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Abstract 

Healthcare systems wish to utilize the large quantities of unlabeled free-text ra- 
diology reports for training medical image models. Automated labelers allow 
healthcare systems to annotate tens of thousands of reports without expensive labor 
from doctors which would enable many hospitals around the world to train AI 
systems on their data. We propose CheXGB, an automated labeler that combines 
global information encoded by a heterogeneous graph of the free text reports and 
their associated words from a large chest X-ray data set (MIMIC-CXR) with local 
context information encoded by BERT. Using explicit global relations encoded by 
a graph neural network allows for inputs that purely NLP models are not trained to 
provide which is particularly useful in the data sparse regime we study. We find 
that variants of CheXGB outperforms CheXbert — the current state of the art in 
radiology report labeling — in 13 out of 14 classes and improve the average kappa 
across tasks from 0.830 to 0.843. 
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2 Introduction 

Text labeling is a well studied task in natural language processing that has widespread applicability 
[1, 2, 3, 4, 5, 6]. In medicine, text labeling has taken on increasing importance due to the lack of 

labeled data and the high cost of obtaining labels for data [7, 8]. Clinical text reports present in most 
fields of medicine provide a lot of information on the associated ground truth label for a given case 
which can be extracted by automated techniques without expensive human labor [9, 10]. CheXpert 
and CheXbert have studied heuristic and deep learning based approaches to the text labeling task in 
radiology for the goal of training Chest X-ray diagnosis models [10, 11]. The drawbacks of the two 
approaches noted above is their dependence on the creation of a heuristic based labeler for labeling 
previously unlabeled reports. Given that there are orders of magnitude more unlabeled reports than 
labeled reports, it is important for a labeler to be able to use the unlabeled reports effectively and to 
be able to attain good performance in a data sparse regime with few labeled data points. 

CheXGB is motivated by the idea that graph neural networks can provide more information for the 
text labeling that traditional NLP models cannot provide. By using a graph that has edges between 
word-word and word-report, we ensure that in the second hop from a report node, we can access 
another report node. While implicit in NLP models, this global understanding of the dataset and the 
ability to connect related words that are not present in the same report but present in other similar
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Figure 1: Overview of CheXGB. The input is a heterogeneous graph consisting of reports (both 
labeled and unalabeled) and words. First, all heterogeneous graph nodes are fed through TextGCN 
while only labeled reports are passed to BERT. Second, attention is performed on the output of BERT 
and the nodes corresponding to the labeled reports. Finally, the output of the attention layer is passed 
through a linear layer for multi-label class prediction. 

reports is made explicit by Graph Neural Network models. In data sparse tasks, making the relations 
more explicit aids the learning process. 

Our work provides the following contributions: 

¢ A new model architecture and learning algorithm that leverages NLP and Graph Neural 
Network approaches to produce state of the art results on the radiology text labeling task. 

¢ A comparison of how neighborhood sizes generated during subgraph sampling can influence 
the performance of Graph Neural Network based approaches. 

¢ From an implementation standpoint, a custom data loader that can produce subgraphs 
from heterogeneous graphs and custom graph neural network layers that can consider edge 
weights during the aggregation process. 

3 Related Work 

3.1 NLP based Text Classification 

Prior literature in NLP has focused on extracting structured labels from free text reports using 
heuristics and feature engineering [1, 2, 3, 4, 5, 6]. In the medical field, rules engines like NegEx and 

ontologies like ULMS (Unified Language Medical System) have been used to control vocabularies 
and identify dependencies relations between terms [7, 8]. In radiology, the CheXpert labeler is one 
such feature engineered labeler that relies on controlled extraction of medical mentions and a rule 
set for negation and uncertainty relations [10]. Recent work in deep learning has produced state of 
the art results within text classification. First recurrent and convolutional networks were used in 
extraction of labels from medical reports and more recently transformer architectures have produced 
the best results [6]. BERT and XLNet have been applied to extract normal and abnormal labels from 
thousands of radiology reports [5, 12]. Many of prior deep learning methods have focused on training 
solely on radiologist labeled data which is difficult and expensive to obtain [9]. CheXbert leverages 
benefits of both feature engineered labelers as well as end to end deep learning in a novel way to 
achieve state of the art results on label extraction from radiology reports [11]. CheXbert’s primary 
limitation is that it relies on the feature engineered labeler to achieve state of the art results. While 
this is not an issue for datasets that do have feature engineered labelers, this would be a significant 
issue for any new dataset that is not structured similarly to CheXpert. 

3.2 Graph Neural Networks for Text Classification 

Prior literature in graph neural networks have focused on text classification tasks [13]. Yao et.al. 
propose a method called Text Graph Convolutional Network (TextGCN) which is a text classification 
method that leverages graph neural networks ability to preserve global structure information [14].



TextGCN applies Graph Convolutional Networks (GCN) proposed by Kipf and Welling [15] to a 
heterogeneous graph with words and documents as nodes. A major limitation of TextGCN is that the 
graph structure loses the sequential information inherent in text data. In other words, while TextGCN 
is able to represent global graph information it can only represent local sequential information in the 
form of co-occurrence weights between word-word edges. 

3.3. BERT + Graph Neural Networks 

A recent study had proposed augmenting BERT with a graph neural network [16]. The authors 
demonstrate that providing a vocabulary graph as an additional input to BERT can moderately 
improve BERT performance. However this study produced a graph that does not provide true global 
information and still emphasizes local information which is already encoded by BERT. 

4 Methods 

4.1 Graph Creation 

As proposed by Yao et. al, we form a large heterogeneous graph consisting of both document and 
word nodes [14]. The total number of nodes in the graph is the sum of the number of both labeled 
and unlabeled documents |D] + 200, 000 and the number of BERT embedding words |B| ~ 30, 000. 
The node features for word nodes are set to BERT embeddings for the given word while the node 
features for document nodes are set to the output of pretrained BERT. We build two types of weighted 
edges in this heterogeneous graph: word-word edges based on point-wise mutual information (PMI) 
scores and document-word edges based on term frequency-inverse document frequency (TF-IDF) 
scores. Particularly, we calculate TF-IDF as 

  
TF-IDF(d, w, D) = TF(d, w) - IDF(w) = (5) (» ap PL (1) 

Id|) pe +1 

    

where #d,, is the number of times the word w occurs in document d and #D,, is the number of 
documents in corpus D where w occurs. PMI is calculated with sliding windows over the corpus as 
follows: 

p(w, wa) 
PMI(w1, w2) = log tun, etn (2) 

p(wi, w2) = ee (3) 

_ #W(w) 

where #W is the number of sliding windows in the corpus, ##W (2) is the number of sliding windows 
in the corpus where the word z exists in the sliding window and #W (2, y) is the number of sliding 
windows in the corpus where the words x and y co-occur. We use a sliding window of size 15 as for 
larger window sizes the test accuracy was not found to increase test accuracy as discussed in [14]. 
Further we only create sliding windows within single documents to contain contextual information 
from the PMI score within a single document. In order to use PMI as a weight in our graph we 
only include edges with positive PMI scores and thus filter out edges corresponding to small mutual 
information. Since positive PMI values imply a strong semantic correlation we only create edges 
between words with a positive PMI score. We also do not form self-loops unlike the graph creation 
approach used in [14]. Thus, the edge adjacency matrix A for the graph can be represented as: 

PMI(i, 7) i,j are words, PMI(2, 7) > 0 

Aj; = { TF-IDF(i, 7) i is document, 7 is word (5) 

0 otherwise



4.2 Architecture 

4.2.1 GCN and GCNII as embedding layers to BERT 

The Graph Convolutional Network (GCN) model was proposed in [15] and a single layer can be 
expressed as 

HY) = pHOpO (6) 

where P isa non-parametric function of the adjacency matrix, H“ is the node features in the Ith 

layer and W is the node message matrix. 

We use two GCN layers to aggregate neighborhood information of each subword with ReLU activa- 
tions. The outputs of the GCN layers substitute the embedding layer in the BERT model and are then 
passed through the subsequent layers. 

In addition, we implement a similar model substituting the GCN layers with GCNII layers proposed 
by Chen at. al [17]. GCNII generalizes the idea of residual connections to graph neural networks. 
The mathematical expression of the / + 1-th layer for GCNII is 

HOY) — ((1 —a)PHO + oH) ((1 —p)I+ sw") (7) 

where a: is a hyperparameter controlling the residual connection to the initial node features and 8 
is a hyperparameter controlling the node message function. Particularly, 3 = 0 corresponds to the 
message function being the identity. 

4.2.2 ChexGB Architecture 

We introduce ChexGB: a model architecture which incorporates learned node embeddings with 
the output of BERT through an attention layer and a prediction head illustrated in Figure 1. We 
use the TextGCN approach described in [14] to learn independent subword embeddings based on 
network information. This parallel architecture ensures that we maintain pretraining gains from 
BERT while incorporating neighborhood information in the final label prediction by simply adapting 
the prediction head. The concatenated output from TextGCN and BERT are fed into 14 linear layers 
that make classification on the 14 different radiology label tasks. Thus, each linear layer is modeled 
as a classification task of four classes: presence, absence, blank, or uncertain. 

5 Experiments 

5.1 Data 

MIMIC-CXR v2.0.0 is a large dataset of chest x-rays and associated free-text reports with 180,000 
imaging studies taken from 64,588 patients [18]. The labels are structured in a multi-label multi-class 
manner with each of the 14 classes having labels indicating presence, absence or uncertainty. Out of 
the approximately 180,000 report and x-ray pairs, 687 are labeled by board certified radiologists. We 
picked this dataset because it is one of the largest chest x-ray datasets in the world and has been well 
studied by many researchers in medical AI. This dataset also has several baselines benchmarked on it 
for text classification which makes it ideal for our project. 

We choose a different dataset and split than that originally used in the CheXbert paper which contains 
sensitive patient information [11, 10]. We use 500 of the labeled reports in our training and hold out 
150 reports for the test set. 

5.2 Evaluation Metric 

The overall task is text label extraction from radiology reports. The input is a radiology report and the 
output is 14 labels with one class for each label indicating presence, absence, uncertainty, or blank. 
We use a weighted « metric across the 14 labels. For each label, we compute Cohen’s « — a measure 
of inter-rater similarity - which we weight based on the support for each label of interest.



  
Label CheXbert TextGCN CheXGB 

10 20 50 100 | 10 20 50 100 
  
Enlarged Cardiomediastinum 0.682 0.044 0.232 0.349 0.211 | 0.581 0.712 0.551 0.766 

Cardiomegaly 0.878 0.362 0.427 0.456 0.507 | 0.874 0.911 0.860 0.903 
Lung Opacity 0.834 0.309 0.304 =0.341 ~=0.417_:| 0.807 0.819 0.722 0.844 
Lung Lesion 0.681 -0.033. 0.234 -0.026 -0.026 | 0.693 0.718 0.768 0.648 

Edema 0.930 0.522 0.547 0.426 0.390 | 0.919 0.937 0.895 0.937 
Consolidation 0.827 0.207 0.474 0.359 0.376 | 0.918 0.944 0.837 0.843 
Pneumonia 0.857 0.493 0.584 0.615 0.558 | 0.861 0.897 0.864 0.839 
Atelectasis 0.741 0.237. 0.384 =—-0.353.—S «0.371 «| (0.765 =0.734 =0.792 «0.778 
Pneumothorax 0.935 0.588 0.762 0.710 0.558 | 0.961 0.952 0.961 0.961 
Pleural Effusion 0.959 0.561 0.488 0.573 0.489 | 0.924 0.942 0.945 0.921 
Pleural Other 0.814 0.00 -0.024 0.00  -0.019 | 0.628 0.822 0.814 0.140 
Fracture 0.732 0.045 0.390 0.144 0.175 | 0.732 0.732 0.732 0.732 

Support Devices 0.909 0.620 0.682 0.724 0.611 | 0.933 0.928 0.882 0.871 
No Finding 0.843 0.635 0.618 0.691 0.732 | 0.711 0.756 0.781 0.756 
Average 0.830 0.328 0.436 0.410 0.376 | 0.808 0.843 0.815 0.781     

Table 1: Performance of CheXGB against state of the art baselines in NLP (CheXbert) for radiology 
report labeling and Graph Neural Networks (TextGCN) for text classification. We use neighborhood 
sampling sizes of 10, 20, 50, 100 for both TextGCN and CheXGB for evaluating model performance. 

5.3. Comparisons 

We choose the state of the art text labeling approaches from NLP (CheXbert) and Graph Neural 
Networks (TextGCN) to compare against as baselines. Since BERT is memory intensive and 
cannot run on all the reports in the graph simultaneously in one batch, we implement a custom 
version of neighbor sampling that can operate on heterogeneous graphs to create subgraphs based 
on hyperparameters such as the number of neighbors and the number of hops from a given hub 
node. Since we create batches based on the sub graph nodes, it is possible for a labeled report to be 
connected to an unlabeled report in two hops and thus we also supervise CheXGB only on the labeled 
reports. We generate four neighborhood sizes (10, 20, 50, and 100) and reference each version of 
CheXGB as CheXGB(n=number of neighbors sampled). 

For our second methodological approach we use graph neural networks such as GCN and GCNII 
as embedding layers to the rest of BERT. We also compare against a custom version of GCNII 
with learnable residual connections as opposed to hyperparameters as originally described. In this 
approach the model learns how much weight to set to the residual connection during training. 

5.4 Results 

Comparison of the performance of the CheXGB model to the other state-of-the-art baselines can be 
found in Table 1. 

We find that CheXGB with 20 neighbors (n = 20) outperforms CheXbert, the current state of 
the art radiology text labeler (0.843 vs 0.830 kappa on average task performance) and is the best 
performing model we studied. Studying the 14 task performances individually we find that variants 
of CheXGB with different sized neighbor samplings are the top performers across 13 out of the 
14 tasks when compared to state of the art baselines in CheXbert and TextGCN. CheXGB with 
20 neighbors performs the best on Cardiomegaly (0.911), Edema (0.937), Consolidation (0.944), 

Pneumonia (0.897), Pleural Other (0.822), Fracture (0.732), Support Devices (0.928). CheXGB 

with 50 neighbors performs the best on Lung Lesion (0.768), Atelectasis (0.792), Pneumothorax 

(0.961) and Pleural Effusion (0.945). CheXGB with 100 neighbors performs the best on Enlarged 

Cardiomegaly (0.766) and Lung Opacity (0.844). CheXbert is the top performer on only the No 
Findings (0.843) category. 

5.4.1 Performance of GNN as an Embedding Layer 

We find that using GNN models do not enable performance gains over the baseline. Using a GCN 
as an input embedding to CheXbert without the CheXGB parallel architecture harms performance 
and GCNII + CheXbert performs at par compared to the baseline CheXbert when a small signal of



the network is allowed (a = 0.9 and 8 = 0.0). We also find that allowing a — the hyperparameter 
controlling residual connections to initial node features — to be a learned parameter also harms 
performance. This performance degradation is due to the introduction of the untrained GCN layers 
in the middle of the end-to-end pretrained CheXbert model. Particularly, since the CheXbert model 
trains the embedding layer and prediction head jointly, we hypothesize that the introduction of 
untrained GCN layers in between the embedding layer and prediction head significantly reduces the 
pretraining gains from BERT due to the change in the hidden activation distribution. 

6 Analysis 

6.1 Graph Statistics 

Our graph consists of 230,000 nodes with 1.3 million edges between words and 13 million edges 
between reports and words. Looking at the connected components we find that apart from one large 
connected component that contains 194,000 nodes, the other connected components are disconnected 
nodes. These nodes are BERT vocabulary tokens that were never seen in any of the reports. 

The average degree of all the reports is 69 and those of just the labeled reports is 113, indicating that 
CheXGB (n=100) contained nearly all of the nodes in the first hop neighbors. 

Our top subwords in the graph sorted by degree correlate strongly to medically important terminology. 
We find subwords such as "card" (cardiomegaly, cardiomediastinum), "acute", "left", "pulmonary", 

"lung" and "pneumonia" all appear in the top 50 subwords by degree. This is important since it 
indicates that they are more likely to be sampled during subgraph generation since more reports and 
words are connected to them. 

6.2 Neighborhood Size 
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Figure 2: CheXGB with varying neighbor sizes compared to CheXbert performance. Increasing 
neighbor sampling size from 10 to 20 led to CheXGB outperforming CheXbert on 11 tasks. 

From Figure 2 we see that scaling CheXGB from considering 10 neighbors during sampling to 20 
neighbors during sampling helps it outperform CheXbert on several tasks. This improvement can 
be attributed to the model taking more advantage of the graph structure by considering more related 

CheXbert | GCN + CheXbert | GCNII + CheXbert | Learned a + GCNII + CheXbert 

0.830 | 0.154 | 0.816 | 0.654 
Table 2: Performance of GCN and GCNII as embedding tables to CheXbert (score used is average k) 

 



words that are not directly present in the current impression but may be present in other impressions 
which are accessible due to graph neighborhood information. The increased neighbor size also allows 
CheXGB to consider more representations of unlabeled reports in the classification of labeled reports 
when contrasted with CheXbert which forms its representations while only considering the words 
present in the current impression. 

6.3 Graph Parameter Efficiency 

The majority of the parameters in CheXGB is contained within the BERT module. Specifically, the 
total amount of parameters in CheXGB is 125M of which 110M are attributed to BERT while 15M 
are attributed to TextGCN. 

This also implies that during training, the bottleneck to scaling the subgraphs is BERT activations and 
not TextGCN. However with increased neighbor size, CheXGB activations scale proportionally while 
BERT does not. Future parameter efficient versions of BERT can be studied as part of CheXGB. 

6.4 Training Speed 

== TextGCN = Bert == ChexXGB 
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Figure 3: Performance of CheXGB, CheXbert and TextGCN attained by 10 epochs to understand 
training speed differences. CheXGB and CheXbert train at similar speeds while TextGCN takes 
longer to achieve its peak performance. 

From Figure 3, we find that while TextGCN is slow to learn the task and requires 20+ epochs to reach 
peak performance, CheXbert and CheXGB are faster at learning and reach peak performance within 
the first 10 epochs. 

6.5 Attention on Graph Representations 

We find that CheXGB is attains near peak performance while leveraging both the graph representations 
and the BERT representations nearly equally. We see that variants of CheXGB use average attention 
weights of 0.42 on the graph representation and 0.58 on the BERT representation indicating that the 
graph contains information not directly present in BERT as seen in Figure 4. 

7 Conclusion 

We find that CheXGB achieves state of the art performance for radiology text labeling. The global 
information provided by the graph relations between reports and words that appear across reports, 
helps augment the local information that BERT is explicitly trained for. We find that increasing 
neighbor size can lead to improvements in neighbor performance up to 20 neighbors. We hypothesize
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Figure 4: Distribution of the attention weights of variants of CheXGB model on the output of 
TextGCN from the test set. 

that larger neighbor sizes need longer training periods to achieve better performance. Future work 
can investigate an ensemble of models as CheXbert still performs the best on the No Findings class 
and differing neighborhood sizes in CheXGB lead to some models performing the best on a subset of 
tasks. 

8 Implementation 

We implemented many custom components for our architecture and training loop by extending classes 
in DeepSnap and Torch Geometric. We implement a custom NeighborSampler for the purpose of 
generating heterogenous subgraphs from our large heterograph. This was necessary since BERT has 
high memory footprint and cannot run a batch size of 1000. We also implement a custom model 
architecture by extending DeepSnap to build a HeteroGCN that takes into account edge weights 
during message aggregation. We built the graph from scratch directly on the original dataset and 
made functions to codify edge weights through PMI and TFIDF. 
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