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Abstract 

People interact with legalese on a daily basis in the form of Terms of Service, Cookie Policies, and other 
agreements that (for the most part) are mindlessly accepted. In order to give people transparency into the 
services they use, we aim to develop an abstractive summarizer which simplifies these legal documents. 
Leveraging an existing dataset of human interpretations of Terms of Service, known as TOS;DR, we developed 
a two-step pipeline involving extractive summarization followed by text simplification. We use state-of-the-art, 
transformer-based methods for both steps of this pipeline. Specifically, for extractive summarization we use the 
CNN/DM BertExt model presented by Liu et al. For text simplification, we used the ACCESS model presented 
by Martin et al. We first established a baseline of our extractive summarizer performance via ROUGE, our text 
simplifier performance via SARI and FKGL, and the performance of our pipeline end-to-end via ROUGE. 
These baselines were established using the pretrained models provided by the authors of these papers. We 
then employed a variety of data cleaning and data augmentation techniques, as well as model finetuning to 
improve upon these baseline results. We demonstrate that these techniques result in an improvement in model 
performance on legalese, both when these models are used in isolation, as well as when these models are used 
end-to-end. While we did improve on our baseline results, our qualtiative analysis demonstrates that these 
models are not near the level required for a production-level system, and our results demonstrate shortcomings 
in the adaptability of these large transformers when pretrained on specific, parallel datasets. 

1 Key Information to include 

¢ Mentor: John Hewitt 

2 Introduction 

Millions of people without proper training have to interact with legalese, a highly professional dialect of English that 
is used in contracts and other legal settings. This dialect is only partly mutually intelligible with mainstream English 
dialects. A very common example of legalese in the common public sphere is the Terms and Conditions of Service that 
almost everybody skips and agrees to by default. Recent conspiracies (like changes of PII usage by Facebook) and 
initiatives (like Apple requiring all apps be extra transparent about their PII usage via "Privacy Labels"), as well as 
continuing trends of businesses shifting to the online setting (which is being sped up by the ongoing pandemic) strongly 
motivate this research paper. Our goal is to combine and modify current neural models that perform text simplification 
and text summarization to build a legalese-to-laymen English machine translation system for Terms and Conditions of 
Service agreements. We will be evaluating the performance of transformers on this task. Our task is to translate Terms 
of Service excerpts from legalese to mainstream English. An input would be an original Terms of Service taken directly 
from a website, while an output would be a shortened summary of the Terms of Service in mainstream English. 

3 Related Work 

The first paper we considered was by Anand & Wagh: "Effective deep learning approaches for summarization of legal 
texts". This paper implements a method of text simplification via RNNs and CNNs for binary classification of sentences 
in legal documents as important or unimportant [1]. Since this was one of the few summarizers we found that was ap- 
plied to legal documents, we were intrigued by this approach, and curious if we could apply transformers to a similar task. 

Another paper of importance that we considered was by Weng, Chung, & Szolovits, "Unsupervised Clinical Language 
Translation". This paper was one of the works that inspired us to pursue abstractive summarization. The authors built a 
model to express medical documents (usually written in highly professional medical jargon), for regular patients that do 
not speak the medical dialect. The paper used an unsupervised approach by aligning highly dimensional subspaces 

Stanford CS224N Natural Language Processing with Deep Learning



of professional and laymen word embeddings [2]. This paper did not employ transformers which we really wanted to try. 

After reading these papers and others, we settled on the two-step pipeline approach, with step one being an 
extractive summarizer and step two being a text simplifier. We knew we wanted to leverage transformers for this, so we 
began to look for papers on transformer-based models for completing these tasks. 

For our extractive summarizer, we referred to the paper by Liu & Lapata, "Text Summarization with Pre- 
trained Encoders". This transformer based approach had demonstrated strong results on CNN and Daily Mail 
text simplification, and we decided to use this model (called “CNN/DM BertExt’”) as a baseline for our extractive 

summarization [3]. 

For our text simplifier, we referred to the paper by Martin et al, "Controllable Sentence Simplification". 
This transformer-based text simplifier based on neural text generation techniques showed promising results on the 
Wikilarge dataset. Furthermore, the paper was specifically designed to expose some model explainability in the form 
of "explicit control tokens" which allowed for control over length, amount of paraphrasing, lexical complexity and 
syntactic complexity. We used this paper’s pretrained "ACCESS" model to establish our baseline results [4]. 

4 Approach 

We have a two-step process: (1) summarize the full Terms of Service and similar policies (ToS for brevity) to extract key 
information and (2) simplify the summarized information to be expressed in layman’s terms. Our intuition is that using 
two, more specialized transformer-based models (one for extractive summarization and one for text simplification) will 
yield positive results. Furthermore, via this approach, we are evaluating the current state of transformer performance on 
noisy legalese. 

4.1. Approach to Extractive Summarization 

We used pretrained BERT for summarization as a starting point and finetuned for ToS language using our data. Liu 
& Lapata stack several inter-sentence transformer layers on top of BERT for capturing document-level features, and 
terminates with a sigmoid classification of sentence importance. Their model was pretrained on non-legal news article 
data with each article’s summary as references [3]. We finetune the model on a variety of differently formatted scraped 
full ToS and their corresponding quotes pulled out as most important by ToS;DR editors. For this part of the pipeline, 
we focused most of our attention on training data formatting (i.e. experimenting with data augmentation) as scraped 
terms of service were not clean and first few experiments were showing poor results. See Data and Experiments sections 
for more details. 

We calculated the baseline by evaluating the performance of Liu & Lapata’s model’s extracted summary quotes from 
full ToS, using those documents’ corresponding ToS;DR quotes as reference. Because we used a pretrained checkpoint 
as a base for all of our fienetuning, we did not edit the architecture of the model — adjusting it would make the pretrained 
weights pointless because gradient backpropagation would change. Therefore, all the used PyTorch code was written by 
Liu and Lapata (see references). 

Lapata & Liu offered Transformer & BERT models pretrained on various datasets; we chose “CNN/DM BertExt” 
(trained on CNN and DailyMail articles) by examining their performances in the paper. More concretely, “CNN/DM 
BertExt” performed second best based on the ROUGE metric in Liu & Lapata’s experiments; it was trained on twice as 
much data as the best performer; and CNN/DM data were more extractive than other datasets used for training (like 
XSum). Since we used the pretrained model for general understanding of language and finetuned on our own (that 
differs quite a lot in language used from news articles), we went with “CNN/DM BertExt”. 

Average article length in Liu & Lapata’s training data was ~ 600 words, and “CNN/DM BertExt” only took inputs 
truncated to 512 tokens. We didn’t truncate any ToS documents because they often contain key information beyond 
512 characters. Instead, our code split each ToS into chunks, summarized each one, and then joined all summaries 

to compare against the reference summary. We obtained document d’s ith chunk c; as follows: tokenize d; set c; to 
a substring of d starting at c;_;’s end index and of length 512; if a newline character is present in c;, make c;’s last 
newline character its last token and return; else, repeat the previous step for a period; else, repeat the previous step for a 
semicolon; else, return c; of size 512. We did not count other punctuation characters like “?” or “!? because they are 

uncharacteristic of our data’s genre. 

4.2 Approach to Simplification 

For text simplification, we opted to use the ACCESS (AudienCe-CEntric Sentence Simplification) model. The ACCESS 
transformer is trained on the Wikilarge dataset and uses the same architecture in the "Attention Is All You Need" paper 
[5]. The model used an embedding dimension of 512, fully connected layers of dimension 2048, 8 attention heads, 6



layers in the encoder and 6 layers in the decoder. Moreover, the ACCESS model was designed to allow for explicit 
control over Sequence-to-Sequence based models, allowing the users of the model to tweak the length, amount of 
paraphrasing, lexical complexity, and syntactic complexity of the simplifications returned by the model. The author’s 
approach involves using the Fairseq toolkit to train a Transformer model with various hyperparameters [4]. In order to 
parameterize the Seq2Seq models with the attributes desired (such as length, paraphrasing, etc.), the authors append a 
control token at the beginning of source sentences. 

The explicit control tokens noted in the ACCESS paper are NbChars, LevSim, WordRank, DepTreeDepth [4]. They 
correspond to the code variables LengthRatioPreprocessor, LevenshteinPreprocessor, WordRankRatioPreprocessor, 
and DependencyTreeDepthRatioPreprocessor, respectively. To elucidate what the control tokens mean, NbChars is the 
character length ratio between the source sentence and target sentence; word length has been shown to correlate with 
lexical complexity. The Levenshtein distance between two words is the minimum number of single-character insertions, 
deletions or substitutions required to change one word into the other. LevSim, the Levenshtein ratio, is the Levenshtein 
distance divided by the length of the longer of the two words. WordRank involves comparing frequencies of words in 
the target sentence with frequencies of words in the source sentence, which has been shown to correlate with word 
complexity. Lastly, DepTreeDepth is the ratio of the maximum depths of the dependency trees of the source and the 
target, signifying syntactic complexity. 

We were able to modify the ACCESS code to take in our own evaluation data, and we were able to evaluate the network 
trained on Wikilarge on our data. We then modified the ACCESS code to allow for finetuning. Specifically, we load 
a checkpoint from the pretrained model, and then train the model on our own formatted ToS;DR data. We also used 
random search to find the optimal parameters. We’ll go more in depth in 5.3.2 about the various hyperparameters we 
changed. Out of the 241 hyperparameter configurations we ended up with, we had 20 that demonstrated a nontrivial 
improvement on the model performance . We used the most successful hyperparameters to finetune our model for the 
pipeline. The hyperparameters are also in section 5.3.2. 

4.3 Pipeline 

For the pipeline, we first fed a subset of the Terms of Service chunks to the summarization model, generated candidate 
summaries, and input them into our simplification model with the hyperparameters from our best finetuning results 
to generate an abstract summary. We started off with a baseline, with no finetuning, then we tried various data input 
formats for summarization and finetuning methods simplification, which improved our results for both and led to more 
pipeline results. See the Experiments section below for details. 

5 Experiments 

5.1 Data 

All of the code involving parsing or reconfiguring data was written by us. We downloaded and parsed the ToS;DR 
(Terms of Service; Didn’t Read) data. ToS;DR has a .json file for each service, containing quotes taken directly from 
the service’s ToS. Each pair of ToS quotes and their corresponding simplifications forms a "point" [6]. Each point is 
peer-reviewed and must be approved by other human evaluators. In their .json files, each point consists of: 

¢ verbatim quote: a quote taken directly from a Terms of Service, Privacy Policy, or similar document 
* the title given to the point, generally the simplification that the author wrote for the point 
* case: the category that the quote is assigned to (e.g. "This service may collect, use, and share location data") 
¢ the name of the source document that the quote was taken from (e.g. "Terms of Use") 

We extracted the key data for our purposes: verbatim quotes, human-written and peer-reviewed simplifications, service 
name (e.g. "Amazon"), and the names of the documents that the quotes are from. We then reformatted the data (e.g. 
removing HTML data and newlines) and created a CSV file with the information. However, our summarization model 
needed full text as inputs, so we gathered 770 full texts; 371 were downloaded through links in the ToS;DR dataset, 

while the rest were manually searched up to grab the links, then the texts were scraped through a script we wrote. 

For summarization, out of the 770 full texts and ToS;DR quotes, we were only able to use 115 for most experiments 
(on which we achieved some of our best results): over time, companies change the terms of service and the pulled out 
ToS;DR quotes were not contained in a lot of them. We cleaned 15 by hand and 100 algorithmically by filtering out all 
full terms of service that were missing at least one ToS;DR quote. (As described below, all experiment titles that contain 
the word clean were trained and evaluated on the 115 cleaned data files.) We joined the quotes taken from the CSV so 
that all quotes from each document of each service were put in the same .txt file. We used the same schema for the full 
texts we had, to match source documents; quotes and full texts came from the same source document if their filenames 

were the same. We followed a 60:20:20 split for training, validation, and test sets; upon manual examination of data, 

we determined pulled-out quotes to all have very similar structures (most contained words like privacy or cookies), 
which led us to believe that having slightly less data for training and more for evaluation would results in more accurate 
evaluation without hurting evaluation.



For simplification, we took out all of the quotes and put them line by line in a .complex file to serve as the input to 
the model. Similarly, we took out the human simplifications and put them line by line in a .simple file to serve as the 
evaluation comparison. We used scikit-learn’s train_test_split to generate a train, test, and validation set with 
proportions 0.9, 0.05, and 0.05 respectively (5040, 280, and 280 sentences). 

5.2 Evaluation method 

We are using ROUGE-1, ROUGE-2, and ROUGE-L as primary metrics and human evaluation as secondary to evaluate 
the performance of extractive text summarization (using precision and recall). ROUGE stands for Recall-Oriented 
Understudy for Gisting Evaluation and is commonly used to rate automatic summarization and machine translation. -1 
and -2 stand for unigram and bigram overlap, and -L stands for LCS (Longest Common Subsequence) overlap between 
candidate and gold summaries. Liu and Lapata had ROUGE implemented in their repository (using a python package), 
so we used their scripts to evaluate performance after each validation run. 

SARI (System output Against References and against the normal sentence) is a lexical simplicity metric used for 
evaluating automatic text simplification systems. The metric compares the predicted simplified sentences against 
the reference and the source sentences [7]. It does so by taking the arithmetic mean of the n-gram Fl-scores of 
addition, deletion, and include operations. SARI rewards words that appear in both the output texts and the references 
by rewarding operations that aim for that goal; for example, addition operations for simplified words and deletion 
operations for unnecessary words [7]. The ACCESS authors indicate that for the purpose of sentence simplification, 
SARI is a better metric than BLEU (since BLEU places too much reward on not changing the sentence structure) [4]. 

Thus, we will be using the SARI metric to determine the relative performance of our simplification models. SARI is also 
the current standard for text simplification, given that it weighs specific changes made to the input text and correlates 
well with human judgements. Furthermore, we will calculate FKGL as a secondary metric to evaluate readability. 
FKGL stands for "Flesch-Kincaid Grade Level" and is a readability test designed to indicate what US grade level 
a piece of text corresponds to [8]. In other words, we can use FKGL to look at difficult a passage in English is to 
understand. Ideally, we want our SARI score to be as high as possible, as it signifies that the words that are added, 
deleted, and kept are "better", but we want our FKGL to be lower, as a lower FKGL corresponds to text that is easier to 

read. However, FKGL has to be used in conjunction with SARI, since FKGL doesn’t care for meaning preservation. 

For evaluating the whole pipeline (which will be an abstractive summarizer), we are using ROUGE scores as well, since 
Liu & Lapata’s work uses ROUGE to also evaluate their 8 abstractive summarizers. We also used human evaluation to 
look at the semantics of the result. 

5.3. Experimental details 

5.3.1. Summarization 

For text summarization, we didn’t edit the architecture of the model in order to be able to use the pretraiend “CNN/DM 
BertExt” checkpoint as a start. We kept the position embedding dimension of 512 because the model was pretrained on 
articles of this size (see section 4.1 for details of our input structure). The model had 12 hidden layers of size 768, 12 
attention heads, hidden dropout probability of 0.1, and total vocab size of 30522. We wrote a lot of data parsing scripts 
for all the different experiment setups we describe below, as well as a summarization pipeline script that automated 
more data preprocessing (3-step process required before each training), training itself, and logging. Validation was kept 
out of the pipeline. 

Our experiments mostly involved data reformatting and fell into the following three categories (see table below for a 
summary): full, clean, and aug. 

The full0 experiment was conducted on all the data we had — 770 full ToS files (14050 chunk files) and their correspond- 
ing ToS;DR quotes. For each company’s ToS chunk, we treated all that company’s ToS;DR quotes as gold summary 
references. This approach was flawed because a lot of chunks still had contaminated data and did not mention anything 
close to reference quotes (read more in Results and Analysis). 

The clean, clean-n, clean-nr, and clean-r were run on cleaned data (as described in 5.1 Data). Suffix -n means that 

only data with non-empty summaries was used for training, and -r means that the data was cleaned further with a 
regex by omitting all characters besides [A-Za-z0-9 \n. ,;?]. We ran -n experiments to see how more similarity to 
pretraining data impacts results (all CNN/DM data had non-empty summaries), and we ran -r experiments to investigate 
how much remaining contamination in the dataset was hurting our performance. Note that although we had 2060 clean 
chunks, experiments postfixed with -n and/or -r were trained on a smaller number of documents because most chunks’ 
references were empty and regex cleaning invalidated some previously valid files. 

Finally, experiments prefixed aug were trained on 115 cleaned full ToS files (2060 chunks) as well as variable amounts 
of augmented training data. We pursued data augmentation in hopes of teaching our model to generate empty summaries 
for some chunks. We generated augmented data chunks by considering all chunk0O’s of our datasets (beginning of ToS



often contained junk text) and randomly mixing them up. Validation set only consisted of data from the original 115 
files. 

For your convenience, here is a table summarizing everything written above. Validation sets were randomized each 
time and varied structurally among some experiments (i.e. full0 vs regex-cleaned data vs the rest), but were always kept 
exactly identical between a trial’s finetuned model and our baseline. 

Experiment | num chunks _ regex-cleaned only non-empty summaries _ num augmented chunks   
fullO 14,050 - - - 

clean 2,060 - - - 

clean-n 332 - Y - 

clean-nr 236 Y Y - 

clean-r 1,420 Y - - 

aug-1k 2,060 - - 1,000 

aug-10k 2,060 - - 10,000 

5.3.2. Simplification 

For text simplification, we left the general ACCESS structure untouched except for where we modified it to fit our 
dataset. We made substantial changes to the training code and the evaluation code. 

When we performed random search to discover which hyperparameters are best, we initially watched our VM and tried 
to grab our results (which are printed to the console) as soon as each finetuning finished. However, that limited the 
amount of time we were able to train our models. That’s why, for training, we updated the main training file to use 
our datasets and to allow us to run finetuning continuously without needing to keep an eye on our virtual machines 
(VMs) while we were training. We also changed the code that calls outside modeling toolkits and packages like 
fairseq (Facebook AI Research Sequence-to-Sequence Toolkit) and easse (Easier Automatic Sentence Simplification 
Evaluation), adding parameters to load the model checkpoints we want as well as changing parameters to maximize the 
success of our finetuning. 

The hyperparameters we ended up changing are shown in the table immediately below along with the randomized 
values we set. ACCESS is unique since it provides us with the opportunity to tweak the explicit control tokens (the 
preprocessor target ratios in the table). Each control token’s value represents the ratio of the control token value of the 
target sentence over the token value on the source sentence. 

  Hyperparameter | Value 
beam random integer from 2 to 10, inclusive 
dropout random float from 0 to 1 
label smoothing random float from 0 to 1 
Ir (learning rate) random float from 1E-5 to 1E-3, logarithmically scaled 
LengthRatioPreprocessor target ratio random float from 0 to 1 
LevenshteinPreprocessor target ratio random float from 0 to 1 
WordRankRatioPreprocessor target ratio random float from 0 to 1 
DependencyTreeDepthRatioPreprocessor target ratio | random float from 0 to 1 

Once the model has trained, the ACCESS training script provided by the authors automatically attempts to determine 
the explicit control ratios optimal for the validation set. Thus, these starting ratios were modified by the training script 
as a part of a final parameter optimization step. We also note that we used starting ratios between 0 and 1| per the 
recommendation of the authors; however, these ratios can go up to 2 (and indeed some of our experiment parameters 
exceed a ratio of 1). 

5.3.3 Pipeline 

For the pipeline, since simplification did not allow more than 512 tokens per input document when generating a 
simplification, we wrote a script that split each input summary into chunks, generated simplified text from each chunk, 
then concatenated all of the results into one final simplified document. 

The baseline for our pipeline involved running some Terms of Service chunks through the summarization, then the result 
was put into the simplification, without any finetuning on either model. Then, we took outputs from summarization and 
input them into simplification (pipeline names correspond to summarization trial names) : clean-n, aug-10k, clean, 
aug-Ik, clean-nr. We ran those summarization results through the simplifier finetuned on the best hyperparameters to 
generate more pipeline results.



6 Results 

6.1 Summarization 

Entries are of format finetuned score / baseline score. Asterisk * indicated best results as compared to the 
baseline. 

Experiment | ROUGE-1 improvement ROUGE-2 improvement ROUGE-L improvement 
  

fullO 19.44 / 15.88 +3.56 5.00 / 3.60 +1.4 16.95 / 13.87 +3.08 
clean 39.04 / 36.74 +2.3 26.72 / 23.08 +3.64 36.00 / 33.30 +2.70 

clean-n* 41.61 / 34.92 +6.69 31.20 / 22.27 +8.93 39.28 / 31.26 +8.02 
clean-nr 35.69 / 32.02 +3.67 24.35 / 19.67 +4.68 33.15 / 28.69 +4.46 
clean-r* 36.05 / 29.50 +6.55 22.93 / 15.01 +7.92 33.15 / 26.69 +6.46 
aug-1k* 39.87 / 32.08 +7.79 29.09 / 18.90 +10.19 37.24 / 28.82 +8.42 
aug- 10k 35.87 / 35.72 +0.15 23.32 / 22.83 +0.49 32.73 / 32.72 +0.01 

The table above contains ROUGE scores for some of our best experiments. We were pleased (but also expected) that in 
each experiment we ran, the finetuned model performed better than baseline, especially in experiments clean-n, clean-r, 
and aug-Ik. 

The success of clean-n was a surprise to us because, admittedly, it resulted from a data processing mistake — we never 
meant to only take data with non-empty summaries into account. We believe it performed well because that trial 
replicated pretraining data the most — CNN and DailyMail training data never had empty highlights. This shows the 
importance of wisely selecting a baseline that is as close to one’s task at hand as possible. 

The good performance of clean-r, contrasted with subpar performance of clean-nr with respect to its baseline was 
initially surprising but is now logical. The whole point of regex cleaning was to lower the negative impact of non-English 
text that contaminated our data. Since clean-nr was only trained on chunks with non-empty highlights, a significant 
majority of them were already as clean as they could get — regex cleaning probably disturbed already good data by 
stripping potentially important characters we did not think of including into the regex filter. In contrast, clean-r was run 
on contaminated data, which regex helped clean up. Additionally, clean-nr had a very low number of training data. 

The good performance of aug-1k partially proved our hypothesis right — the model needed to see more bad examples it 
should ignore. The very subpar performance of aug-1Ok is a little odd since the two trials only differ in the amount 
of augmented data. However, since the point of augmented data was to overpower the model’s knowledge gap from 
pretraining — making decisions on English articles is a lot more similar to making decisions on English ToS text than 
to on gibberish data — yet, at the same time, preserve the significance of data with non-empty references, the inferior 
performance of the trial with 10x more junk data can be expected. 

We expected full0 to perform very poorly, as it did. For some chunks, we practically asked our model to predict English 
text from junk data like links and html, which is implausible. 

6.2 Simplification 

In Appendix table A2, we listed the 22 trials that successfully finetuned, along with their SARI and FKGL scores. 

We first evaluated our model without finetuning, as a baseline. Our baseline SARI and FKGL scores are 26.894 and 
10.685, respectively. All of the successful finetuned results can be found in table A2 in our appendix. Our best run was 
trial 69, with a SARI score of 36.565 and a FKGL score of 8.660. A table with all of its hyperparameters is in Appendix 
table A3. This SARI score is the maximum we achieved, and we can see that both the SARI and the FKGL score beat 

the baseline. There didn’t appear to be a strong correlation between any of the hyperparameters and the SARI score, but 
it does appear as though a lower learning rate and higher LengthRatioPreprocessor and LevenshteinPreprocessor values 
does better than otherwise. 

6.3 End to End Pipeline Results 

After extensive tuning of our models individually, we finally evaluated these models end-to-end via ROUGE. Specifically, 
we compare our model baselines end-to-end against our finetuned models. Below is a selection of our results: 

Experiment _ | ROUGE-1 ROUGE-2 ROUGE-L   
baseline 11.68 1.03 8.85 

pipeline-clean 14.21 1.82 10.82 
pipeline-clean-n 18.51 3.19 13.02 
pipeline-clean-nr 15.05 2.96 10.68 
pipeline-clean-r 32.34 14.18 22.85 
pipeline-aug-1k 10.16 1.08 7.74 
pipeline-aug- 10k 11.66 1.09 8.88



Here we observe that some of our trials made a clear improvement over the baseline results. Particularly, pipeline- 
clean-r clearly outperformed all other pipelines despite the fact that it was not the top summarization result. Gibberish 
data (aug-1k and aug-10k) seems to have negative impact on the end-to-end result even though training on aug-1k 
dataset performed well on purely summarization. However, we also note that qualitatively, much of the results are 
still incoherent, difficult to understand, or generally incorrect. (This is discussed in further detail in our Analysis 
section). Regardless, these results are still important, as they demonstrate the feasibility of this approach in improving 
simplification of legalese. 

7 Analysis 

7.1 Summarization 

Upon examining candidates generated by the best trials, most of the extracted English text seems valid and important 
for the user signing a ToS agreement to take into account. For instance, here are some excerpts aug-1k pulled out and 
the baseline did not (rest of text is substituted with ellipses for the sake of brevity): 

¢ “however , even if we remove the content or information that you posted , we can not completely prevent further 
use or disclosure of that content or information by others once you have shared it in a publicly available forum...” 

e “you are a citizen of one of the countries identified below , you hereby agree that any dispute or claim arising 
from this agreement shall be governed by the applicable law set forth below , without regard to any conflict of 
law provisions , and you hereby irrevocably submit to the non - exclusive jurisdiction of the courts located in the 
state...” 

¢ “this information is anonymous and contains no personally identifiable data .<<q>information you elect to submit to 
the service in a public or quasi - public manner may be disclosed to other users of the application or the general 
public (" user submission (s )" )” 

Although the finetuned and baseline models did agree on the most important sentences to extract, the best-performing 
finetuned models seemed to pay extra attention to PII and legal procedures, which is consistent with our in-person 
review of ToS;DR quotes. 

One error category that is persistent across all trials we have conducted is the finetuned model’s failure to not pull 
anything out when presented with a text chunk. This was a significant difference between pretraining data and finetuning 
data: an average ToS was ~ 15 times longer than CNN/DM articles — a lot of chunks simply had nothing important. 
Some architectural changes may be necessary to encourage 0-length summaries from the model. 

7.2 Simplification (and End-To-End Result Analysis) 

An examination of the simplification model clearly demonstrates the shortcomings of attempting to adapt the transformer 
trained on Wiki text to legalese. Here, we highlight some of the key issues we found in our results, with specific 
examples. These examples come from our simplifier being run on the output of the summarizer. In other words, the 
"Simple Text" presented here is equivalent to the results of our end-to-end pipeline. Unfortunately, most of these issues 
were not issues that were resolvable by the explicit control tokens exposed in ACCESS (which can only control length, 
amount of paraphrasing, lexical complexity and syntactic complexity). 

  

  Complex Text (summarization output) Simple Text (simplification output) Issues 

qall rights not expressly granted in the terms The word ” q” comes from the Latin word hallucinating information, 
are reserved to dailymotion and its licensors for” q” , which means ” all rights ” . comprehensibility   
we may use information we collect to detect , 
investigate , and prevent activities on our 

sites that may violate our terms of use , 
could be fraudulent , violate copyright , 

For example , in the United States , 

there are many other rules that are illegal 
in the United States , such as the United States , 

hallucinating information, 

  

: : . : repetitive 
or other rules or that may be otherwise the United States , Australia , the United States , nen mhensibilit 
illegal , to comply with legal requirements , the United States , the United States... ("the United P y 

and to protect our rights and the rights States" repeated for more times) 
and safety of our users and others 

<q>we have never , and will never sell or s ‘ : 
ae , This means that a person will never sell it , as 
intentionally pepe 3 , repetitive, 

: so it will never sell it for a long time , says 
make public , comprehensibility 

any personal information gathered on this site 
or it will never sell . 
  
<q>the site hosts third - party content It is the home of the third party . contextual misunderstanding   
<q>when you download and use our services , 

we automatically collect information on the 
type of device you use and operating 

system version   If you download and use our services 
you can use it to make itpossible to 

collect information on the computer .   awkward structure



7.2.1 Hallucinations 

The error of hallucinating information is a common error described in other papers, including the BART summarizer 
by Lewis, et al. We believe that the cause for these "hallucinations" is the model attempting to convey some common 
information found in the training dataset. In fact, some phrases presented by the model such as "in the United 
States", "comes from the Latin word for", and "comes from the Greek word for" were incredibly common in both our 

simplifications and the Wikilarge dataset. (see Al for more information). 

7.2.2 Repetition 

This is another common error that manifests in language modeling. This is extensively studied in a paper by Holtzman 
et al, and their research demonstrates that beam search frequently results in the model assigning high probability to 
repetitive text [9]. We believe that this could be mitigated via some form of frequency penalty in the text generation 
process. 

7.2.3 Contextual Misunderstanding and Incomprehensibility 

These are by far the most common errors that manifest in our predictions, and we believe that to a large extent this has 
to do with information shown to the transformer in pretraining. We believe that finetuning is limited by the data exposed 
to the transformer during pretraining. The Wikilarge dataset used in pretraining is (for the most part) incredibly clean 
data, with comprehensible, human-readable data [10]. This is a stark contrast to our data, which has a large amount of 

non-English HTML and Markdown snippets. Furthermore, the Wikilarge dataset, which is sourced from Wikipedia, is 
written a very particular style that is distinct from the legalese we examine. We believe that if this transformer were 
pretrained on legal data (of which there is limited simplified text), the architecture performance would see significant 
improvement. 

The TOS;DR simplifications were a very specific style of simplification: parsing out information that is rele- 
vant to human usage of the service. This is a stark contrast from the style of simplifications in Wikilarge, and we believe 
this contrast in simplification styles also poses a challenge for this model’s improvement. 

8 Conclusion 

In this project we present the performance of state-of-the-art transformer-based models on abstractively summarizing 
legalese in the context of Terms of Service. In particular, we present the capabilities of an extractive summarizer and 
text simplifier working in tandem. While we are able to summarize and simplify some text, for the most part, these 
models are not capable of outputting key information from these Terms of Service with high consistency. The most 
common errors we examine involve hallucinations, repetition, contextual misunderstanding, and incomprehensibility. 
We believe that these errors can be mitigated somewhat by expanding the dataset used for pretraining, in particular 
pretraining on legal data. Unfortunately, no such dataset is currently available, and would require a sizeable human 
effort to compile, given that the methods presented are dependent on parallel data. We believe that this work has 
demonstrated some of the limitations of the very common pretraining approach to using transformers, and in particular, 
in the most common dataset used, Wikilarge. Moreover, our work demonstrates some of the limitations of pretraining on 
fully comprehensible text, such as Wikilarge, when the real world contains unintelligible text. Through this process, we 
learned a lot about working with techniques from the class in real-world situations, specifically diving in to managing 
large files across cloud virtual machines, hyperparameter tuning, and data cleaning and parsing. 
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A Appendix 

Common Phrase | Frequency 
sun 92 
the united states the united states the united | 36 
" comes from the greek word for " 23 
"comes from the latin word for " 18 
to make it_easier to make it_easier to make | 15 

a person or a person or a person 12 
q is a term used to describe a 11 
do not know what you want to do 11 

A1. Most Frequent Phrases in Simplified Text (clean-nr, 925 sentences) 

Trial beam dropout label Ir LengthRatio Levenshtein WordRank DepTreeDepth | SARI FKGL 
smoothing 

baseline 26.894 10.685 

2 8 0.70 0.99 3.72E-05 0.77 0.70 0.15 0.77 35.39 5.06 
6 8 0.23 0.65 7.16E-06 0.72 0.81 0.16 0.005 35.72 9.85 
13 6 0.67 0.23 0.0004 0.96 0.82 0.71 0.09 36.35 4.93 
47 4 0.01 0.08 6.40E-06 0.60 0.98 0.65 0.59 36.21 7.01 
48 10 0.97 0.72 0.0002 0.80 0.84 0.01 0.61 35.28 4.47 
50 2 0.47 0.55 7.65E-06 0.60 0.97 0.07 0.85 35.13. 5.27 
60 10 0.25 0.97 0.0005 0.60 0.68 0.27 0.55 35.45 5.98 
67 2 0.67 0.82 6.59E-05 0.83 0.80 0.07 0.21 35.86 9.74 
68 5 0.07 0.02 4.70E-06 0.53 0.97 0.67 0.63 35.33 4.26 
69 2 0.12 0.32 4.35E-06 0.84 0.75 0.65 0.93 36.57 8.66 
77 7 0.52 0.68 9.17E-06 0.999 0.69 0.60 0.04 34.64 7.92 
82 3 0.36 0.57 2.48E-05 0.98 0.82 0.92 0.30 36.25 9.56 
83 9 0.87 0.08 8.12E-06 0.78 0.77 0.05 0.16 36.30 =9.12 
92 3 0.64 0.13 9.77E-06 0.59 0.90 0.04 0.55 35.58 10.67 
105 6 0.80 0.04 4.50E-05 0.94 0.61 0.43 0.37 35.79 8.57 
110 6 0.81 0.29 0.0005 0.06 0.24 0.92 0.54 35.98 8.02 
112 6 0.87 0.88 6.74E-06 0.90 0.67 0.93 0.83 36.41 5.93 
120 2 0.53 0.33 8.02E-06 0.51 0.78 0.67 0.04 35.87 6.60 
129 7 0.94 0.74 0.0009 0.70 0.83 0.47 0.96 35.44 12.38 

130 10 0.92 0.05 T.91E-05 0.94 0.91 0.91 0.18 35.42 11.73     
A2. Hyperparameters and Evaluation Scores for Successful Simplification Finetunes 

Generally all values are rounded to the nearest hundredth



  Hyperparameter Value 

arch transformer 
warmup updates 4000 
parameterization budget 256 
beam 2 
dataset simplification 
dropout 0.1196058647 
fp16 false 
label smoothing 
learning rate 
learning rate scheduler 
max epochs 
max tokens 
metrics coefficients 
optimizer 
validations before SARI early stopping 
LengthRatioPreprocessor target ratio 
LevenshteinPreprocessor target ratio 
WordRankRatioPreprocessor target ratio 
DependencyTreeDepthRatioPreprocessor target ratio 
SentencePiecePreprocessor vocab size   

0.3182347886 

4.35E-06 

fixed 

100 

5000 

[0, 1, O] 

adam 

10 

0.8402369984 

0.7460899603 

0.647929 1499 

0.9258573112 

10000 

A3. Hyperparameters for Simplification Random Search Trial 69 
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