79.17 0.90 83.56 0.69 74.65 1.06 
ResNet ++ 74.31 0.79 84.93 0.60 63.38 0.79 

MultiNet 77.78 0.79 82.19 0.55 73.24 1.08 

Average 56.40 2.06 61.14 1.85 51.54 2.30 
Table 7: Test accuracy and loss by model, split among gender   
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Test Accuracy of Models Across Gender 
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Figure 9: Test accuracy of each model by gender. 

Complexity of Model vs. Accuracy Delta by Gender 
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Figure 10: Log transform of number of parameters on the x-axis, plotted against the difference in test 
accuracy by gender (Aacc,, — accm). 
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Complexity of Model vs. Test Accuracy 
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Figure 11: A plot of the number of parameters log transformed of each model versus its test accuracy. 
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