
I Have(n’t) Read And Agree To The Terms Of Service
Stanford CS224N Custom Project

Hannah Zhang German Enik Varun Tandon
Department of Computer Science Department of Computer Science Department of Computer Science

Stanford University Stanford University Stanford University
hzhang16@stanford.edu german.enik@stanford.edu varunt@stanford.edu

Abstract

People interact with legalese on a daily basis in the form of Terms of Service, Cookie Policies, and other
agreements that (for the most part) are mindlessly accepted. In order to give people transparency into the
services they use, we aim to develop an abstractive summarizer which simplifies these legal documents.
Leveraging an existing dataset of human interpretations of Terms of Service, known as TOS;DR, we developed
a two-step pipeline involving extractive summarization followed by text simplification. We use state-of-the-art,
transformer-based methods for both steps of this pipeline. Specifically, for extractive summarization we use the
CNN/DM BertExt model presented by Liu et al. For text simplification, we used the ACCESS model presented
by Martin et al. We first established a baseline of our extractive summarizer performance via ROUGE, our text
simplifier performance via SARI and FKGL, and the performance of our pipeline end-to-end via ROUGE.
These baselines were established using the pretrained models provided by the authors of these papers. We
then employed a variety of data cleaning and data augmentation techniques, as well as model finetuning to
improve upon these baseline results. We demonstrate that these techniques result in an improvement in model
performance on legalese, both when these models are used in isolation, as well as when these models are used
end-to-end. While we did improve on our baseline results, our qualtiative analysis demonstrates that these
models are not near the level required for a production-level system, and our results demonstrate shortcomings
in the adaptability of these large transformers when pretrained on specific, parallel datasets.

1 Key Information to include

¢ Mentor: John Hewitt

2 Introduction

Millions of people without proper training have to interact with legalese, a highly professional dialect of English that
is used in contracts and other legal settings. This dialect is only partly mutually intelligible with mainstream English
dialects. A very common example of legalese in the common public sphere is the Terms and Conditions of Service that
almost everybody skips and agrees to by default. Recent conspiracies (like changes of PII usage by Facebook) and
initiatives (like Apple requiring all apps be extra transparent about their PII usage via "Privacy Labels"), as well as
continuing trends of businesses shifting to the online setting (which is being sped up by the ongoing pandemic) strongly
motivate this research paper. Our goal is to combine and modify current neural models that perform text simplification
and text summarization to build a legalese-to-laymen English machine translation system for Terms and Conditions of
Service agreements. We will be evaluating the performance of transformers on this task. Our task is to translate Terms
of Service excerpts from legalese to mainstream English. An input would be an original Terms of Service taken directly
from a website, while an output would be a shortened summary of the Terms of Service in mainstream English.

3 Related Work

The first paper we considered was by Anand & Wagh: "Effective deep learning approaches for summarization of legal
texts". This paper implements a method of text simplification via RNNs and CNNs for binary classification of sentences
in legal documents as important or unimportant [1]. Since this was one of the few summarizers we found that was ap-
plied to legal documents, we were intrigued by this approach, and curious if we could apply transformers to a similar task.

Another paper of importance that we considered was by Weng, Chung, & Szolovits, "Unsupervised Clinical Language
Translation". This paper was one of the works that inspired us to pursue abstractive summarization. The authors built a
model to express medical documents (usually written in highly professional medical jargon), for regular patients that do
not speak the medical dialect. The paper used an unsupervised approach by aligning highly dimensional subspaces

Stanford CS224N Natural Language Processing with Deep Learning

of professional and laymen word embeddings [2]. This paper did not employ transformers which we really wanted to try.

After reading these papers and others, we settled on the two-step pipeline approach, with step one being an
extractive summarizer and step two being a text simplifier. We knew we wanted to leverage transformers for this, so we
began to look for papers on transformer-based models for completing these tasks.

For our extractive summarizer, we referred to the paper by Liu & Lapata, "Text Summarization with Pre-
trained Encoders". This transformer based approach had demonstrated strong results on CNN and Daily Mail
text simplification, and we decided to use this model (called “CNN/DM BertExt’”) as a baseline for our extractive

summarization [3].

For our text simplifier, we referred to the paper by Martin et al, "Controllable Sentence Simplification".
This transformer-based text simplifier based on neural text generation techniques showed promising results on the
Wikilarge dataset. Furthermore, the paper was specifically designed to expose some model explainability in the form
of "explicit control tokens" which allowed for control over length, amount of paraphrasing, lexical complexity and
syntactic complexity. We used this paper’s pretrained "ACCESS" model to establish our baseline results [4].

4 Approach

We have a two-step process: (1) summarize the full Terms of Service and similar policies (ToS for brevity) to extract key
information and (2) simplify the summarized information to be expressed in layman’s terms. Our intuition is that using
two, more specialized transformer-based models (one for extractive summarization and one for text simplification) will
yield positive results. Furthermore, via this approach, we are evaluating the current state of transformer performance on
noisy legalese.

4.1. Approach to Extractive Summarization

We used pretrained BERT for summarization as a starting point and finetuned for ToS language using our data. Liu
& Lapata stack several inter-sentence transformer layers on top of BERT for capturing document-level features, and
terminates with a sigmoid classification of sentence importance. Their model was pretrained on non-legal news article
data with each article’s summary as references [3]. We finetune the model on a variety of differently formatted scraped
full ToS and their corresponding quotes pulled out as most important by ToS;DR editors. For this part of the pipeline,
we focused most of our attention on training data formatting (i.e. experimenting with data augmentation) as scraped
terms of service were not clean and first few experiments were showing poor results. See Data and Experiments sections
for more details.

We calculated the baseline by evaluating the performance of Liu & Lapata’s model’s extracted summary quotes from
full ToS, using those documents’ corresponding ToS;DR quotes as reference. Because we used a pretrained checkpoint
as a base for all of our fienetuning, we did not edit the architecture of the model — adjusting it would make the pretrained
weights pointless because gradient backpropagation would change. Therefore, all the used PyTorch code was written by
Liu and Lapata (see references).

Lapata & Liu offered Transformer & BERT models pretrained on various datasets; we chose “CNN/DM BertExt”
(trained on CNN and DailyMail articles) by examining their performances in the paper. More concretely, “CNN/DM
BertExt” performed second best based on the ROUGE metric in Liu & Lapata’s experiments; it was trained on twice as
much data as the best performer; and CNN/DM data were more extractive than other datasets used for training (like
XSum). Since we used the pretrained model for general understanding of language and finetuned on our own (that
differs quite a lot in language used from news articles), we went with “CNN/DM BertExt”.

Average article length in Liu & Lapata’s training data was ~ 600 words, and “CNN/DM BertExt” only took inputs
truncated to 512 tokens. We didn’t truncate any ToS documents because they often contain key information beyond
512 characters. Instead, our code split each ToS into chunks, summarized each one, and then joined all summaries

to compare against the reference summary. We obtained document d’s ith chunk c; as follows: tokenize d; set c; to
a substring of d starting at c;_;’s end index and of length 512; if a newline character is present in c;, make c;’s last
newline character its last token and return; else, repeat the previous step for a period; else, repeat the previous step for a
semicolon; else, return c; of size 512. We did not count other punctuation characters like “?” or “!? because they are

uncharacteristic of our data’s genre.

4.2 Approach to Simplification

For text simplification, we opted to use the ACCESS (AudienCe-CEntric Sentence Simplification) model. The ACCESS
transformer is trained on the Wikilarge dataset and uses the same architecture in the "Attention Is All You Need" paper
[5]. The model used an embedding dimension of 512, fully connected layers of dimension 2048, 8 attention heads, 6

layers in the encoder and 6 layers in the decoder. Moreover, the ACCESS model was designed to allow for explicit
control over Sequence-to-Sequence based models, allowing the users of the model to tweak the length, amount of
paraphrasing, lexical complexity, and syntactic complexity of the simplifications returned by the model. The author’s
approach involves using the Fairseq toolkit to train a Transformer model with various hyperparameters [4]. In order to
parameterize the Seq2Seq models with the attributes desired (such as length, paraphrasing, etc.), the authors append a
control token at the beginning of source sentences.

The explicit control tokens noted in the ACCESS paper are NbChars, LevSim, WordRank, DepTreeDepth [4]. They
correspond to the code variables LengthRatioPreprocessor, LevenshteinPreprocessor, WordRankRatioPreprocessor,
and DependencyTreeDepthRatioPreprocessor, respectively. To elucidate what the control tokens mean, NbChars is the
character length ratio between the source sentence and target sentence; word length has been shown to correlate with
lexical complexity. The Levenshtein distance between two words is the minimum number of single-character insertions,
deletions or substitutions required to change one word into the other. LevSim, the Levenshtein ratio, is the Levenshtein
distance divided by the length of the longer of the two words. WordRank involves comparing frequencies of words in
the target sentence with frequencies of words in the source sentence, which has been shown to correlate with word
complexity. Lastly, DepTreeDepth is the ratio of the maximum depths of the dependency trees of the source and the
target, signifying syntactic complexity.

We were able to modify the ACCESS code to take in our own evaluation data, and we were able to evaluate the network
trained on Wikilarge on our data. We then modified the ACCESS code to allow for finetuning. Specifically, we load
a checkpoint from the pretrained model, and then train the model on our own formatted ToS;DR data. We also used
random search to find the optimal parameters. We’ll go more in depth in 5.3.2 about the various hyperparameters we
changed. Out of the 241 hyperparameter configurations we ended up with, we had 20 that demonstrated a nontrivial
improvement on the model performance . We used the most successful hyperparameters to finetune our model for the
pipeline. The hyperparameters are also in section 5.3.2.

4.3 Pipeline

For the pipeline, we first fed a subset of the Terms of Service chunks to the summarization model, generated candidate
summaries, and input them into our simplification model with the hyperparameters from our best finetuning results
to generate an abstract summary. We started off with a baseline, with no finetuning, then we tried various data input
formats for summarization and finetuning methods simplification, which improved our results for both and led to more
pipeline results. See the Experiments section below for details.

5 Experiments

5.1 Data

All of the code involving parsing or reconfiguring data was written by us. We downloaded and parsed the ToS;DR
(Terms of Service; Didn’t Read) data. ToS;DR has a .json file for each service, containing quotes taken directly from
the service’s ToS. Each pair of ToS quotes and their corresponding simplifications forms a "point" [6]. Each point is
peer-reviewed and must be approved by other human evaluators. In their .json files, each point consists of:

¢ verbatim quote: a quote taken directly from a Terms of Service, Privacy Policy, or similar document
* the title given to the point, generally the simplification that the author wrote for the point
* case: the category that the quote is assigned to (e.g. "This service may collect, use, and share location data")
¢ the name of the source document that the quote was taken from (e.g. "Terms of Use")

We extracted the key data for our purposes: verbatim quotes, human-written and peer-reviewed simplifications, service
name (e.g. "Amazon"), and the names of the documents that the quotes are from. We then reformatted the data (e.g.
removing HTML data and newlines) and created a CSV file with the information. However, our summarization model
needed full text as inputs, so we gathered 770 full texts; 371 were downloaded through links in the ToS;DR dataset,

while the rest were manually searched up to grab the links, then the texts were scraped through a script we wrote.

For summarization, out of the 770 full texts and ToS;DR quotes, we were only able to use 115 for most experiments
(on which we achieved some of our best results): over time, companies change the terms of service and the pulled out
ToS;DR quotes were not contained in a lot of them. We cleaned 15 by hand and 100 algorithmically by filtering out all
full terms of service that were missing at least one ToS;DR quote. (As described below, all experiment titles that contain
the word clean were trained and evaluated on the 115 cleaned data files.) We joined the quotes taken from the CSV so
that all quotes from each document of each service were put in the same .txt file. We used the same schema for the full
texts we had, to match source documents; quotes and full texts came from the same source document if their filenames

were the same. We followed a 60:20:20 split for training, validation, and test sets; upon manual examination of data,

we determined pulled-out quotes to all have very similar structures (most contained words like privacy or cookies),
which led us to believe that having slightly less data for training and more for evaluation would results in more accurate
evaluation without hurting evaluation.

For simplification, we took out all of the quotes and put them line by line in a .complex file to serve as the input to
the model. Similarly, we took out the human simplifications and put them line by line in a .simple file to serve as the
evaluation comparison. We used scikit-learn’s train_test_split to generate a train, test, and validation set with
proportions 0.9, 0.05, and 0.05 respectively (5040, 280, and 280 sentences).

5.2 Evaluation method

We are using ROUGE-1, ROUGE-2, and ROUGE-L as primary metrics and human evaluation as secondary to evaluate
the performance of extractive text summarization (using precision and recall). ROUGE stands for Recall-Oriented
Understudy for Gisting Evaluation and is commonly used to rate automatic summarization and machine translation. -1
and -2 stand for unigram and bigram overlap, and -L stands for LCS (Longest Common Subsequence) overlap between
candidate and gold summaries. Liu and Lapata had ROUGE implemented in their repository (using a python package),
so we used their scripts to evaluate performance after each validation run.

SARI (System output Against References and against the normal sentence) is a lexical simplicity metric used for
evaluating automatic text simplification systems. The metric compares the predicted simplified sentences against
the reference and the source sentences [7]. It does so by taking the arithmetic mean of the n-gram Fl-scores of
addition, deletion, and include operations. SARI rewards words that appear in both the output texts and the references
by rewarding operations that aim for that goal; for example, addition operations for simplified words and deletion
operations for unnecessary words [7]. The ACCESS authors indicate that for the purpose of sentence simplification,
SARI is a better metric than BLEU (since BLEU places too much reward on not changing the sentence structure) [4].

Thus, we will be using the SARI metric to determine the relative performance of our simplification models. SARI is also
the current standard for text simplification, given that it weighs specific changes made to the input text and correlates
well with human judgements. Furthermore, we will calculate FKGL as a secondary metric to evaluate readability.
FKGL stands for "Flesch-Kincaid Grade Level" and is a readability test designed to indicate what US grade level
a piece of text corresponds to [8]. In other words, we can use FKGL to look at difficult a passage in English is to
understand. Ideally, we want our SARI score to be as high as possible, as it signifies that the words that are added,
deleted, and kept are "better", but we want our FKGL to be lower, as a lower FKGL corresponds to text that is easier to

read. However, FKGL has to be used in conjunction with SARI, since FKGL doesn’t care for meaning preservation.

For evaluating the whole pipeline (which will be an abstractive summarizer), we are using ROUGE scores as well, since
Liu & Lapata’s work uses ROUGE to also evaluate their 8 abstractive summarizers. We also used human evaluation to
look at the semantics of the result.

5.3. Experimental details

5.3.1. Summarization

For text summarization, we didn’t edit the architecture of the model in order to be able to use the pretraiend “CNN/DM
BertExt” checkpoint as a start. We kept the position embedding dimension of 512 because the model was pretrained on
articles of this size (see section 4.1 for details of our input structure). The model had 12 hidden layers of size 768, 12
attention heads, hidden dropout probability of 0.1, and total vocab size of 30522. We wrote a lot of data parsing scripts
for all the different experiment setups we describe below, as well as a summarization pipeline script that automated
more data preprocessing (3-step process required before each training), training itself, and logging. Validation was kept
out of the pipeline.

Our experiments mostly involved data reformatting and fell into the following three categories (see table below for a
summary): full, clean, and aug.

The full0 experiment was conducted on all the data we had — 770 full ToS files (14050 chunk files) and their correspond-
ing ToS;DR quotes. For each company’s ToS chunk, we treated all that company’s ToS;DR quotes as gold summary
references. This approach was flawed because a lot of chunks still had contaminated data and did not mention anything
close to reference quotes (read more in Results and Analysis).

The clean, clean-n, clean-nr, and clean-r were run on cleaned data (as described in 5.1 Data). Suffix -n means that

only data with non-empty summaries was used for training, and -r means that the data was cleaned further with a
regex by omitting all characters besides [A-Za-z0-9 \n. ,;?]. We ran -n experiments to see how more similarity to
pretraining data impacts results (all CNN/DM data had non-empty summaries), and we ran -r experiments to investigate
how much remaining contamination in the dataset was hurting our performance. Note that although we had 2060 clean
chunks, experiments postfixed with -n and/or -r were trained on a smaller number of documents because most chunks’
references were empty and regex cleaning invalidated some previously valid files.

Finally, experiments prefixed aug were trained on 115 cleaned full ToS files (2060 chunks) as well as variable amounts
of augmented training data. We pursued data augmentation in hopes of teaching our model to generate empty summaries
for some chunks. We generated augmented data chunks by considering all chunk0O’s of our datasets (beginning of ToS

often contained junk text) and randomly mixing them up. Validation set only consisted of data from the original 115
files.

For your convenience, here is a table summarizing everything written above. Validation sets were randomized each
time and varied structurally among some experiments (i.e. full0 vs regex-cleaned data vs the rest), but were always kept
exactly identical between a trial’s finetuned model and our baseline.

Experiment | num chunks _ regex-cleaned only non-empty summaries _ num augmented chunks
fullO 14,050 - - -

clean 2,060 - - -

clean-n 332 - Y -

clean-nr 236 Y Y -

clean-r 1,420 Y - -

aug-1k 2,060 - - 1,000

aug-10k 2,060 - - 10,000

5.3.2. Simplification

For text simplification, we left the general ACCESS structure untouched except for where we modified it to fit our
dataset. We made substantial changes to the training code and the evaluation code.

When we performed random search to discover which hyperparameters are best, we initially watched our VM and tried
to grab our results (which are printed to the console) as soon as each finetuning finished. However, that limited the
amount of time we were able to train our models. That’s why, for training, we updated the main training file to use
our datasets and to allow us to run finetuning continuously without needing to keep an eye on our virtual machines
(VMs) while we were training. We also changed the code that calls outside modeling toolkits and packages like
fairseq (Facebook AI Research Sequence-to-Sequence Toolkit) and easse (Easier Automatic Sentence Simplification
Evaluation), adding parameters to load the model checkpoints we want as well as changing parameters to maximize the
success of our finetuning.

The hyperparameters we ended up changing are shown in the table immediately below along with the randomized
values we set. ACCESS is unique since it provides us with the opportunity to tweak the explicit control tokens (the
preprocessor target ratios in the table). Each control token’s value represents the ratio of the control token value of the
target sentence over the token value on the source sentence.

 Hyperparameter | Value
beam random integer from 2 to 10, inclusive
dropout random float from 0 to 1
label smoothing random float from 0 to 1
Ir (learning rate) random float from 1E-5 to 1E-3, logarithmically scaled
LengthRatioPreprocessor target ratio random float from 0 to 1
LevenshteinPreprocessor target ratio random float from 0 to 1
WordRankRatioPreprocessor target ratio random float from 0 to 1
DependencyTreeDepthRatioPreprocessor target ratio | random float from 0 to 1

Once the model has trained, the ACCESS training script provided by the authors automatically attempts to determine
the explicit control ratios optimal for the validation set. Thus, these starting ratios were modified by the training script
as a part of a final parameter optimization step. We also note that we used starting ratios between 0 and 1| per the
recommendation of the authors; however, these ratios can go up to 2 (and indeed some of our experiment parameters
exceed a ratio of 1).

5.3.3 Pipeline

For the pipeline, since simplification did not allow more than 512 tokens per input document when generating a
simplification, we wrote a script that split each input summary into chunks, generated simplified text from each chunk,
then concatenated all of the results into one final simplified document.

The baseline for our pipeline involved running some Terms of Service chunks through the summarization, then the result
was put into the simplification, without any finetuning on either model. Then, we took outputs from summarization and
input them into simplification (pipeline names correspond to summarization trial names) : clean-n, aug-10k, clean,
aug-Ik, clean-nr. We ran those summarization results through the simplifier finetuned on the best hyperparameters to
generate more pipeline results.

6 Results

6.1 Summarization

Entries are of format finetuned score / baseline score. Asterisk * indicated best results as compared to the
baseline.

Experiment | ROUGE-1 improvement ROUGE-2 improvement ROUGE-L improvement

fullO 19.44 / 15.88 +3.56 5.00 / 3.60 +1.4 16.95 / 13.87 +3.08
clean 39.04 / 36.74 +2.3 26.72 / 23.08 +3.64 36.00 / 33.30 +2.70

clean-n* 41.61 / 34.92 +6.69 31.20 / 22.27 +8.93 39.28 / 31.26 +8.02
clean-nr 35.69 / 32.02 +3.67 24.35 / 19.67 +4.68 33.15 / 28.69 +4.46
clean-r* 36.05 / 29.50 +6.55 22.93 / 15.01 +7.92 33.15 / 26.69 +6.46
aug-1k* 39.87 / 32.08 +7.79 29.09 / 18.90 +10.19 37.24 / 28.82 +8.42
aug- 10k 35.87 / 35.72 +0.15 23.32 / 22.83 +0.49 32.73 / 32.72 +0.01

The table above contains ROUGE scores for some of our best experiments. We were pleased (but also expected) that in
each experiment we ran, the finetuned model performed better than baseline, especially in experiments clean-n, clean-r,
and aug-Ik.

The success of clean-n was a surprise to us because, admittedly, it resulted from a data processing mistake — we never
meant to only take data with non-empty summaries into account. We believe it performed well because that trial
replicated pretraining data the most — CNN and DailyMail training data never had empty highlights. This shows the
importance of wisely selecting a baseline that is as close to one’s task at hand as possible.

The good performance of clean-r, contrasted with subpar performance of clean-nr with respect to its baseline was
initially surprising but is now logical. The whole point of regex cleaning was to lower the negative impact of non-English
text that contaminated our data. Since clean-nr was only trained on chunks with non-empty highlights, a significant
majority of them were already as clean as they could get — regex cleaning probably disturbed already good data by
stripping potentially important characters we did not think of including into the regex filter. In contrast, clean-r was run
on contaminated data, which regex helped clean up. Additionally, clean-nr had a very low number of training data.

The good performance of aug-1k partially proved our hypothesis right — the model needed to see more bad examples it
should ignore. The very subpar performance of aug-1Ok is a little odd since the two trials only differ in the amount
of augmented data. However, since the point of augmented data was to overpower the model’s knowledge gap from
pretraining — making decisions on English articles is a lot more similar to making decisions on English ToS text than
to on gibberish data — yet, at the same time, preserve the significance of data with non-empty references, the inferior
performance of the trial with 10x more junk data can be expected.

We expected full0 to perform very poorly, as it did. For some chunks, we practically asked our model to predict English
text from junk data like links and html, which is implausible.

6.2 Simplification

In Appendix table A2, we listed the 22 trials that successfully finetuned, along with their SARI and FKGL scores.

We first evaluated our model without finetuning, as a baseline. Our baseline SARI and FKGL scores are 26.894 and
10.685, respectively. All of the successful finetuned results can be found in table A2 in our appendix. Our best run was
trial 69, with a SARI score of 36.565 and a FKGL score of 8.660. A table with all of its hyperparameters is in Appendix
table A3. This SARI score is the maximum we achieved, and we can see that both the SARI and the FKGL score beat

the baseline. There didn’t appear to be a strong correlation between any of the hyperparameters and the SARI score, but
it does appear as though a lower learning rate and higher LengthRatioPreprocessor and LevenshteinPreprocessor values
does better than otherwise.

6.3 End to End Pipeline Results

After extensive tuning of our models individually, we finally evaluated these models end-to-end via ROUGE. Specifically,
we compare our model baselines end-to-end against our finetuned models. Below is a selection of our results:

Experiment _ | ROUGE-1 ROUGE-2 ROUGE-L
baseline 11.68 1.03 8.85

pipeline-clean 14.21 1.82 10.82
pipeline-clean-n 18.51 3.19 13.02
pipeline-clean-nr 15.05 2.96 10.68
pipeline-clean-r 32.34 14.18 22.85
pipeline-aug-1k 10.16 1.08 7.74
pipeline-aug- 10k 11.66 1.09 8.88

Here we observe that some of our trials made a clear improvement over the baseline results. Particularly, pipeline-
clean-r clearly outperformed all other pipelines despite the fact that it was not the top summarization result. Gibberish
data (aug-1k and aug-10k) seems to have negative impact on the end-to-end result even though training on aug-1k
dataset performed well on purely summarization. However, we also note that qualitatively, much of the results are
still incoherent, difficult to understand, or generally incorrect. (This is discussed in further detail in our Analysis
section). Regardless, these results are still important, as they demonstrate the feasibility of this approach in improving
simplification of legalese.

7 Analysis

7.1 Summarization

Upon examining candidates generated by the best trials, most of the extracted English text seems valid and important
for the user signing a ToS agreement to take into account. For instance, here are some excerpts aug-1k pulled out and
the baseline did not (rest of text is substituted with ellipses for the sake of brevity):

¢ “however , even if we remove the content or information that you posted , we can not completely prevent further
use or disclosure of that content or information by others once you have shared it in a publicly available forum...”

e “you are a citizen of one of the countries identified below , you hereby agree that any dispute or claim arising
from this agreement shall be governed by the applicable law set forth below , without regard to any conflict of
law provisions , and you hereby irrevocably submit to the non - exclusive jurisdiction of the courts located in the
state...”

¢ “this information is anonymous and contains no personally identifiable data .<<q>information you elect to submit to
the service in a public or quasi - public manner may be disclosed to other users of the application or the general
public (" user submission (s)")”

Although the finetuned and baseline models did agree on the most important sentences to extract, the best-performing
finetuned models seemed to pay extra attention to PII and legal procedures, which is consistent with our in-person
review of ToS;DR quotes.

One error category that is persistent across all trials we have conducted is the finetuned model’s failure to not pull
anything out when presented with a text chunk. This was a significant difference between pretraining data and finetuning
data: an average ToS was ~ 15 times longer than CNN/DM articles — a lot of chunks simply had nothing important.
Some architectural changes may be necessary to encourage 0-length summaries from the model.

7.2 Simplification (and End-To-End Result Analysis)

An examination of the simplification model clearly demonstrates the shortcomings of attempting to adapt the transformer
trained on Wiki text to legalese. Here, we highlight some of the key issues we found in our results, with specific
examples. These examples come from our simplifier being run on the output of the summarizer. In other words, the
"Simple Text" presented here is equivalent to the results of our end-to-end pipeline. Unfortunately, most of these issues
were not issues that were resolvable by the explicit control tokens exposed in ACCESS (which can only control length,
amount of paraphrasing, lexical complexity and syntactic complexity).

 Complex Text (summarization output) Simple Text (simplification output) Issues

qall rights not expressly granted in the terms The word ” q” comes from the Latin word hallucinating information,
are reserved to dailymotion and its licensors for” q” , which means ” all rights ” . comprehensibility
we may use information we collect to detect ,
investigate , and prevent activities on our

sites that may violate our terms of use ,
could be fraudulent , violate copyright ,

For example , in the United States ,

there are many other rules that are illegal
in the United States , such as the United States ,

hallucinating information,

: : . : repetitive
or other rules or that may be otherwise the United States , Australia , the United States , nen mhensibilit
illegal , to comply with legal requirements , the United States , the United States... ("the United P y

and to protect our rights and the rights States" repeated for more times)
and safety of our users and others

<q>we have never , and will never sell or s ‘ :
ae , This means that a person will never sell it , as
intentionally pepe 3 , repetitive,

: so it will never sell it for a long time , says
make public , comprehensibility

any personal information gathered on this site
or it will never sell .

<q>the site hosts third - party content It is the home of the third party . contextual misunderstanding
<q>when you download and use our services ,

we automatically collect information on the
type of device you use and operating

system version If you download and use our services
you can use it to make itpossible to

collect information on the computer . awkward structure

7.2.1 Hallucinations

The error of hallucinating information is a common error described in other papers, including the BART summarizer
by Lewis, et al. We believe that the cause for these "hallucinations" is the model attempting to convey some common
information found in the training dataset. In fact, some phrases presented by the model such as "in the United
States", "comes from the Latin word for", and "comes from the Greek word for" were incredibly common in both our

simplifications and the Wikilarge dataset. (see Al for more information).

7.2.2 Repetition

This is another common error that manifests in language modeling. This is extensively studied in a paper by Holtzman
et al, and their research demonstrates that beam search frequently results in the model assigning high probability to
repetitive text [9]. We believe that this could be mitigated via some form of frequency penalty in the text generation
process.

7.2.3 Contextual Misunderstanding and Incomprehensibility

These are by far the most common errors that manifest in our predictions, and we believe that to a large extent this has
to do with information shown to the transformer in pretraining. We believe that finetuning is limited by the data exposed
to the transformer during pretraining. The Wikilarge dataset used in pretraining is (for the most part) incredibly clean
data, with comprehensible, human-readable data [10]. This is a stark contrast to our data, which has a large amount of

non-English HTML and Markdown snippets. Furthermore, the Wikilarge dataset, which is sourced from Wikipedia, is
written a very particular style that is distinct from the legalese we examine. We believe that if this transformer were
pretrained on legal data (of which there is limited simplified text), the architecture performance would see significant
improvement.

The TOS;DR simplifications were a very specific style of simplification: parsing out information that is rele-
vant to human usage of the service. This is a stark contrast from the style of simplifications in Wikilarge, and we believe
this contrast in simplification styles also poses a challenge for this model’s improvement.

8 Conclusion

In this project we present the performance of state-of-the-art transformer-based models on abstractively summarizing
legalese in the context of Terms of Service. In particular, we present the capabilities of an extractive summarizer and
text simplifier working in tandem. While we are able to summarize and simplify some text, for the most part, these
models are not capable of outputting key information from these Terms of Service with high consistency. The most
common errors we examine involve hallucinations, repetition, contextual misunderstanding, and incomprehensibility.
We believe that these errors can be mitigated somewhat by expanding the dataset used for pretraining, in particular
pretraining on legal data. Unfortunately, no such dataset is currently available, and would require a sizeable human
effort to compile, given that the methods presented are dependent on parallel data. We believe that this work has
demonstrated some of the limitations of the very common pretraining approach to using transformers, and in particular,
in the most common dataset used, Wikilarge. Moreover, our work demonstrates some of the limitations of pretraining on
fully comprehensible text, such as Wikilarge, when the real world contains unintelligible text. Through this process, we
learned a lot about working with techniques from the class in real-world situations, specifically diving in to managing
large files across cloud virtual machines, hyperparameter tuning, and data cleaning and parsing.

References

[1] D. Anand and Rupali Wagh. Effective deep learning approaches for summarization of legal texts. Journal of King
Saud University - Computer and Information Sciences, 12 2019.

[2] Wei-Hung Weng, Yu-An Chung, and Peter Szolovits. Unsupervised clinical language translation. CoRR,
abs/1902.01177, 2019.

[3] Yang Liu and Mirella Lapata. Text summarization with pretrained encoders. CoRR, abs/1908.08345, 2019.

[4] Louis Martin, Benoit Sagot, Eric de la Clergerie, and Antoine Bordes. Controllable sentence simplification. CoRR,

abs/1910.02677, 2019.

[5] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and

Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017.

[6] N/A. Terms of service; didn’t read. https: //tosdr.org/.

[7] Optimizing statistical machine translation for text simplification. volume 4, pages 401-415, 2016.

[8] J. Peter Kincaid, Robert Fishburne Jr., Richard Rogers, and Brad Chissom. Derivation of new readability formulas

(automated readability index, fog count and flesch reading ease formula) for navy enlisted personnel. 1975.

[9] Ari Holtzman, Jan Buys, Maxwell Forbes, and Yejin Choi. The curious case of neural text degeneration. CoRR,

abs/1904.09751, 2019.

[10] Xingxing Zhang and Mirella Lapata. Sentence simplification with deep reinforcement learning. CoRR,
abs/1703.10931, 2017.

A Appendix

Common Phrase | Frequency
sun 92
the united states the united states the united | 36
" comes from the greek word for " 23
"comes from the latin word for " 18
to make it_easier to make it_easier to make | 15

a person or a person or a person 12
q is a term used to describe a 11
do not know what you want to do 11

A1. Most Frequent Phrases in Simplified Text (clean-nr, 925 sentences)

Trial beam dropout label Ir LengthRatio Levenshtein WordRank DepTreeDepth | SARI FKGL
smoothing

baseline 26.894 10.685

2 8 0.70 0.99 3.72E-05 0.77 0.70 0.15 0.77 35.39 5.06
6 8 0.23 0.65 7.16E-06 0.72 0.81 0.16 0.005 35.72 9.85
13 6 0.67 0.23 0.0004 0.96 0.82 0.71 0.09 36.35 4.93
47 4 0.01 0.08 6.40E-06 0.60 0.98 0.65 0.59 36.21 7.01
48 10 0.97 0.72 0.0002 0.80 0.84 0.01 0.61 35.28 4.47
50 2 0.47 0.55 7.65E-06 0.60 0.97 0.07 0.85 35.13. 5.27
60 10 0.25 0.97 0.0005 0.60 0.68 0.27 0.55 35.45 5.98
67 2 0.67 0.82 6.59E-05 0.83 0.80 0.07 0.21 35.86 9.74
68 5 0.07 0.02 4.70E-06 0.53 0.97 0.67 0.63 35.33 4.26
69 2 0.12 0.32 4.35E-06 0.84 0.75 0.65 0.93 36.57 8.66
77 7 0.52 0.68 9.17E-06 0.999 0.69 0.60 0.04 34.64 7.92
82 3 0.36 0.57 2.48E-05 0.98 0.82 0.92 0.30 36.25 9.56
83 9 0.87 0.08 8.12E-06 0.78 0.77 0.05 0.16 36.30 =9.12
92 3 0.64 0.13 9.77E-06 0.59 0.90 0.04 0.55 35.58 10.67
105 6 0.80 0.04 4.50E-05 0.94 0.61 0.43 0.37 35.79 8.57
110 6 0.81 0.29 0.0005 0.06 0.24 0.92 0.54 35.98 8.02
112 6 0.87 0.88 6.74E-06 0.90 0.67 0.93 0.83 36.41 5.93
120 2 0.53 0.33 8.02E-06 0.51 0.78 0.67 0.04 35.87 6.60
129 7 0.94 0.74 0.0009 0.70 0.83 0.47 0.96 35.44 12.38

130 10 0.92 0.05 T.91E-05 0.94 0.91 0.91 0.18 35.42 11.73
A2. Hyperparameters and Evaluation Scores for Successful Simplification Finetunes

Generally all values are rounded to the nearest hundredth

 Hyperparameter Value

arch transformer
warmup updates 4000
parameterization budget 256
beam 2
dataset simplification
dropout 0.1196058647
fp16 false
label smoothing
learning rate
learning rate scheduler
max epochs
max tokens
metrics coefficients
optimizer
validations before SARI early stopping
LengthRatioPreprocessor target ratio
LevenshteinPreprocessor target ratio
WordRankRatioPreprocessor target ratio
DependencyTreeDepthRatioPreprocessor target ratio
SentencePiecePreprocessor vocab size

0.3182347886

4.35E-06

fixed

100

5000

[0, 1, O]

adam

10

0.8402369984

0.7460899603

0.647929 1499

0.9258573112

10000

A3. Hyperparameters for Simplification Random Search Trial 69

10

