
  

BigBirdFLY: Financial Long text You can read 

Stanford CS224N Custom Project — Mentor: Rui Yan 

  

Dhaval Dangaria, Riccardo Giacomelli, Wilfrido Martinez 
{dhavald, ricgiac, wilfrido.martinez}@stanford.edu 

Abstract 

The development of new architectures allows to process long input windows of 
text at once, overcoming both memory and computational constraints. New de- 
velopments pushed maximum input windows to 65k+ words compared to the 512 
BERT limit. We aim to explore, compare and improve state-of-the-art long window 
architectures to summarize long texts. We consider BERT, BigBird and GPT-3 
models. We focus on the financial narrative domain, summarizing 100- to 200-page 
documents. We aim to test models with different maximum input size exploring 
benefits and limitations. Long input windows allow to include wider context in the 
summarization process, avoiding out-of-context sentence extraction that can lead to 
changes in sentence-level semantic. We compare extractive and abstractive methods 
on key aspects in the financial context as numerical accuracy and summary seman- 
tic. We show extractive methods (BERT-based) can retain sentence by sentence 

accuracy from text, nevertheless the extraction process can produce fragmented 
summaries which can lead to misleading interpretation. We also reveal abstractive 
methods (by introducing BigBirdFLY, a wide context summarization method based 
on BigBird) can produce fluent summaries. By using human evaluation, we show 
BigBirdFLY can produce summaries more similar to human-generated summaries 
and excel in the human evaluation criteria, whereas extractive methods are able 

to score high in automatic metrics (ROUGE). Finally, we explore how enhanced 
greedy sentence-selection methods exploiting long input window in a single step 
compare to recursive solutions based on Reinforcement Learning. 

1 Introduction 

Long text summarization compresses the source text (100 pages) into a watered-down (yet fluent 
and self-contained) version (1,000 words) that keeps its information content and overall meaning [1]. 

Existing research can be classified into one of two approaches to text summarization: 1) Extractive, 
where sentences are extracted from the text and used to represent it; and, 2) Abstractive, where you 
produce a new body of text to represent it. Historically, both tasks have been relatively difficult, even 
for neural approaches [2], with long text adding additional complexity to the task. 

Specifically, in the financial domain sentence extraction-based summarization without consider- 
ing broad context can be misleading; moreover, highly relevant numerical information could be 
meaningful only if related with context. E.g., in the following extract from a report: 

Assuming the progressive increase of oil price to $60 per barrel, as per our scenario 
assumption 

cash flow from operation before working capital is expected to amount to around 
€44 billion along the plan period. 
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the second sentence has a different meaning depending on if it is related or not to the first sentence. 
Extracting the second sentence would lead to the wrong conclusions. The semantic meaning of the 
original text can change depending on the summary length (i.e. a generated summary of 2,000 words 
could have a very different meaning compared to a summary of 1,000 words generated from the 
same text.) Moreover, two sentences located far apart in the original text could be placed close by in 
the summary, creating fictional meaning. The introduction of longer-context windows (4k+ tokens ) 
allows to consider the full context of the sentence in the summarization process, avoiding deceptive 
and detrimental summaries. Additionally, long context windows allow the model to have flexibility 
to rank relevance of text considering a context breakdown at the section/sentence level. 

In this work, we aimed to compare the performance of extractive/abstractive models at the sentence 
level based on BERT (maximum 512 tokens), GPT-3 generated summary (maximum 2,048 tokens), 

and propose a new solution with a maximum input window 8 times longer based on BigBird [4] 
(maximum 4k tokens.) We compared them using both standard metrics and human evaluation. The 
aim is to, eventually, expand the study to longer context windows [5]. 

In the domain of sentence selection, solutions spanning from greedy (local sentence selection) to 
recursive multi-stage sentence selection (Reinforcement Learning) [3] have been proposed. This 
study is an empirical test on how greedy algorithms can be enhanced exploiting long window input 
sizes and how they compare to recursive ones [3] and others methods [6] for the summarization of 

long text financial documents. 

2 Related Work 

There have been several algorithmic approaches for both extractive and abstractive summarization, 
from the simplest extractive approach (LEAD-3 [13] benchmark, which proposes the first three 
sentences of the document as the summary, and achieves an R-1 F1 score of 30 percent,) to more 
complex ones, like MUSE [9] benchmark (based on rules, classification for sentences — R-1 of 

48 percent), sumTO [6] benchmark (a sentence by sentence approach based on BERT — R-1 of 45 
percent), and Pointer Networks [3] benchmark (R-1 of 46 percent.) Other approaches to text 

summarization include, topic words, bayesian topic models, and graph based approaches [16]. 

Transformer-based models (together with language model pre-training) have proved a game-changer 
for Machine Learning and NLP [13]. Both BERT and BigBird have been used extensively in different 
fields for many NLP tasks. BERT has proven to be a key advancement in NLP by achieving state-of- 
the-art results in many NLP taks, such as question answering and natural language inference [14]. In 
order to fine-tune BERT for a specific task, only one additional layer is necessary for the pre-trained 
BERT model, as opposed to substantial architecture modifications. Use of transfer learning has become 
a norm for state-of-the-art research using BERT [14]. Thus, for summarization, the architecture of 

the original BERT model is only subjected to small modifications. In BERT, the proposed sequence 
is [15]: input document, followed by the summation of three kinds of embeddings for each token. 
The summed vectors are used as input embeddings to several bidirectional Transformer layers, 
generating contextual vectors for each token. For summarization (Figure 3), BERT is extended by 
inserting multiple [CLS] symbols to learn sentence representations and using interval segmentation 
embeddings to distinguish multiple sentences. finBERT has used BERT for the financial domain. It 
proved good for extracting explicit sentiments, but modeling explicit information was not apparent 
[17]. 

BERT has been one of the most successful deep learning models for NLP, but a core limitation is the 
quadratic dependency (mainly in terms of memory) on the sequence length due to their full attention 
mechanism [4]. To remedy this, researchers developed BigBird, a sparse attention mechanism 
that reduces this quadratic dependency to linear. Because BigBird is relatively new, there is no 
extensive literature on its use for summarization on financial corpus, but it can handle sequences of 
length up to 8x (and more) of what was previously possible using similar hardware (i.e. BERT.) As a 
consequence of the capability to handle longer context, it is hypothetized that BigBird drastically 
improves performance summarization [4]. In the context of long windows, many solutions have 
been proposed. We have chosen BigBird in particular because it achieved SOTA level on different 
summarization tasks. For Human evaluation we included the GPT-3 [21] to check output as well. It 

is not tuned to achieve long text summaries, but can generate per-section summaries.



While many methods have been proposed for human evalution in NLP (e.g. Pyramid Evaluation, 
DUC), it remains a difficult task due to the subjectivity involved [25]: 1) because of the subjectivity 
of assessing the summarization criteria — the agreement between human evaluators is low (and so we 
do not have a reliable baseline to report); and, 2) because of the amount of effort required to evaluate 

the summaries — very time-consuming (considering, also, that manual assessment is not reusable.) 
ROUGE has shown correlation with human summary evaluation (albeit low) [26], even when using 

simple human evaluation (i.e. comparing a manual summary to the gold standard.) 

3 Approach 

While both BERT and BigBird have been used for summarization, we extended their capabilities 
to address the task of summarizing finance-specific long text. Our code, and, outputs can be found 
on Github. We also used human evaluation to obtain a qualitative understanding of the condition 
of our summaries. We selected two main architectures: BERT and BigBird, because they are 
general architectures and have achieved SOTA on multiple summarization benchmarks [19, 20]. 

Furthermore BERT has been pre-trained for financial text analysis, and BigBird can leverage weight 
from Pegasus, a model pre-trained specifically for summarization. 

3.1 BERT 

BERT [2] uses a standard BERT architecture pre-trained on financial data. It utilizes only the encoder 
for classification (Figure 1) using 12 layers — 768 hidden state, 12 layers, 12 heads, 3,072 feed- 
forward parameters — with 512 input tokens. BERT is bidirectional (i.e. its self-attention layer 
performs self-attention on both directions.) The sentence-by-sentence classification is conducted by 
adding a dense layer (feed forward network with two layers, 64/32 or 128/64, and final single output) 
after the last hidden state of the [CLS] token [15]. Only the weights of the classification layer are 
fine-tuned during training. To do this, we require a training set that pairs individual sections of a 
document with a positive (include) or negative (don’t include) label depending on whether or not 
the gold-standard summary is derived from it. If selected, the sentence is reported unchanged in 
the summary. We employ a sentence-overlap method to identify a single section as the “summary 
section” section, and label all other sections as negative. Specifically, we regard one sentence as 
overlapping a report section if most of its words appear in that section. When there are multiple gold 
standard summaries for a financial report, we choose the summary with the highest sentence overlap 
rate as the gold standard [8]. In our experiments, we used a checkpoint from BERT, reserving for 
future work loading weights from the finBERT checkpoint. 
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Figure 1: BERT Encoder. The encoder is the pretrained BERT-based encoder from the masked language 
modeling task [23]. The task of extractive summarization is a binary classification problem at the sentence level. 

We assign each sentence a label indicating whether the sentence should be included in the final summary. Thus, 
add a token [CLS] before each sentence. After we run a forward pass through the encoder, the last hidden layer 

of these [CLS] tokens will be used as the representions for our sentences. Adapted from [24]. 
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3.2 BigBird 

Unlike BERT, which runs on a full self-attention mechanism,BigBird works on a sparse attention 

mechanism (for the encoder or decoder) that allows it to overcome the quadratic dependency of BERT, 
while preserving the properties of full-attention models. This property is justified by random graph 
theory [4]. Intuition is that even if the attention matrix is not full, the graph of the tokens links are 
strongly interconnected (high cluster coefficient) [18]. The full self-attention matrix (NaN) — every 

token attends to itself and all other tokens — is decomposed into an arrow block that attends to every 
token and every token attends to itself (global tokens), plus a band block around diagonal of current 
token attending itself, plus random connection between tokens (configured in this setting to 3 each 
row) as in Figure 2. The resulting total computational time is reduced from N? to 20. The sparse 
computation can be packed into a full matrix computation that can run quickly on GPU/TPU. Because 
of this, BigBird can process sequences 8x times longer than BERT (We used a maximum of 4,096 
input tokens, 256/512 output tokens in the decoder, 16 heads, 16 layers, 1,024 hidden size, fed forward 

size of 4,096.) BigBird for summarization is a seq-to-seq model. For the base model, weights 
are shared between encoder and decoder, whereas for large models weights are leveraged from 
Pegasus [9] (SOTA model pre-trained specifically for summarization tasks.) Pegasus is pre-trained 
as a masked language model (MLM), novelty is to mask most relevant sentences ranked according to 
ROUGE-1 F1 between a sentence and every other sentence. It is very effective in summarization of 
benchmarks, and in particular of small datasets [4]. Encoder and decoder weights are not fine tuned. 
Cross encoder-decoder attention weights are calibrated during fine tuning. 
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Figure 2: Building Blocks of the Attention Mechanism used in BigBird. White color indicates absence of 

attention; a) random attention with r = 2; b) sliding window attention with w = 3; c) global attention with 
g = 2. (d) the combined Big Bird model. Adapted from [4]. 

The code [29] is specialized to run on Google Cloud TPU utilizing TPU Estimator framework [27], 

for Tensorflow 2. The GitHub repository is missing evaluation and prediction scripts necessary to 
generate the predicted summaries, which we added. The data converted to the tfrecords format is 
loaded on Google Buckets and the code run on Google VM. The executing code is passed to the 
host connected to TPU [28]. After the initial time needed to set up the code and infrastructure, build 

an understanding and write the code, the training time is reduced linearly with the number of TPU 
cores. All training was run on TPU v2.8-512 and v3.8-8 under the TFRC program [30]. Minimum 
training+valuation time was reduced to 30 minutes compared to ~64+ hours needed on a standard 
GPU. 

3.3. GPT-3 

Summaries from GPT-3 are produced as best of 5 results, appending command t1; dr to the input 
text. GPT-3 is a pre-trained multi-task with 175B parameters, and the model is capable of in-context- 
learning. It has a maximum window size of 2,048 tokens, a midpoint between the 512 tokens of BERT 
and the 4k tokens of BigBird. It has a standard Transformer architecture with a few modifications. 
Similar to Spars transformers [22], it utilizes alternating dense and locally banded sparse attention 
patterns. 

3.4 BigBirdFLY 

We propose a new solution based on BigBird (Figure 3). BigBird is used at different stages and 
pre-trained for two different tasks. The first task (A in Figure 3) classifies the relevance of a single



section in the full document. For this task, the encoder is coupled with a single layer connected to 
the first encoded [CLS] token of the text. In output, both binary classification and probability can 
be extracted. This way, the relevance of sections can be ranked continuously from 0 to 1. In the 
second stage (B in Figure 3) BigBird summarizes every section. The summaries are then merged 
into the final full summary. Details about parameters and checkpoints used are provided in section 4 
Experiments. A further step — left as future research — is to extract the relevance of single blocks 
of text from attention weights, so then block relevance is coupled with section relevance to output 
context-aware hierarchical relevance ranking of blocks of text. 
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Figure 3: BigBird Data Flow. In A BigBird classified the relevance of a single section in the full document. In 

B, BigBird summarized every section. 
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3.5 Human Evaluation 

To obtain a better understanding of the summaries our models produced, we performed simple human 
evaluation. Given the time constraints we faced and our limited human resources, we randomly 
selected 12 samples, ranging from 500 to 7,500 words (i.e. we did not select whole 100-page 
documents, but rather random subsections of the random samples). We obtained a gold standard from 
a third party (i.e. an expert in finance summarized the samples), and then, team members summarized 
each of them. Because most approaches use multiple individuals for manual summarization in an 
attempt to reduce variability, each sample was summarized by two team members. Thus, each team 
member independently summarized 8 of the samples (i.e. each sample was summarized twice — a 
time-consuming endeavor.) At the same time, we summarized these samples using both BERT and 
BigBird. To obtain a quantitative understanding of our results, we computed ROUGE-1 F1 for these 
samples, and measured the time it took to obtain the summaries. To obtain a qualitative understanding 
of our results, we (blindly) compared our summaries against those produced by the models. In 
particular, we looked at four things for our qualitative assessment of the summaries: 1) fluency 
— whether the summary was readable and self-contained; 2) length and relevance — whether the 
summary is concise and finds the key points instead of less important/random facts; 3) interpretability 
— whether it was easy to understand the summary; and, 4) overall meaning — whether, as seen in the 
introduction, the summary preserves the facts and does not change meaning of original document. 

4 Experiments 

4.1 Data 

We used annual reports produced by UK firms listed on The London Stock Exchange (LSE)!. We 
used 3,863 annual reports divided into training, testing, and validation. Full text of each annual report 
along with the extracted sections and gold standard summaries are provided. 7. On average there 
are at least 2 gold standard summaries per annual report. In this task we produced one summary for 
each annual report, whose lengths should not exceed 1,000 words. For all sections, we computed an 
average of 2.5k tokens, a median of 986, a 90 percent quantile of 5,500, and a maximum of 260k. 
  

"http://multiling .iit.demokritos.gr/pages/view/1648/task-financial-narrative-summarization 

>Gold summaries are missing for the test set



We fine-tuned BigBird on a different version of the dataset. We used almost raw data (data_v1), 
and also data_v2, which includes processed data with further cleansing including only narrative 
sections and further text cleaning. The output did improve, but there were repeated words, and 
summaries were rather short. For data_v3, only the best summary for each document was kept. 
Best summary was selected based on R-2 recall and R-L recall. The matching of sub-parts of the 
summary to every section was improved as well, by limiting the minimum and maximum length of 
each sentence. Furthermore, 5 percent of the worst summaries were discarded from training, as well 
as the worst 5 percent of all sub-summaries matched to sections. We did this to exclude possible 
errors in both summary matching and summary selection. The total, final number of examples in 
data_v3 are 11,265. To train models with a larger decoder output (512) we used a minimum-length 
summary in the training set. data_v4 and data_v5 are filtered with a minimum of 100 and 200 
words, respectively. The total examples in data_v5 are 2,100. To test excess cleaning we also 
utilized a data_v6 that includes a 200-word minimum summary rule but less cleaning rule than 
data_v5, as in Table 1. 

Table 1: Fine-tuning of BigBird on different versions of the dataset. 
  

      

  

  

  

  

  

Data Number of | Cleaning Rules (Data | N Summaries Considered per Sub-Summary Matching Discarded Samples 

Examples Preprocessing) Document Method 

vl 67k 7 2 to 3 R-l 0% 

v2 25k 1 to 3 2 to 3 R-1+R-2 0% 
= —~2+ R- aa 

v3 1lk 1to8 1 RoL+ R24 1+ min/max 5% of summaries, 5% of sections 
sentence length 

R-1+ R-2+ R-L+ min/max 5% of summaries, 5% of sections; 
v4 7.5k 1to8 1 . 

sentence length min. summary length of 100 words 

= ' R-2+ R-L+ min/max sentence | 5% of summaries, 5% of sections; 
v5 2.1k 1to8 1 

length min. summary length of 200 words 

s R-2+ R-L+ min/max sentence | 5% of summaries, 5% of sections; 
v6 2.5k 1 to 3 1 - 

length min. summary length of 200 words               
  

4.2 Data Preprocessing 

We cleaned the data cleaning using Python’s regular expressions and packages ftfy [11], 
cleantext [12] and includes the following patterns: 

1. delete sequences of 3+ symbols 

. insert space between numbers+letters (40USD), letters+numbers (eps0.2) 

. delete multiple spaces and new lines 

. reduce to 1: 3+ consecutive non-alphanumeric symbols (£££ # # #) 

. delete 4+ consecutive all upper-case words 

. keep first of repeated sentences 

. delete sentences with more than 50% upper-case letters 

o
n
N
 

AD 
un 

fF 
YW 

WN 

. delete sentence with alphanumeric words<50% 

We converted each version of the dataset to tfrecords files for training. 

4.3. Evaluation Method 

We are using the automatic evaluation method ROUGE (Recall-Oriented Understudy for Gisting 
Evaluation), including ROUGE-1, ROUGE-2, ROUGE-3, and ROUGE-4 [7]. The measures count the 

number of overlapping units such as n-gram, word sequences, and word pairs between the computer- 
generated summary to be evaluated and the ideal summaries created by humans. ROUGE-N refers to 
the overlap of N-grams between the system and the reference summaries. For example, ROUGE-1, 
ROGUE-2 refer respectively to the overlap of unigram (each word) and bigrams between the system 
and reference summaries. We also included F1. We measured human performance to obtain a more 
qualitative understanding of our results using ROUGE-1, (as described in the Human Evaluation 
section above.)



4.4 Experimental Details 

4.4.1 BERT 

We used PyTorch, OpenNMT and the ‘bert-base-uncased’ version of BERT to implement sum- 
marization. Both source and target texts were tokenized with BERT’s subwords tokenizer. When 
predicting summaries for a new document, we first use the model to obtain the score for each sentence, 
and then rank these sentences by their scores from highest to lowest, and select the top-3 sentences as 
the summary. Our code can be found here. 

During sentence-selection, we use Trigram Blocking to reduce redundancy. Given summary S 
and candidate sentence c, we skip c if there exists a trigram overlapping between c and S. We want 
to minimize the similarity between the sentence being considered and sentences which have been 
already selected as part of the summary. 

Let d denote a document containing sentences [sent,, sent2,---, sent], where sent, is the ith 

sentence in the document [15]. Extractive summarization can be defined as the task of assigning a 
label y; € 0,1 to each sent;, indicating whether the sentence should be included in the summary. It 
is assumed that summary sentences represent the most important content of the document. In the 
summary layer, vector t; which is the vector of the i” [CLS] symbol from the top layer can be used 
as the representation for sent;. Several inter-sentence Transformer layers are then stacked on top of 
BERT outputs, to capture document-level features for extracting summaries: 

hl = LN(hi-! + MH Att(h!-1)) (1) 

h! = LN(h! + FFN(1) (2) 

where h° = PosEmb(T); T denotes the sentence vectors output by the summary layer, and function 
PosEmb adds sinusoid positional embeddings to T’,, indicating the position of each sentence. The 
sigmoid classifier is: 

Yi = o(Wohi” + do) (3) 

where he is the vector for sent; from the top layer (the Ef layer ) of the Transformer. The loss of 

the model is the binary classification entropy of prediction y; against gold label y; . Inter-sentence 
Transformer layers are jointly fine-tuned. Adam optimizer with $1 = 0.9, and 62 = 0.999 is used. 
The learning rate follows [31] with warming-up (warmup = 10,000): 

Ir = 2e73- min(step~°”°, step - warmup") 4) 

It took 2 hours to generate a summary for 363 documents. All details (e.g. layers) are presented in 
section 3.1 BERT. 

4.4.2 BigBirdFLY 

We refer to Figure 3 for the experiments. We fine-tuned BigBird starting from the three checkpoints 
in Table 2. 

Table 2: BigBird Fine-tuning Checkpoints with Different Versions of the Dataset. 

Checkpoint |enc/dec|Encoder|Decoder| ff | heads/layers/h. size| Task 

Roberta-L e 4,096 |256/512|3,072 12/12/768 classif. 

Roberta-Base}] e+d 3,072 = S002 12/12/768 summary 

Pegasus-L etd 3,072 |256/512|4,096 16/16/1024 summary 

  
  
  
  

                  

For classification (Figure 3), using only the encoder, we were able to use a maximum encoder input 
size of 4,096. For summarization, we used a maximum encoder size of 3,072 to fit into 16GBs 

of memory. For classification, every text section is classified into a binary variable (narrative/non- 
narrative.) Labels (0-1)/logits are the model’s output. The initial checkpoint is Roberta-L. Table 3 
reports the precision of the best fine-tuned results on the evaluation set. 

For summarization we report 5 experiments with different cleansing routines and model parameters. 
For every section, a corresponding matched summary was extracted from the full document summary



Table 3: Precision of Best Fine-Tuned Results. 

Classification| Accuracy| Step | Batch Size| Loss | Training Time | Evaluation Time 

BigBird-L_| 92.30% }|1,117 512 0.038 15m 15m 

  
  
                  

— non-narrative sections do not appear in final summary. A matching algorithm is utilized to match 
every section with its corresponding summary, extrapolated from the full-length summary. Every 
sentence in the summary is matched with the best matching sentence across all sections, using 
methods in the sub-summary matching column (Table 1). The scoring method is an improved version 
used in [3]: 

max(w;R'1(kj) + wp Ree 2 (ky) F wp Ree 11(ky)) (5) 

where R! stands for ROUGE-L, w,2R"°°*'—? is ROUGE-2 recall metric and R7¢°¢!!—! is ROUGE-1, 
computed only on numerical part of the sentence, and k; is the sentence 7 across all sections in 
the document. Weights are w; = 0.1, wre = 0.4, and w,1 = 0.5. The base model loss was 

evaluated for every epoch (maximum of 10) on the evaluation set. The best model with lower loss 
was chosen for every run. We fine-tuned large models on data_v4, data_v5, and data_v6. Results 
for all experiments, including the number of training steps and loss of best model, are shown in 
Table 4. Additionally, we computed metrics for best model for very run. Scores for Base-2 and 
Pegasus-L-vé6 are also reported in Table 4, which reports full fine-tuning parameters as well. Our 
optimizer was Adafactor with an initial warmup linear rate, which allows to save memory [10]. We 
used the SentencePiece tokenizer with a dictionary from the Pegasus model [9]. 

Table 4: Results from BigBird Summarization Experiments. 
  

  

  

  

  

  

BigBird ee Dataset eth a Loss ee Log-likelihood| Steps rue Evaluation 

Base-1 256 v2 512 5E-04 {2.590} 2.630 -3.000 10,500| 15m 15m 

Base-2 256 v3 512 5E-04 |2.587| 2.649 -2.975 3,600 15m 15m 

Pegasus-L-v4 512 v3 8 5E-04 |2.586] 2.676 -3.010 3,600 2h 8h 

Pegasus-L-v6 256 v4 8 5E-04 |2.586| 2.676 -3.010 324 lh lh 

Pegqasus-L-v6| 512 v5 8 5E-04 |2.680} 2.680 -3.030 972 2h 5h                           

Batch size was decided based on TPU configuration. The base model was trained on TPU v2.8-512 
cores; the large model was trained on TPU v3.8-8 cores. Loss is not directly comparable on different 
dataset versions. All runs improved considerably in the first epoch and showed further improvement 
in the final metric (up to 3-4 epochs.) 

The first run on data_v1 produced unsatisfactory results, as summaries were one-word long, or 
empty. We cleansed the dataset further and improved the matching algorithm until obtaining data_v3 
— as described in Data sub-section. We then fine-tuned the Pegasus large model with a decoder 
output maximum length of 512 on data_v3. It was unable to produce longer summaries. The output 
was filled with repeated words. We decided to use a minimum length m, of 100 words in summaries 
included in the training set (data_v4) and increasing it to 200 words for data_v5. This improved 
the quality of the summaries generated, and also the final metrics. Using a higher percentage of long 
summaries in the training set improved the generation of longer summaries. We tested if the cleaning 
rules were impacting the score, so we kept the minimum length of 200 words and 3 cleaning rules 
(data_v6). This produced the best results (BigBird v3 in Table 5.) 

The first run on data_v1 produced unsatisfactory results, as summaries were one-word long, or 
empty. We cleansed the dataset further and improved the matching algorithm until obtaining data_v3 
— as described in Data sub-section. We then fine-tuned the Pegasus large model with a decoder 
output maximum length of 512 on data_v3. It was unable to produce longer summaries. The output 
was filled with repeated words. We decided to use a minimum length m, of 100 words in summaries 
included in the training set (data_v4) and increasing it to 200 words for data_v5. This improved 
the quality of the summaries generated, and also the final metrics. Using a higher percentage of long 
summaries in the training set improved the generation of longer summaries.



4.55 GPT-3 

We produced summaries for random samples of the test set from beta version GPT-3 (Davinci 
model). We generated summaries from a maximum input length of 2k tokens; maximum output 
length 512, temperature 0.25, top likelihood (0.7-1), best of 5 results. Even if GPT-3 has not been 
pre-trained in financial summarization, it produced summaries that we included in human evaluation. 
In some cases it added information about companies not present in the text which turned out to be 
correct, nonetheless. 

4.6 Results 

Table 5 shows the outputs of our models, based on ROUGE metrics. We compare BERT, 
baseline (sumTO), BigBird, GPT-3 on the summarization task. BERT and baseline are similar 

methods. Main advantange of sumT0O is to be fine-tuned on the dataset and add a final abstraction 
summarization layer. BERT is not fine-tuned on financial data. The gap between the two indicates 
fine-tuning makes a difference. Nevertheless, BERT can produce fluent summaries and have the best 
R-1 precision score. This can be explained by analyzing the lengths of the summaries produced by 
BERT which are the shortest. Since the precision is expressed in matched words as a percentage of 
length of summary, genrating shorter summaries can boost the metric. We conclude BERT is produc- 
ing short summaries retaining information but it is missing some information in the text. sumTO is 
producing good overall results on ROUGE metrics. BigBird is producing good recall scores, but not 
so good precision scores. We think the reason is that BigBird, keeping more context, producing 
longer summaries than BERT, it is penalized in the precision metric. Additionally, we have to keep 
in mind that depending on the threshold, the precision-recall curve could change. Given our time 
constraints, we could not change the threshold and run more experiments. The average summary 
length is: 2,010 words for BERT, 2,791 words for BigBird, and 6,381 words for the Baseline. 

Table 5: ROUGE Metrics for Our Models 

Model/ Rouge-1 Rouge-2 Rouge-3 Rouge-4 

Metric Recall |Precision| Fl Recall |Precision| F1_|Recall|Precision| F1_ |Recall|Precision| Fl 

Baseline [53.031] 36.782 |41.636|17.167| 11.939 |13.490| 7.043] 4.855 [5.518/4.078| 2.792 [3.190 

BERT 21.237| 48.731 |28.052| 5.466 | 13.106 | 7.290 |2.207| 5.424 |2.953/1.371| 3.435 |1.840 

BigBird |24.993| 42.779 |28.802| 6.667 | 13.011 | 7.888 |2.735| 6.139 |3.336|1.649| 4.032 |2.050 

BigBird(v2)|49.787| 29.537 |35.141/14.419| 8.550 |10.149|5.542| 3.302 |3.909|3.149| 1.892 |2.227 

BigBird(v3) |54.991} 22.575 |30.672|15.788} 6.426 | 8.740 |5.875| 2.398 [3.256]3.268| 1.342 [1.817 

  

  

  

  

  

  

                                

4.7 Human Evaluation 

Table 6 shows the quantitative results of human evaluation. These numbers are for R-1, using the 
gold standard. We see that once a model is trained, the time for summarization is greatly reduced (the 
time to summarize for humans includes the average time to summarize the 12 samples only.) We 
also see that the recall and the precision for BERT and BigBird are similar (in line with the results 
shown in Table 6), but much lower than that of our manual summaries. As a consequence, the F1 

is also much higher for human summarization. We hypothesize that given the nature of the source 
text, it is possible the models had difficulties interpreting the text (and relating information.) Given 
the high scores for human summarization, we realize we might have tried a bit too hard to get good 
summaries in our manual approach. It is also possible that the gold standard tried hard to come up 
with a good summary as well, and so that, our metrics for human evaluation are high because our 
human-produced summaries are similar to the gold-standard. This is the opposite case of someone 
doing a gold standard by just copy-pasting, which will see high metrics in the models as the model is 
closer to the source. We also have to consider that this task is highly abstractive, and that variance is 
rampant in human evaluation (but our sample is too small to show it in here.) 

In the qualitative side, we see that BigBird tries to mantain the structure of the text provided (e.g. 
using vignettes if they are present in the original text, getting rid of titles/random entries that look out 
of place), while BERT’s approach tried to cram everything together (while still maintaining important 
information). In general, manual summaries are more alike to BigBird-produced ones, albeit not 
completely so. We think this is a consequence of us producing our summaries "from scratch." This 
is to say, we did not copy-pasted information, or trimmed the original text. Another important 
observation is that BigBird summaries are cleaner as they keep the information neat and better



Table 6: Quantitative Results for Human Evaluation.   

  
  
              

a Time to Precision} Recall} F1 
Approach Summarize 

Human 8h 81 97 87 

BERT lm 34.47 | 15.31 | 19.37 

BigBird 20s 37.15 | 14.26 | 21.43 
  

organized (i.e. better readability, as human summaries) while BERT summaries seem to have trouble 
separating information, seeming to be more in line with an extractive-only approach. 

4.7.1 Fluency, Length and Relevance, Interpretability and Overall Meaning 

BERT was at times difficult to follow, given it "crammed" text together, and often changed topics 
abruptly. BigBird was more similar to the manual summary, and had only minor problems in 
sentence transition. Human-produced summaries were the most fluent. For shorter texts, the length 
of BERT’s summaries was longer than that of BigBird’s. However, much of the text included was 
left-over information (e.g. text that was not needed or relevant.)For longer texts, the length of 
BERT’s summaries was shorter than that of BigBird’s, and the information remained relevant. In 
general, manual summaries were on the longer side.) BigBird was easier to interpret, as it keep 
the information neatly organized, and the necessary context was provided. BERT also proved useful, 
but sometimes out-of-context sentences/words made it difficult to understand what the message 
was. Unlike BERT, BigBird did not include seemingly random information at times, and kept the 
information relevant. In general, BigBird summaries were better than we expected (and better than 
BERT’s). We think this might be because the architecture allows to analyze longer sentences at the 
same time, and so key connections are seldomly lost. As the capacity to use longer windows for 
analysis increases, the summarization task is likely to deliver better results.We were able to generate 
a few full samples from GPT-3. They were fluent, but included information not in the text. We could 
not investigate further given the time constraint. sumTo generated summaries similar to BERT, but 
more fragmented. The extractive nature was noticeable. In a few cases, the interpretation of few 
sentences was ambiguous. For example: 

There remains a strong demand for exposure to property and we have been working 
to identify additional property products to meet future demand for the UK and 
continental Europe. It remains one of our fastest growing separate accounts and 

as at 31 December 2007 had a value of £752m. 

where the first and second sentences are related to two different sections. 

5 Analysis 

5.1 Comparison between Our Model and the Original Model 

We compare BERT, baseline(sumT0), BigBird, GPT-3 on the summarization task. BERT and 

baseline are similar methods. Main advantange of sumTO is to be fine-tuned on the dataset. BERT is 
not fine-tuned on financial data. The gap between the two indicates fine-tuning makes a difference. 
Nevertheless, BERT can produce fluent summaries and have the best R-1 precision score. This can be 
explained by shortest lengths of the summaries produced by BERT. We conclude BERT is producing 
short summaries retaining part of the text but it is missing some content. sumTO is producing good 
results on ROUGE metrics. From human evaluation we see BERT produced good enough summaries, 
but also keeps some irrelevant information. GPT-3 produced few summaries whereas others are 
mixed with information not contained in the text. According to human evaluation, this happens 
because when there is a lack of text or obvious connections, the model just pulls information it has 
learned and tries to blend it in. Despite, these summaries contain much of the information included 
in the human-produced reports, using other words — that are more similar to the original text than 
words contained in human summaries. BigBird scored first in R-1 recall results. This shows it can 
match maximum amount of single words compared to the target summary among the three. Lower 
numbers on precision are justified by the abstractive nature of the approach which needs more words 
to generate a fluent summary and retains more context. This feature helps in semantic retention. 
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Furthermore BigBird is producing summaries longer than BERT. We have to take into account we 
truncate very long sections losing some information contained towards end. 

5.2 Results from Different Datasets 

The dataset is a real-world, challenging scenario in which text is extracted from pdfs, and is not fully 
clean from headers. Furthermore, tables are translated to plain text. Implementing cleansing rules 
helped in training. Improving the rules and the section-summary matching algorithm, We noticed a 
performance booster. 

5.3. Summary Length 

Length of gold standard summaries and section can vary a lot. One of the challenges is to train 
BigBird to produce long and short summaries as required. This is in line with similar challenges 
in literature where they provide a specific checkpoint for long summaries[9]. Proving more long 
summaries in the training set improved the length of the summary. 

6 Conclusion 

We compared BERT, baseline (sumTO), BigBird, and GPT-3 on the summarization of financial 

narrative task. We considered a real-word scenario in which semantic retention and ROUGE metrics 
are equally important. We scored the models based on ROUGE metrics and on human evaluation. 
The financial narrative summarisation task is highly extractive in nature, and abstractive features are 
challenging. Moreover semantic retention is highly relevant. Our proposed context-aware approach 
BigBirdFLY scored first in R-1 recall numbers. This indicates that it can match the maximum number 
of 1-gram from target summary. Importantly, it produced more fluent summaries. To keep summaries 
coherent and fluid it utilized more words compared to BERT, sumTO, and it is penalized in overall 
F1 metric. Nevertheless in a few samples numerical facts were misplaced, possibly due to a lack of 
pre-training on financial data. Human evaluation proved valuable to understand differences between 
models. In particular, BigBird proved more aligned with our manual summaries than BERT, and 
kept the information better organized (i.e. better readability), including mostly relevant information. 
Results from sumTO are similar to BERT, but more fragmented, and at times the interpretation was 
ambiguous. GPT-3 generated fluent summaries which includes information not in the text which 
nonetheless happened to be correct. 

We showed how a sentence-by-sentence extraction method can benefit from a wide context window. 
Comparison with recursive methods[3] is left as future work. The financial summarization task 

revealed to be a challenging task without a unique method being better overall. We believe this 
could lead to introduction of new tasks and new models. For future work, and given the very specific 
feature of the task, we think adding further domain/task specific pre-training on financial text can 
help BigBird score better. A better section-to-summary matching algorithm (topic-based) is needed 
as well. Finally, the abstractive feature of BigBird can be modified to be more extractive, utilizing 
weights from attention, thus taking the best from both worlds. 
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Figure 4: ROUGE Metrics for our Models. Summary Evalution of the Baseline, BERT+Summary Layer, and 
BigBird. Rouge-1 matrix (upper left), Rouge-2 matrix (upper right), Rouge-3 matrix (lower left), and Rouge-4 

matrix (lower right). Scores were generated by comparing generated summary from each of these models against 

the available gold summaries for each document. We have used the sacrerouge module to generate the matrices. 
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