

BigBirdFLY: Financial Long text You can read

Stanford CS224N Custom Project — Mentor: Rui Yan

Dhaval Dangaria, Riccardo Giacomelli, Wilfrido Martinez
{dhavald, ricgiac, wilfrido.martinez}@stanford.edu

Abstract

The development of new architectures allows to process long input windows of
text at once, overcoming both memory and computational constraints. New de-
velopments pushed maximum input windows to 65k+ words compared to the 512
BERT limit. We aim to explore, compare and improve state-of-the-art long window
architectures to summarize long texts. We consider BERT, BigBird and GPT-3
models. We focus on the financial narrative domain, summarizing 100- to 200-page
documents. We aim to test models with different maximum input size exploring
benefits and limitations. Long input windows allow to include wider context in the
summarization process, avoiding out-of-context sentence extraction that can lead to
changes in sentence-level semantic. We compare extractive and abstractive methods
on key aspects in the financial context as numerical accuracy and summary seman-
tic. We show extractive methods (BERT-based) can retain sentence by sentence

accuracy from text, nevertheless the extraction process can produce fragmented
summaries which can lead to misleading interpretation. We also reveal abstractive
methods (by introducing BigBirdFLY, a wide context summarization method based
on BigBird) can produce fluent summaries. By using human evaluation, we show
BigBirdFLY can produce summaries more similar to human-generated summaries
and excel in the human evaluation criteria, whereas extractive methods are able

to score high in automatic metrics (ROUGE). Finally, we explore how enhanced
greedy sentence-selection methods exploiting long input window in a single step
compare to recursive solutions based on Reinforcement Learning.

1 Introduction

Long text summarization compresses the source text (100 pages) into a watered-down (yet fluent
and self-contained) version (1,000 words) that keeps its information content and overall meaning [1].

Existing research can be classified into one of two approaches to text summarization: 1) Extractive,
where sentences are extracted from the text and used to represent it; and, 2) Abstractive, where you
produce a new body of text to represent it. Historically, both tasks have been relatively difficult, even
for neural approaches [2], with long text adding additional complexity to the task.

Specifically, in the financial domain sentence extraction-based summarization without consider-
ing broad context can be misleading; moreover, highly relevant numerical information could be
meaningful only if related with context. E.g., in the following extract from a report:

Assuming the progressive increase of oil price to $60 per barrel, as per our scenario
assumption

cash flow from operation before working capital is expected to amount to around
€44 billion along the plan period.

Stanford CS224N Natural Language Processing with Deep Learning

the second sentence has a different meaning depending on if it is related or not to the first sentence.
Extracting the second sentence would lead to the wrong conclusions. The semantic meaning of the
original text can change depending on the summary length (i.e. a generated summary of 2,000 words
could have a very different meaning compared to a summary of 1,000 words generated from the
same text.) Moreover, two sentences located far apart in the original text could be placed close by in
the summary, creating fictional meaning. The introduction of longer-context windows (4k+ tokens)
allows to consider the full context of the sentence in the summarization process, avoiding deceptive
and detrimental summaries. Additionally, long context windows allow the model to have flexibility
to rank relevance of text considering a context breakdown at the section/sentence level.

In this work, we aimed to compare the performance of extractive/abstractive models at the sentence
level based on BERT (maximum 512 tokens), GPT-3 generated summary (maximum 2,048 tokens),

and propose a new solution with a maximum input window 8 times longer based on BigBird [4]
(maximum 4k tokens.) We compared them using both standard metrics and human evaluation. The
aim is to, eventually, expand the study to longer context windows [5].

In the domain of sentence selection, solutions spanning from greedy (local sentence selection) to
recursive multi-stage sentence selection (Reinforcement Learning) [3] have been proposed. This
study is an empirical test on how greedy algorithms can be enhanced exploiting long window input
sizes and how they compare to recursive ones [3] and others methods [6] for the summarization of

long text financial documents.

2 Related Work

There have been several algorithmic approaches for both extractive and abstractive summarization,
from the simplest extractive approach (LEAD-3 [13] benchmark, which proposes the first three
sentences of the document as the summary, and achieves an R-1 F1 score of 30 percent,) to more
complex ones, like MUSE [9] benchmark (based on rules, classification for sentences — R-1 of

48 percent), sumTO [6] benchmark (a sentence by sentence approach based on BERT — R-1 of 45
percent), and Pointer Networks [3] benchmark (R-1 of 46 percent.) Other approaches to text

summarization include, topic words, bayesian topic models, and graph based approaches [16].

Transformer-based models (together with language model pre-training) have proved a game-changer
for Machine Learning and NLP [13]. Both BERT and BigBird have been used extensively in different
fields for many NLP tasks. BERT has proven to be a key advancement in NLP by achieving state-of-
the-art results in many NLP taks, such as question answering and natural language inference [14]. In
order to fine-tune BERT for a specific task, only one additional layer is necessary for the pre-trained
BERT model, as opposed to substantial architecture modifications. Use of transfer learning has become
a norm for state-of-the-art research using BERT [14]. Thus, for summarization, the architecture of

the original BERT model is only subjected to small modifications. In BERT, the proposed sequence
is [15]: input document, followed by the summation of three kinds of embeddings for each token.
The summed vectors are used as input embeddings to several bidirectional Transformer layers,
generating contextual vectors for each token. For summarization (Figure 3), BERT is extended by
inserting multiple [CLS] symbols to learn sentence representations and using interval segmentation
embeddings to distinguish multiple sentences. finBERT has used BERT for the financial domain. It
proved good for extracting explicit sentiments, but modeling explicit information was not apparent
[17].

BERT has been one of the most successful deep learning models for NLP, but a core limitation is the
quadratic dependency (mainly in terms of memory) on the sequence length due to their full attention
mechanism [4]. To remedy this, researchers developed BigBird, a sparse attention mechanism
that reduces this quadratic dependency to linear. Because BigBird is relatively new, there is no
extensive literature on its use for summarization on financial corpus, but it can handle sequences of
length up to 8x (and more) of what was previously possible using similar hardware (i.e. BERT.) As a
consequence of the capability to handle longer context, it is hypothetized that BigBird drastically
improves performance summarization [4]. In the context of long windows, many solutions have
been proposed. We have chosen BigBird in particular because it achieved SOTA level on different
summarization tasks. For Human evaluation we included the GPT-3 [21] to check output as well. It

is not tuned to achieve long text summaries, but can generate per-section summaries.

While many methods have been proposed for human evalution in NLP (e.g. Pyramid Evaluation,
DUC), it remains a difficult task due to the subjectivity involved [25]: 1) because of the subjectivity
of assessing the summarization criteria — the agreement between human evaluators is low (and so we
do not have a reliable baseline to report); and, 2) because of the amount of effort required to evaluate

the summaries — very time-consuming (considering, also, that manual assessment is not reusable.)
ROUGE has shown correlation with human summary evaluation (albeit low) [26], even when using

simple human evaluation (i.e. comparing a manual summary to the gold standard.)

3 Approach

While both BERT and BigBird have been used for summarization, we extended their capabilities
to address the task of summarizing finance-specific long text. Our code, and, outputs can be found
on Github. We also used human evaluation to obtain a qualitative understanding of the condition
of our summaries. We selected two main architectures: BERT and BigBird, because they are
general architectures and have achieved SOTA on multiple summarization benchmarks [19, 20].

Furthermore BERT has been pre-trained for financial text analysis, and BigBird can leverage weight
from Pegasus, a model pre-trained specifically for summarization.

3.1 BERT

BERT [2] uses a standard BERT architecture pre-trained on financial data. It utilizes only the encoder
for classification (Figure 1) using 12 layers — 768 hidden state, 12 layers, 12 heads, 3,072 feed-
forward parameters — with 512 input tokens. BERT is bidirectional (i.e. its self-attention layer
performs self-attention on both directions.) The sentence-by-sentence classification is conducted by
adding a dense layer (feed forward network with two layers, 64/32 or 128/64, and final single output)
after the last hidden state of the [CLS] token [15]. Only the weights of the classification layer are
fine-tuned during training. To do this, we require a training set that pairs individual sections of a
document with a positive (include) or negative (don’t include) label depending on whether or not
the gold-standard summary is derived from it. If selected, the sentence is reported unchanged in
the summary. We employ a sentence-overlap method to identify a single section as the “summary
section” section, and label all other sections as negative. Specifically, we regard one sentence as
overlapping a report section if most of its words appear in that section. When there are multiple gold
standard summaries for a financial report, we choose the summary with the highest sentence overlap
rate as the gold standard [8]. In our experiments, we used a checkpoint from BERT, reserving for
future work loading weights from the finBERT checkpoint.

out eax) (aa) Caz) a) an) Ca) (amt) a) ae) Cm) Document

Embeddneal Etcis) | Eyent

 | Eone Ee | Etcis) | Eond | Event = | Etcis) | Event | Eagain |} Ese} |

fa

tt ee EEE
J

Position embeddings =: JL_& [Les JLe JLe. JLe [De |Le JLe JLee JLe. JL J

|
pr ==)

ee se ee = =

z

1

GS] WOE Om Ty On...

Summarization Layers }

Co Le] |
Figure 1: BERT Encoder. The encoder is the pretrained BERT-based encoder from the masked language
modeling task [23]. The task of extractive summarization is a binary classification problem at the sentence level.

We assign each sentence a label indicating whether the sentence should be included in the final summary. Thus,
add a token [CLS] before each sentence. After we run a forward pass through the encoder, the last hidden layer

of these [CLS] tokens will be used as the representions for our sentences. Adapted from [24].

[

3.2 BigBird

Unlike BERT, which runs on a full self-attention mechanism,BigBird works on a sparse attention

mechanism (for the encoder or decoder) that allows it to overcome the quadratic dependency of BERT,
while preserving the properties of full-attention models. This property is justified by random graph
theory [4]. Intuition is that even if the attention matrix is not full, the graph of the tokens links are
strongly interconnected (high cluster coefficient) [18]. The full self-attention matrix (NaN) — every

token attends to itself and all other tokens — is decomposed into an arrow block that attends to every
token and every token attends to itself (global tokens), plus a band block around diagonal of current
token attending itself, plus random connection between tokens (configured in this setting to 3 each
row) as in Figure 2. The resulting total computational time is reduced from N? to 20. The sparse
computation can be packed into a full matrix computation that can run quickly on GPU/TPU. Because
of this, BigBird can process sequences 8x times longer than BERT (We used a maximum of 4,096
input tokens, 256/512 output tokens in the decoder, 16 heads, 16 layers, 1,024 hidden size, fed forward

size of 4,096.) BigBird for summarization is a seq-to-seq model. For the base model, weights
are shared between encoder and decoder, whereas for large models weights are leveraged from
Pegasus [9] (SOTA model pre-trained specifically for summarization tasks.) Pegasus is pre-trained
as a masked language model (MLM), novelty is to mask most relevant sentences ranked according to
ROUGE-1 F1 between a sentence and every other sentence. It is very effective in summarization of
benchmarks, and in particular of small datasets [4]. Encoder and decoder weights are not fine tuned.
Cross encoder-decoder attention weights are calibrated during fine tuning.

 op

4! O

‘a, 2

a LT
_]

Oo th o 2

O O CT O
ee oe

a) Random b) Window c) Global d) BigBird
Attention Attention Attention

Figure 2: Building Blocks of the Attention Mechanism used in BigBird. White color indicates absence of

attention; a) random attention with r = 2; b) sliding window attention with w = 3; c) global attention with
g = 2. (d) the combined Big Bird model. Adapted from [4].

The code [29] is specialized to run on Google Cloud TPU utilizing TPU Estimator framework [27],

for Tensorflow 2. The GitHub repository is missing evaluation and prediction scripts necessary to
generate the predicted summaries, which we added. The data converted to the tfrecords format is
loaded on Google Buckets and the code run on Google VM. The executing code is passed to the
host connected to TPU [28]. After the initial time needed to set up the code and infrastructure, build

an understanding and write the code, the training time is reduced linearly with the number of TPU
cores. All training was run on TPU v2.8-512 and v3.8-8 under the TFRC program [30]. Minimum
training+valuation time was reduced to 30 minutes compared to ~64+ hours needed on a standard
GPU.

3.3. GPT-3

Summaries from GPT-3 are produced as best of 5 results, appending command t1; dr to the input
text. GPT-3 is a pre-trained multi-task with 175B parameters, and the model is capable of in-context-
learning. It has a maximum window size of 2,048 tokens, a midpoint between the 512 tokens of BERT
and the 4k tokens of BigBird. It has a standard Transformer architecture with a few modifications.
Similar to Spars transformers [22], it utilizes alternating dense and locally banded sparse attention
patterns.

3.4 BigBirdFLY

We propose a new solution based on BigBird (Figure 3). BigBird is used at different stages and
pre-trained for two different tasks. The first task (A in Figure 3) classifies the relevance of a single

section in the full document. For this task, the encoder is coupled with a single layer connected to
the first encoded [CLS] token of the text. In output, both binary classification and probability can
be extracted. This way, the relevance of sections can be ranked continuously from 0 to 1. In the
second stage (B in Figure 3) BigBird summarizes every section. The summaries are then merged
into the final full summary. Details about parameters and checkpoints used are provided in section 4
Experiments. A further step — left as future research — is to extract the relevance of single blocks
of text from attention weights, so then block relevance is coupled with section relevance to output
context-aware hierarchical relevance ranking of blocks of text.

BigBird (pre- Classification
trained) Narrative/non-

Narrative

Narrative Narrative Narrative ==> | Document

Summarization

 B }———,
Vv

i

Dn Oo
jl.

= v

Figure 3: BigBird Data Flow. In A BigBird classified the relevance of a single section in the full document. In

B, BigBird summarized every section.

Merging
 \o

3.5 Human Evaluation

To obtain a better understanding of the summaries our models produced, we performed simple human
evaluation. Given the time constraints we faced and our limited human resources, we randomly
selected 12 samples, ranging from 500 to 7,500 words (i.e. we did not select whole 100-page
documents, but rather random subsections of the random samples). We obtained a gold standard from
a third party (i.e. an expert in finance summarized the samples), and then, team members summarized
each of them. Because most approaches use multiple individuals for manual summarization in an
attempt to reduce variability, each sample was summarized by two team members. Thus, each team
member independently summarized 8 of the samples (i.e. each sample was summarized twice — a
time-consuming endeavor.) At the same time, we summarized these samples using both BERT and
BigBird. To obtain a quantitative understanding of our results, we computed ROUGE-1 F1 for these
samples, and measured the time it took to obtain the summaries. To obtain a qualitative understanding
of our results, we (blindly) compared our summaries against those produced by the models. In
particular, we looked at four things for our qualitative assessment of the summaries: 1) fluency
— whether the summary was readable and self-contained; 2) length and relevance — whether the
summary is concise and finds the key points instead of less important/random facts; 3) interpretability
— whether it was easy to understand the summary; and, 4) overall meaning — whether, as seen in the
introduction, the summary preserves the facts and does not change meaning of original document.

4 Experiments

4.1 Data

We used annual reports produced by UK firms listed on The London Stock Exchange (LSE)!. We
used 3,863 annual reports divided into training, testing, and validation. Full text of each annual report
along with the extracted sections and gold standard summaries are provided. 7. On average there
are at least 2 gold standard summaries per annual report. In this task we produced one summary for
each annual report, whose lengths should not exceed 1,000 words. For all sections, we computed an
average of 2.5k tokens, a median of 986, a 90 percent quantile of 5,500, and a maximum of 260k.

"http://multiling .iit.demokritos.gr/pages/view/1648/task-financial-narrative-summarization

>Gold summaries are missing for the test set

We fine-tuned BigBird on a different version of the dataset. We used almost raw data (data_v1),
and also data_v2, which includes processed data with further cleansing including only narrative
sections and further text cleaning. The output did improve, but there were repeated words, and
summaries were rather short. For data_v3, only the best summary for each document was kept.
Best summary was selected based on R-2 recall and R-L recall. The matching of sub-parts of the
summary to every section was improved as well, by limiting the minimum and maximum length of
each sentence. Furthermore, 5 percent of the worst summaries were discarded from training, as well
as the worst 5 percent of all sub-summaries matched to sections. We did this to exclude possible
errors in both summary matching and summary selection. The total, final number of examples in
data_v3 are 11,265. To train models with a larger decoder output (512) we used a minimum-length
summary in the training set. data_v4 and data_v5 are filtered with a minimum of 100 and 200
words, respectively. The total examples in data_v5 are 2,100. To test excess cleaning we also
utilized a data_v6 that includes a 200-word minimum summary rule but less cleaning rule than
data_v5, as in Table 1.

Table 1: Fine-tuning of BigBird on different versions of the dataset.

Data Number of | Cleaning Rules (Data | N Summaries Considered per Sub-Summary Matching Discarded Samples

Examples Preprocessing) Document Method

vl 67k 7 2 to 3 R-l 0%

v2 25k 1 to 3 2 to 3 R-1+R-2 0%
= —~2+ R- aa

v3 1lk 1to8 1 RoL+ R24 1+ min/max 5% of summaries, 5% of sections
sentence length

R-1+ R-2+ R-L+ min/max 5% of summaries, 5% of sections;
v4 7.5k 1to8 1 .

sentence length min. summary length of 100 words

= ' R-2+ R-L+ min/max sentence | 5% of summaries, 5% of sections;
v5 2.1k 1to8 1

length min. summary length of 200 words

s R-2+ R-L+ min/max sentence | 5% of summaries, 5% of sections;
v6 2.5k 1 to 3 1 -

length min. summary length of 200 words

4.2 Data Preprocessing

We cleaned the data cleaning using Python’s regular expressions and packages ftfy [11],
cleantext [12] and includes the following patterns:

1. delete sequences of 3+ symbols

. insert space between numbers+letters (40USD), letters+numbers (eps0.2)

. delete multiple spaces and new lines

. reduce to 1: 3+ consecutive non-alphanumeric symbols (£££ # # #)

. delete 4+ consecutive all upper-case words

. keep first of repeated sentences

. delete sentences with more than 50% upper-case letters

o
n
N

AD
un

fF
YW

WN

. delete sentence with alphanumeric words<50%

We converted each version of the dataset to tfrecords files for training.

4.3. Evaluation Method

We are using the automatic evaluation method ROUGE (Recall-Oriented Understudy for Gisting
Evaluation), including ROUGE-1, ROUGE-2, ROUGE-3, and ROUGE-4 [7]. The measures count the

number of overlapping units such as n-gram, word sequences, and word pairs between the computer-
generated summary to be evaluated and the ideal summaries created by humans. ROUGE-N refers to
the overlap of N-grams between the system and the reference summaries. For example, ROUGE-1,
ROGUE-2 refer respectively to the overlap of unigram (each word) and bigrams between the system
and reference summaries. We also included F1. We measured human performance to obtain a more
qualitative understanding of our results using ROUGE-1, (as described in the Human Evaluation
section above.)

4.4 Experimental Details

4.4.1 BERT

We used PyTorch, OpenNMT and the ‘bert-base-uncased’ version of BERT to implement sum-
marization. Both source and target texts were tokenized with BERT’s subwords tokenizer. When
predicting summaries for a new document, we first use the model to obtain the score for each sentence,
and then rank these sentences by their scores from highest to lowest, and select the top-3 sentences as
the summary. Our code can be found here.

During sentence-selection, we use Trigram Blocking to reduce redundancy. Given summary S
and candidate sentence c, we skip c if there exists a trigram overlapping between c and S. We want
to minimize the similarity between the sentence being considered and sentences which have been
already selected as part of the summary.

Let d denote a document containing sentences [sent,, sent2,---, sent], where sent, is the ith

sentence in the document [15]. Extractive summarization can be defined as the task of assigning a
label y; € 0,1 to each sent;, indicating whether the sentence should be included in the summary. It
is assumed that summary sentences represent the most important content of the document. In the
summary layer, vector t; which is the vector of the i” [CLS] symbol from the top layer can be used
as the representation for sent;. Several inter-sentence Transformer layers are then stacked on top of
BERT outputs, to capture document-level features for extracting summaries:

hl = LN(hi-! + MH Att(h!-1)) (1)

h! = LN(h! + FFN(1) (2)

where h° = PosEmb(T); T denotes the sentence vectors output by the summary layer, and function
PosEmb adds sinusoid positional embeddings to T’,, indicating the position of each sentence. The
sigmoid classifier is:

Yi = o(Wohi” + do) (3)

where he is the vector for sent; from the top layer (the Ef layer) of the Transformer. The loss of

the model is the binary classification entropy of prediction y; against gold label y; . Inter-sentence
Transformer layers are jointly fine-tuned. Adam optimizer with $1 = 0.9, and 62 = 0.999 is used.
The learning rate follows [31] with warming-up (warmup = 10,000):

Ir = 2e73- min(step~°”°, step - warmup") 4)

It took 2 hours to generate a summary for 363 documents. All details (e.g. layers) are presented in
section 3.1 BERT.

4.4.2 BigBirdFLY

We refer to Figure 3 for the experiments. We fine-tuned BigBird starting from the three checkpoints
in Table 2.

Table 2: BigBird Fine-tuning Checkpoints with Different Versions of the Dataset.

Checkpoint |enc/dec|Encoder|Decoder| ff | heads/layers/h. size| Task

Roberta-L e 4,096 |256/512|3,072 12/12/768 classif.

Roberta-Base}] e+d 3,072 = S002 12/12/768 summary

Pegasus-L etd 3,072 |256/512|4,096 16/16/1024 summary

For classification (Figure 3), using only the encoder, we were able to use a maximum encoder input
size of 4,096. For summarization, we used a maximum encoder size of 3,072 to fit into 16GBs

of memory. For classification, every text section is classified into a binary variable (narrative/non-
narrative.) Labels (0-1)/logits are the model’s output. The initial checkpoint is Roberta-L. Table 3
reports the precision of the best fine-tuned results on the evaluation set.

For summarization we report 5 experiments with different cleansing routines and model parameters.
For every section, a corresponding matched summary was extracted from the full document summary

Table 3: Precision of Best Fine-Tuned Results.

Classification| Accuracy| Step | Batch Size| Loss | Training Time | Evaluation Time

BigBird-L_| 92.30% }|1,117 512 0.038 15m 15m

— non-narrative sections do not appear in final summary. A matching algorithm is utilized to match
every section with its corresponding summary, extrapolated from the full-length summary. Every
sentence in the summary is matched with the best matching sentence across all sections, using
methods in the sub-summary matching column (Table 1). The scoring method is an improved version
used in [3]:

max(w;R'1(kj) + wp Ree 2 (ky) F wp Ree 11(ky)) (5)

where R! stands for ROUGE-L, w,2R"°°*'—? is ROUGE-2 recall metric and R7¢°¢!!—! is ROUGE-1,
computed only on numerical part of the sentence, and k; is the sentence 7 across all sections in
the document. Weights are w; = 0.1, wre = 0.4, and w,1 = 0.5. The base model loss was

evaluated for every epoch (maximum of 10) on the evaluation set. The best model with lower loss
was chosen for every run. We fine-tuned large models on data_v4, data_v5, and data_v6. Results
for all experiments, including the number of training steps and loss of best model, are shown in
Table 4. Additionally, we computed metrics for best model for very run. Scores for Base-2 and
Pegasus-L-vé6 are also reported in Table 4, which reports full fine-tuning parameters as well. Our
optimizer was Adafactor with an initial warmup linear rate, which allows to save memory [10]. We
used the SentencePiece tokenizer with a dictionary from the Pegasus model [9].

Table 4: Results from BigBird Summarization Experiments.

BigBird ee Dataset eth a Loss ee Log-likelihood| Steps rue Evaluation

Base-1 256 v2 512 5E-04 {2.590} 2.630 -3.000 10,500| 15m 15m

Base-2 256 v3 512 5E-04 |2.587| 2.649 -2.975 3,600 15m 15m

Pegasus-L-v4 512 v3 8 5E-04 |2.586] 2.676 -3.010 3,600 2h 8h

Pegasus-L-v6 256 v4 8 5E-04 |2.586| 2.676 -3.010 324 lh lh

Pegqasus-L-v6| 512 v5 8 5E-04 |2.680} 2.680 -3.030 972 2h 5h

Batch size was decided based on TPU configuration. The base model was trained on TPU v2.8-512
cores; the large model was trained on TPU v3.8-8 cores. Loss is not directly comparable on different
dataset versions. All runs improved considerably in the first epoch and showed further improvement
in the final metric (up to 3-4 epochs.)

The first run on data_v1 produced unsatisfactory results, as summaries were one-word long, or
empty. We cleansed the dataset further and improved the matching algorithm until obtaining data_v3
— as described in Data sub-section. We then fine-tuned the Pegasus large model with a decoder
output maximum length of 512 on data_v3. It was unable to produce longer summaries. The output
was filled with repeated words. We decided to use a minimum length m, of 100 words in summaries
included in the training set (data_v4) and increasing it to 200 words for data_v5. This improved
the quality of the summaries generated, and also the final metrics. Using a higher percentage of long
summaries in the training set improved the generation of longer summaries. We tested if the cleaning
rules were impacting the score, so we kept the minimum length of 200 words and 3 cleaning rules
(data_v6). This produced the best results (BigBird v3 in Table 5.)

The first run on data_v1 produced unsatisfactory results, as summaries were one-word long, or
empty. We cleansed the dataset further and improved the matching algorithm until obtaining data_v3
— as described in Data sub-section. We then fine-tuned the Pegasus large model with a decoder
output maximum length of 512 on data_v3. It was unable to produce longer summaries. The output
was filled with repeated words. We decided to use a minimum length m, of 100 words in summaries
included in the training set (data_v4) and increasing it to 200 words for data_v5. This improved
the quality of the summaries generated, and also the final metrics. Using a higher percentage of long
summaries in the training set improved the generation of longer summaries.

4.55 GPT-3

We produced summaries for random samples of the test set from beta version GPT-3 (Davinci
model). We generated summaries from a maximum input length of 2k tokens; maximum output
length 512, temperature 0.25, top likelihood (0.7-1), best of 5 results. Even if GPT-3 has not been
pre-trained in financial summarization, it produced summaries that we included in human evaluation.
In some cases it added information about companies not present in the text which turned out to be
correct, nonetheless.

4.6 Results

Table 5 shows the outputs of our models, based on ROUGE metrics. We compare BERT,
baseline (sumTO), BigBird, GPT-3 on the summarization task. BERT and baseline are similar

methods. Main advantange of sumT0O is to be fine-tuned on the dataset and add a final abstraction
summarization layer. BERT is not fine-tuned on financial data. The gap between the two indicates
fine-tuning makes a difference. Nevertheless, BERT can produce fluent summaries and have the best
R-1 precision score. This can be explained by analyzing the lengths of the summaries produced by
BERT which are the shortest. Since the precision is expressed in matched words as a percentage of
length of summary, genrating shorter summaries can boost the metric. We conclude BERT is produc-
ing short summaries retaining information but it is missing some information in the text. sumTO is
producing good overall results on ROUGE metrics. BigBird is producing good recall scores, but not
so good precision scores. We think the reason is that BigBird, keeping more context, producing
longer summaries than BERT, it is penalized in the precision metric. Additionally, we have to keep
in mind that depending on the threshold, the precision-recall curve could change. Given our time
constraints, we could not change the threshold and run more experiments. The average summary
length is: 2,010 words for BERT, 2,791 words for BigBird, and 6,381 words for the Baseline.

Table 5: ROUGE Metrics for Our Models

Model/ Rouge-1 Rouge-2 Rouge-3 Rouge-4

Metric Recall |Precision| Fl Recall |Precision| F1_|Recall|Precision| F1_ |Recall|Precision| Fl

Baseline [53.031] 36.782 |41.636|17.167| 11.939 |13.490| 7.043] 4.855 [5.518/4.078| 2.792 [3.190

BERT 21.237| 48.731 |28.052| 5.466 | 13.106 | 7.290 |2.207| 5.424 |2.953/1.371| 3.435 |1.840

BigBird |24.993| 42.779 |28.802| 6.667 | 13.011 | 7.888 |2.735| 6.139 |3.336|1.649| 4.032 |2.050

BigBird(v2)|49.787| 29.537 |35.141/14.419| 8.550 |10.149|5.542| 3.302 |3.909|3.149| 1.892 |2.227

BigBird(v3) |54.991} 22.575 |30.672|15.788} 6.426 | 8.740 |5.875| 2.398 [3.256]3.268| 1.342 [1.817

4.7 Human Evaluation

Table 6 shows the quantitative results of human evaluation. These numbers are for R-1, using the
gold standard. We see that once a model is trained, the time for summarization is greatly reduced (the
time to summarize for humans includes the average time to summarize the 12 samples only.) We
also see that the recall and the precision for BERT and BigBird are similar (in line with the results
shown in Table 6), but much lower than that of our manual summaries. As a consequence, the F1

is also much higher for human summarization. We hypothesize that given the nature of the source
text, it is possible the models had difficulties interpreting the text (and relating information.) Given
the high scores for human summarization, we realize we might have tried a bit too hard to get good
summaries in our manual approach. It is also possible that the gold standard tried hard to come up
with a good summary as well, and so that, our metrics for human evaluation are high because our
human-produced summaries are similar to the gold-standard. This is the opposite case of someone
doing a gold standard by just copy-pasting, which will see high metrics in the models as the model is
closer to the source. We also have to consider that this task is highly abstractive, and that variance is
rampant in human evaluation (but our sample is too small to show it in here.)

In the qualitative side, we see that BigBird tries to mantain the structure of the text provided (e.g.
using vignettes if they are present in the original text, getting rid of titles/random entries that look out
of place), while BERT’s approach tried to cram everything together (while still maintaining important
information). In general, manual summaries are more alike to BigBird-produced ones, albeit not
completely so. We think this is a consequence of us producing our summaries "from scratch." This
is to say, we did not copy-pasted information, or trimmed the original text. Another important
observation is that BigBird summaries are cleaner as they keep the information neat and better

Table 6: Quantitative Results for Human Evaluation.

a Time to Precision} Recall} F1
Approach Summarize

Human 8h 81 97 87

BERT lm 34.47 | 15.31 | 19.37

BigBird 20s 37.15 | 14.26 | 21.43

organized (i.e. better readability, as human summaries) while BERT summaries seem to have trouble
separating information, seeming to be more in line with an extractive-only approach.

4.7.1 Fluency, Length and Relevance, Interpretability and Overall Meaning

BERT was at times difficult to follow, given it "crammed" text together, and often changed topics
abruptly. BigBird was more similar to the manual summary, and had only minor problems in
sentence transition. Human-produced summaries were the most fluent. For shorter texts, the length
of BERT’s summaries was longer than that of BigBird’s. However, much of the text included was
left-over information (e.g. text that was not needed or relevant.)For longer texts, the length of
BERT’s summaries was shorter than that of BigBird’s, and the information remained relevant. In
general, manual summaries were on the longer side.) BigBird was easier to interpret, as it keep
the information neatly organized, and the necessary context was provided. BERT also proved useful,
but sometimes out-of-context sentences/words made it difficult to understand what the message
was. Unlike BERT, BigBird did not include seemingly random information at times, and kept the
information relevant. In general, BigBird summaries were better than we expected (and better than
BERT’s). We think this might be because the architecture allows to analyze longer sentences at the
same time, and so key connections are seldomly lost. As the capacity to use longer windows for
analysis increases, the summarization task is likely to deliver better results.We were able to generate
a few full samples from GPT-3. They were fluent, but included information not in the text. We could
not investigate further given the time constraint. sumTo generated summaries similar to BERT, but
more fragmented. The extractive nature was noticeable. In a few cases, the interpretation of few
sentences was ambiguous. For example:

There remains a strong demand for exposure to property and we have been working
to identify additional property products to meet future demand for the UK and
continental Europe. It remains one of our fastest growing separate accounts and

as at 31 December 2007 had a value of £752m.

where the first and second sentences are related to two different sections.

5 Analysis

5.1 Comparison between Our Model and the Original Model

We compare BERT, baseline(sumT0), BigBird, GPT-3 on the summarization task. BERT and

baseline are similar methods. Main advantange of sumTO is to be fine-tuned on the dataset. BERT is
not fine-tuned on financial data. The gap between the two indicates fine-tuning makes a difference.
Nevertheless, BERT can produce fluent summaries and have the best R-1 precision score. This can be
explained by shortest lengths of the summaries produced by BERT. We conclude BERT is producing
short summaries retaining part of the text but it is missing some content. sumTO is producing good
results on ROUGE metrics. From human evaluation we see BERT produced good enough summaries,
but also keeps some irrelevant information. GPT-3 produced few summaries whereas others are
mixed with information not contained in the text. According to human evaluation, this happens
because when there is a lack of text or obvious connections, the model just pulls information it has
learned and tries to blend it in. Despite, these summaries contain much of the information included
in the human-produced reports, using other words — that are more similar to the original text than
words contained in human summaries. BigBird scored first in R-1 recall results. This shows it can
match maximum amount of single words compared to the target summary among the three. Lower
numbers on precision are justified by the abstractive nature of the approach which needs more words
to generate a fluent summary and retains more context. This feature helps in semantic retention.

10

Furthermore BigBird is producing summaries longer than BERT. We have to take into account we
truncate very long sections losing some information contained towards end.

5.2 Results from Different Datasets

The dataset is a real-world, challenging scenario in which text is extracted from pdfs, and is not fully
clean from headers. Furthermore, tables are translated to plain text. Implementing cleansing rules
helped in training. Improving the rules and the section-summary matching algorithm, We noticed a
performance booster.

5.3. Summary Length

Length of gold standard summaries and section can vary a lot. One of the challenges is to train
BigBird to produce long and short summaries as required. This is in line with similar challenges
in literature where they provide a specific checkpoint for long summaries[9]. Proving more long
summaries in the training set improved the length of the summary.

6 Conclusion

We compared BERT, baseline (sumTO), BigBird, and GPT-3 on the summarization of financial

narrative task. We considered a real-word scenario in which semantic retention and ROUGE metrics
are equally important. We scored the models based on ROUGE metrics and on human evaluation.
The financial narrative summarisation task is highly extractive in nature, and abstractive features are
challenging. Moreover semantic retention is highly relevant. Our proposed context-aware approach
BigBirdFLY scored first in R-1 recall numbers. This indicates that it can match the maximum number
of 1-gram from target summary. Importantly, it produced more fluent summaries. To keep summaries
coherent and fluid it utilized more words compared to BERT, sumTO, and it is penalized in overall
F1 metric. Nevertheless in a few samples numerical facts were misplaced, possibly due to a lack of
pre-training on financial data. Human evaluation proved valuable to understand differences between
models. In particular, BigBird proved more aligned with our manual summaries than BERT, and
kept the information better organized (i.e. better readability), including mostly relevant information.
Results from sumTO are similar to BERT, but more fragmented, and at times the interpretation was
ambiguous. GPT-3 generated fluent summaries which includes information not in the text which
nonetheless happened to be correct.

We showed how a sentence-by-sentence extraction method can benefit from a wide context window.
Comparison with recursive methods[3] is left as future work. The financial summarization task

revealed to be a challenging task without a unique method being better overall. We believe this
could lead to introduction of new tasks and new models. For future work, and given the very specific
feature of the task, we think adding further domain/task specific pre-training on financial text can
help BigBird score better. A better section-to-summary matching algorithm (topic-based) is needed
as well. Finally, the abstractive feature of BigBird can be modified to be more extractive, utilizing
weights from attention, thus taking the best from both worlds.

References

[1] Tas, O.,& Kiyani, F. (2007). A Survey Automatic Text Summarization. PressAcademia Procedia,

5(1), 205-213.

[2] Zhao, N., Jiang, Y., & Liu, Y. (2019.) Sentence-Level Extractive Text Summarization Final Report

of Stanford CS224N.

[3] A. Singh (2020, December). PoinT-5: Pointer Network and T-5 based Financial Narrative

Summarisation (pp. 105-111).

[4] Zaheer, M., Guruganesh, G., Dubey, A., Ainslie, J., Alberti, C., Ontanon, S., ... & Ahmed, A.

(2020). Big Bird: Transformers for Longer Sequences. arXiv preprint arXiv:2007. 14062.

[5] Nenkova, A., & Passonneau, R. J. (2004). Evaluating Content Selection in Summarization: The

Pyramid Method. In Proceedings of the Human Language Technology Conference of the North
American Chapter of the Association for Computational Linguistics: Hlt-naacl 2004 (pp. 145-152).

11

[6] M. L Quatra, L, Cagliero (2020, December). End-to-end Training For Financial Report Summa-

rization.

[7] Lin, C. Y. (2004, July). Rouge: A Package for Automatic Evaluation of Summaries. In Text

Summarization Branches Out (pp. 74-81).

[8] Zheng, S., Lu, A., & Cardie, C. (2020, December). SUMSUM@ FNS-2020 Shared Task. In

Proceedings of the Ist Joint Workshop on Financial Narrative Processing and MultiLing Financial
Summarisation (pp. 148-152).

[9] J. Zhang, Y. Zhao, M. Saleh, P. J. Liu PEGASUS: Pre-training with Extracted Gap-sentences for
Abstractive Summarization.

[10] N. Shazeer, M. Stern, Adafactor: Adaptive Learning Rates with Sublinear Memory Cost.

[11] python-ftfy: hitps://github.com/LuminosoInsight/python-ftfy

[12] clean-text: https://github.com/jfilter/clean-text

[13] Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of Deep

Bidirectional Transformers for Language Understanding. arXiv preprint arXiv: 1810.04805.

[14] He, Y., Chen, J., & Kim, P. (2020.) Generative Pre-Training Language Models with Auxiliary

Conditional Summaries Final Report of Stanford CS224N.

[15] Liu, Y., & Lapata, M. (2019). Text Summarization with Pretrained Encoders. arXiv preprint

arXiv: 1908.08345.

[16] Allahyari, M., Pouriyeh, S., Assefi, M., Safaei, S., Trippe, E. D., Gutierrez, J. B., & Kochut, K.

(2017). Text Summarization Techniques: A Brief Survey. arXiv preprint arXiv: 1707.02268.

[17]Araci, D. (2019.) Financial Sentiment Analysis with pre-Trained Language Models. arXiv
preprint arXiv: 1908. 10063.

[18] Watts, D. J., & Strogatz, S. H. (1998). Collective Dynamics of ‘Small-World’ Networks. nature,

393(6684), 440-442.

[19] CNN-Daily Mail Dataset https://github.com/abisee/cnn-dailymail

[20] BBC Xsum Dataset hitps://github.com/EdinburghNLP/XSumn/tree/master/XSum-Dataset

[21] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Amodei, D.

(2020). Language Models Are Few-Shot Learners. arXiv preprint arXiv:2005.14165.

[22] Child, R., Gray, S., Radford, A., & Sutskever, I. (2019). Generating Long Sequences with Sparse

Transformers. arXiv preprint arXiv: 1904.10509.

[23] Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of Deep

Bidirectional Transformers for Language Understanding. arXiv preprint arXiv: 1810.04805.

[24] Tran, C. (2020). Extractive Summarization with BERT. (Accessed 29/02/2021.)

https://chriskhanhtran.github.io/posts/extractive-summarization-with-bert/

[25] Lloret, E., Plaza, L., & Aker, A. (2018). The Challenging Task of Summary Evaluation: An

Overview. Language Resources and Evaluation, 52(1), 101-148.

[26] Liu, F, & Liu, Y. (2008, June). Correlation between Rouge and Human eEaluation of Extractive

Meeting Summaries. In Proceedings of ACL-O8: HLT, short papers (pp. 201-204).

[27] TPU Estimator https://www.tensorflow.org/api_docs/python/tf/compat/v 1/estimator/tpu/TPUEstimator

[28] Google Cloud TPU. hitps://cloud. google.com/tpu

[29] BigBird repository https://github.com/google-research/bigbird

[30] FTRC program hitps://www.tensorflow.org/tfrc

[31] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I.

(2017). Attention is All You Need. arXiv preprint arXiv: 1706.03762.

12

A ROUGE Metrics

Rouge-1

mm Baseline
jm BERTSum

mm BigBird

Re
ca

ll

Pr
ec

is
io

n
a) ROUGE-1

Rouge-3

mm Baseline

mmm BERTSum

mmm BigBird

co
F
N

O
w

ke
Hh

wa

3 i a 3
é

c) ROUGE-3

Re
ca

ll

Re
ca

ll

Rouge-2

Pr
ec

is
io

n

b) ROUGE-2

Rouge-4

Pr
ec
is
io
n

d) ROUGE-4

@mm Baseline

jm BERTSum

mm BigBird

mmm Baseline
mmm BERTSum

mm BigBird

Figure 4: ROUGE Metrics for our Models. Summary Evalution of the Baseline, BERT+Summary Layer, and
BigBird. Rouge-1 matrix (upper left), Rouge-2 matrix (upper right), Rouge-3 matrix (lower left), and Rouge-4

matrix (lower right). Scores were generated by comparing generated summary from each of these models against

the available gold summaries for each document. We have used the sacrerouge module to generate the matrices.

13

