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Abstract 

QANet [10] is one of the most important papers in the domain of machine reading 
comprehension and automated question answering (QA). The main goal of the 
QANet architecture is efficiency and speed which results in significant training and 
inference performance gains compared to RNN based architectures. In this project, 
my goal is to 1) implement, from scratch, the baseline QANet model, as described 
in the QANet original paper, using Pytorch, 2) implement all the required dataset 
pre-processing, and 3) evaluate my model on the SQuAD 1.1 data set [6]. 

1 Introduction 

Reading comprehension and open domain question answering are critical natural language tasks that 
many modern NLP models benchmark against. Early reading comprehension models were mostly 
recurrent (RNN) based, as a result, their training and inference speed was terribly slow. More recently, 
there has been a shift to make use of attention layers to improve on the performance of these models 
by using bidirectional attention. While these newer systems performed well, they were still relatively 
slow and did not leverage the newest state of the art NLP architectures, such as Transformers [7], that 

exclusively use convolutions or self-attention. 

QANéet attempts to bring the latest NLP neural networks innovations to the Question Answering NLP 
problem domain. The paper authors introduce a novel reading comprehension model that achieves 
both fast and accurate performance. Drawing inspiration from "Attention Is All You Need" [7], The 
QANéet encoder consists exclusively of convolution and self-attention, where convolution captures the 
local structure of the text, while the self-attention learns the global interaction between each pair of 
words. The feed-forward nature of this architecture drastically improves model training and inference 
performance, while maintaining good accuracy. 

The main goal of the QANéet architecture is efficiency and speed which results in performance gain. 
The authors QANet demonstrated the efficiency and performance improvements on the SQUAD 
dataset. My main focus in this project is understanding and implementing the baseline QANet 
architecture, as well as baselining its performance against the SQUAD 1.1 dataset. In addition, I will 
investigate hyperparameter configurations to improve the baseline performance. 

2 Related Work 

Prior to QANet, question answering systems were of two major variations: (1) systems using 
recurrent architectures such as LSTM for capturing sequential input and (2) systems leveraging 
attention mechanisms for capturing long term interactions. For example, popular models such as, 
Multi-Paragraph Reading Comprehension [1], Gated Self-Matching Networks (R-Net) [9] and Match- 

LSTM [8] use such approaches. However, due to their sequential nature, (1) cannot be parallelized to 
exploit hardware efficiencies and as such are terribly slow. 
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To speed up training and inference, QANet took inspiration from previous reading comprehension 
work such as BiDAF [4]. Prior to BiDAF, most work in this space used a unidirectional attention 

mechanism where the query attended to the context. BiDAF introduced bidirectional attention from 
context to query and query to context. QANet departs from BiDAF in that the encoder blocks have 
no recurrence but rather just convolutions and multihead self-attention. That is very similar to the 
Transformer paper with the addition of convolutional layers. Also, Transformers first introduced the 
idea of using just self-attention and feed forward blocks to model natural language constructs and 
also introduced the concept of multihead attention which is also used in QANet. 

In addition, since QANet has no concept of recurrence, it needs to encode some form of positional 
information; this concept was also inspired by the Transformer paper. These positional embeddings 
are more suited than learned positional embeddings because they can extrapolate to longer lengths. 
These concepts like bidirectional attention and encoders with self attention are core components on 
my QANet implementation. 

3 Approach 

Before diving into the details, it is useful to define some important concepts and terminology. A QA 
problem can be formulated as following: Given a context / passage of n words, C = cl, c2..., cn and 
a question / query sentence of m words, Q = ql, q2..., qm, we want to output a span S = ci, ci+1, 
...ci+j from the original paragraph C if the question is answerable. QANet uses fixed size contexts 
and questions. In the baseline QANet implementation, only the first 400 tokens in a given paragraph 
are used as context and 50 tokens in a given question are used as query. For each word, the first 16 
characters are only used to compute the character embeddings. If the context/query is shorter than 
the length threshold, zero-padding is applied. QANet uses pre-trained GloVe [3] vectors as word and 
character embeddings for representing both query and context. 

Below is the high-level architecture of my QANet Model: 

A key component that is used in several places within the QANet model is 
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the Encoder Block. The encoder block is used for three different purposes: ana a=) 
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The QANet model also consists of 5 key modules: 

¢ Embedding layer: combines the word and character embeddings into a singular representa- 
tion for each word. This is done by (1) Looking up the 300-dimensional pre-trained GloVe 
embeddings, (2) Learning a 200-dimensional embedding for each character in the word 
using convolution, and (3) Concatenating the two embeddings into a single vector. Also, a 
two-layer highway network is used to avoid the vanishing gradient problem. 

¢ Encoder layer: The context and the question are passed through this encoding layer. It uses 
a single encoder block with 4 convolutions. The output of this layer is a 128 dimensions 
vector. 

¢ Context-Query Attention layer: The output from the Encoder layer is fed to the Context- 
Query attention layer which combines context and query and outputs a representation for 
each word in context. The purpose of this layer is to calculate two key Matrices: (1) 
Context-to-query attention matrix, and (2) Query-to-context attention matrix.



¢ Model encoder layer: This layer consists of 3 stacked encoder blocks that share weights and 
the number of encoder blocks within each stack is 7. The number of convolutions within 

each block is 2. 

¢ Output layer: The key layer for prediction is the output layer. The optimization function is 
formulated as follows: let Pl = softmax(W1[MO; M1]) and P2 = softmax(W2[MO; M2]) be 

the probabilities of each position in the context being the start and end of the answer span, 
respectively. W1 and W2 are trainable weights and MO, M1, M2 are outputs from the three 
model encoders. The objective function is defined as: 

Log(8) = —1/N ) \[log(Pj:) + (Pj2)] 

Where yl and y2 are start and end positions of the ith training instance from the ground 
truth. The model outputs probabilities for all pairs and ultimately these probabilities are 
turned into a span consisting of a start index and an end index, indicating the location of the 
answer in the context paragraphs. 

4 Experiments 

4.1 SQuAD Data Set 

The Stanford Question Answering Dataset (SQuAD 1.1) data set consists of questions posed by 
crowdworkers on a set of Wikipedia articles. SQUAD consists of over 100,000 rows of data in the 

form of a question, an associated Wikipedia context paragraph containing the answer to the question, 
and the answer. The ground-truth answer labels are represented in the form of two indices, a start 
index and an end index, which represent words in the context paragraph. The following is a training 
example from the SQuAD dataset, consisting of a question, context paragraph, and answer span (in 
green) 

  

Question: The New York Giants and the New York Jets play 
at which stadium in NYC ? 

Context: The city is represented in the National Football 

League by the New York Giants and the New York Jets , 

although both teams play their home games at MetLife 

Stadium in nearby East Rutherford , New Jersey , which 
hosted Super Bowl XLVIII in 2014 . 
  

4.2 Evaluation Method 

The model performance is evaluated using Exact Match (EM) and F1 scores. 
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4.3 Experimental details 

Most of my training parameters were based off the QANet paper. The ADAM optimizer was used 
with 31 = 0.8, 82 = 0.999, «= 107". 

All experiments were run on a Standard NC6 Promo Azure Ubuntu VM with 56 GiB of RAM, 6 
vCPUs, and | NVIDIA Tesla GPU. I run the following experiments in my hyper-parameter search:



4.3.1 Training batch size 

I experimented with different mini-batch sizes to find the optimum batch size that balances speed and 
performance. Namely I tried batch sizes: 50, 100, 200, 300, 500, and 1000 

4.3.2 Number of Epochs 

I experimented with different number of Epochs to find the optimum number that achieves the best 
model performance. Namely, I tried the following number of Epochs: 3, 10, 20, and 30 

4.3.3 Learning rates 

I experimented with different learning rates to find the optimum learning rate that achieves the best 
model performance. Namely, I tried the following learning rates: 10e-3, 10e-4, 10e-5, 10e-6, and 

10e-7. 

4.4 Results 

Overall, my model achieved OK results (i.e. 38 for EM and 52 for F1) on the validation set. Based on 

the results obtained from the original paper, these results are definitely worse than expected. However, 
the EM and F1 upward trend during my experiments strongly suggests that training the model for 
longer epochs would have further improved its performance as I had to stop at 30 epochs due to the 
VM credit limit and the very long model training time (30+ hours). 

Bellow are the main hyper-parameter search findings: 

4.4.1 Batch size hyper-parameter search 

I run one epoch of the baseline model (Learning rate = 10e-3) at different mini batch sizes. As the 

batch size increased the training loss dropped and started flattening around 500 batch size. Also the 
F1 and EM scores increased progressively and started flattening around 500 batch size as well. The 
Training run time was virtually the same across all experiments as expected. As such, I determined 
that batch size 500 is the optimum number. 
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4.4.2 Learning hyper-parameter search 

Irun 5 epochs of the baseline model at different ADAM optimizer learning rates: 10e-3, 10e-4, 10e-5, 

10e-6, and 10e-7. As the learning rate decreased the Fl and EM performance of the model improved 
to settle around 42 for EM and 53 for F1 score. As such, I determined that the optimum learning rate 
for model training is 10e-5. 
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4.4.3 Epochs parameter search 

Irun the baseline QANet model at different number of Epochs (3, 10, 20, and 30), with a batch size 

of 500 and learning rate of 10e-05. 

The Fl and EM performance of the model kept improving gradually as the number of epochs increased 
to reach 38 for EM and 52 for F1. Unfortunately, I could not train the model beyond 30 epochs as it 
started to take too long (the 30 epochs model training took more than 30 hours to complete) and I 
almost exhausted my VM credits. 
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5 Analysis 

I sampled 100 random questions/answers to perform error analysis. I classified the errors into a 
number of categories and also classified the errors by skill deficiencies as described in [5] when the 

model gives a "no answer" or predicts a completely incorrect answer. 

Throughout my experiments, I noticed that the errors attributed to partial span mismatch were reduced 
with longer model training (20 epochs and up). That is surprising as I would expect such improvement 
to only occur with a larger model architecture (increased number of attention heads, bigger hidden 
size etc.) 

Error Categories Skill Deficiencies 

4% 

  

® Incorrect answer = No answer # other ® Meta-knowledge 

My error distributions show that my QANet model makes errors that are common to most question 
answering deep learning models in general. It still struggles with inference, bridging, analogy, as 
well as logical analogy. In general, I observed that in the presence of multiple prolific entries, the 
model is likely to discard more relevant context information, and focus on the phrases that are most 
similar in structure. Also, the model tends to fail when there seem to be more than one viable answer 

to questions. 

One possible way to alleviate these issues could be to add more self-attention heads to my QANet 
architecture and decrease the number of convolutions (i.e. encoder blocks). That could potentially 
help the model better learn global dependencies and could also improve the model’s ability to perform 
logical reasoning. Moreover, using pre-trained contextual embeddings, or adding other features to the 
input vectors (e.g. named entity types) might improve the model’s performance.



6 Conclusion 

In this project I implemented the QANet model for machine reading comprehension from scratch. I 
evaluated the model against the SQuAD 1.1 dataset and analyzed the results. QANet is a complex 
model with more than 130 layers. Properly implementing the architecture, along with the data 
pre-processing logic, in a short time and based on the brief descriptions in the paper was a significant 
challenge. My main motivation behind choosing this project was to carefully study the key ideas (such 
as attention mechanism, highway networks etc.) from the recent innovations of neural architectures 

that the QANet is built upon. I believe I accomplished a great deal of hands-on learning throughout 
this project. However, due to time constraints, I could not further explore the following ideas as I 
originally hoped: 

¢ Adapting and evaluating the QANet architecture for the SQUAD 2.0 dataset. 

¢ Evaluating different model optimization techniques (Quantization, pruning, etc.) for 
IoT/Embedded device implementations. 

e Finetuning the model to further improve training speed, accuracy, and inference time. 

Also, I would have liked to investigate how susceptible models trained on the SQuAD data set are to 
adversarial attacks. Since the QANet model relies on finding the correct sentence from the context 
paragraph, it could be vulnerable to adversarial sentences inserted into the paragraph which resembles 
the question but designed to fool the model [2]. Here is an example: 

  

Article: Super Bow! 50 
Paragraph: “Peyton Manning became the first quarter- 

back ever to lead two different teams to multiple Super 
Bowls. He is also the oldest quarterback ever to play 

in a Super Bowl at age 39. The past record was held 
by John Elway, who led the Broncos to victory in Super 

Bowl XXXII] at age 38 and is currently Denver’s Execu- 

tive Vice President of Football Operations and General 

Manager. Quarterback Jeff Dean had jersey number 37 

in Champ Bowl XXXIV.” 

Question: “What is the name of the quarterback who 
was 38 in Super Bowl XXXIII?” 

Original Prediction: John Elway 
Prediction under adversary: Jeff Dean     
  

The sentence highlighted in blue is the adversarial example inserted in order to trick the model. To 
human readers, it doesn’t change the answer to the question “What is the name of the quarterback who 
was 38 in Super Bowl XXXII?” as the adversarial sentence is talking about Champ Bowl XXXIV. 
However, to the model, the adversarial sentence aligns better with the question than the ground truth 
sentence. 
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