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Abstract 

Retrosynthesis is one of the fundamental problems in organic chemistry. The 
advent of generative deep learning models has rapidly improved template-free 
retrosynthesis planning, where a retrosynthetic step can be modeled as a sequence- 
to-sequence task between the string representations (SMILES) of the molecules 
involved in the reaction. However, many existing methods either prune reaction 
datasets of important stereochemical information, or they output SMILES strings 
that are often not syntactically correct. We address both of these issues by de- 
veloping a syntax-directed molecular transformer (SDMT), trained on template- 
and rule-free reaction data without removal of stereochemical designation. SDMT 
adds a lightweight modification to the traditional transformer architecture by using 
the syntactic dependency tree of the input SMILES string to restrict self-attention. 
SDMT performs competitively in accuracy with the current state-of-the-art text- 
based and graph-based retrosynthesis models, while outperforming them in invalid 
SMILES rate. We show that SDMT more consistently outputs syntactically and 
semantically valid SMILES strings across all top predicted results, and it can be 
used as an effective way to directly integrate the syntactic structure of SMILES 
strings into transformer models for reaction prediction. 

1 Background 

In organic chemistry, retrosynthesis refers to the process of identifying precursors that can be used 
to synthesize a target product. Since its formulation in 1917, organic retrosynthesis has been a 
fundamental technique in organic chemistry, and it presents one of the key difficulties associated with 
drug discovery [1, 2]. A putative drug is only as useful as it is synthesizable, and creating synthesis 
routes computationally has proven difficult, as the space of possible chemical decompositions is large. 

Computer-aided synthesis planning (CASP) has assisted chemists in determining the best reaction 
pathways to form a target molecule [3]. The most common methods typically use reaction rules 
and/or reaction templates, which categorize known reactions and predict which reaction type is most 
probable to form the target molecule [4]. These templates are either meticulously hand-coded or 
computationally extracted from massive reaction databases, both of which present a large overhead to 
CASP. 

Likewise, template- and rule-free approaches to retrosynthesis have become more prevalent. One 
such method is modeling chemical reactions as a sequence-to-sequence problem, translating the 
string representations of one set of molecules into another set of molecules [5]. Molecules can be 
represented in text using the simplified molecular-input line-entry system (SMILES), where the input 
molecules are fed into a model, and each token is sequentially predicted by the model [6]. This 
formulation of the problem works for both synthesis and retrosynthesis prediction. 
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Figure 1: An example of a retrosynthetic step contained in the USPTO-STEREO database. The 
double-lined arrow signifies that the reaction is happening in reverse. 

While this method has proven somewhat effective, it has many common pitfalls. Most notably, in 
many cases, the generated SMILES strings are syntactically, semantically, or otherwise chemically 
invalid. In addition, compounds that are chemically similar may have significantly different SMILES 
representations, making it difficult for traditional models to learn. As such, creating a template-free 
approach to the synthesis problem that properly ascertains relationships between atoms in SMILES 
strings is of utmost importance for CASP. Transformers and self-attention have been particularly 
enticing as atoms that are far apart in SMILES space but proximal in chemical space can be properly 
associated. 

2 Related work 

2.1 Synthesis 

Transformers have shown promising results for forward synthesis. Schwaller et al. develop a 
transformer model that outperforms resource-intensive quantum chemical calculations in predicting 
the products of difficult (chemoselective, regioselective, and/or stereoselective) reactions, establishing 
the tractability of using transformers to model reactions. [7]. 

2.2 Retrosynthesis 

Several sequence-to-sequence models have been applied to the retrosynthesis task. Schwaller et al. 
use a bidirectional LSTM with attention that was shown to compete with state-of-the-art graphical 
models on chemically diverse datasets. Kim et al. improve upon this model through a tied two-way 
transformer, in which retrosynthesis prediction is coupled with forward synthesis prediction to validate 
the model’s output [8]. However, this model was evaluated without stereochemistry. While removing 
stereochemistry makes retrosynthesis easier, including the stereochemistry is important because 
stereochemistry can significantly influence reaction routes and the choice of reagents. Furthermore, 
in the two models above, there is no deliberate effort to incorporate the SMILES syntax into the 
model, leading to invalid rates that could be improved. 

To the best of our knowledge, the only transformers applied to retrosynthesis in literature that account 
for syntax append a correction layer to the output of the transformer decoder. For example, self- 
corrected retrosynthesis predictor (SCROP) incorporated a full transformer to correct the syntax 
of their sequence-to-sequence model’s results [9]. Adding an additional model for correction is 
resource-intensive, and would be better incorporated into the original network architecture. 

3 Approach 

3.1 Problem formulation 

We formalize the problem as a sequence-to-sequence task from a single product to potentially multiple 
reactants and reagents. An example of inputs and outputs are given in Table 1. 

  

Input N#Cc1ecc(C(=O)CCC(=O)O)cc1N 

Output | N#Cclecc(C(=O)CCC(=0)O)cc1[N+](=O)[O-]>[NH4+].[OH-]> 

  

        
Table 1: Example input and output for the retrosynthesis task.
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Figure 2: Overview of the syntax-directed molecular transformer encoder. 

3.2 Model architecture 

We adapt the syntax-guided transformer model, SG-Net, described by Zhang et al., using a custom 
SMILES parse tree as the dependency tree [10]. Given an input SMILES, we first perform an atom- 
wise tokenization of the SMILES string into sequence S = {s1, 52,..., 5} where n denotes the 
sequence length. We then use a syntactic parser to generate the dependency tree. This syntactic parser 
is based on the context-free grammar from the OpenSMILES specification, with the modification that 
atoms in the same chain are neighbors in the parse tree [11]. The modified context-free grammar is 
detailed in Figure 3. 

After tokenization and parsing, we derive the ancestor node set P; for each token s; according to the 
dependency tree. Finally, we compute mask M € R"*”, where 

_ fl ift=jorge P; 

Mis = {) otherwise , 

We then feed S into a vanilla transformer encoder to obtain output representation H = 
{hi, he,..-, Mn} [12]. This output is projected into keys, queries, and values for the syntax-guided 
layer, denoted K/, Q', V;, respectively, for each attention head i. We apply M to the multi-head 
key-query attention in the syntax-guided layer in the following manner: 

M: (Qik) V! 
Vdx 

Finally, W; is concatenated for all attention heads and fed through the rest of the transformer encoder 
block to obtain representation H’ = {h{,h5,...,h',}. We then use dual-context aggregation to 
combine the two representations H and H’ into a final representation H = {hy,h2,...,hn}: 

W; = Softmax ( 

where a is a learnable parameter. 

For the decoder, we make no modifications to the traditional transformer decoder. 

4 Experiments 

4.1 Data 

The data comes from the open-source chemical reactions from granted US Patents (USPTO) curated 
by Lowe [13]. We use USPTO-STEREO, a subset of USPTO that removes atom mappings, prunes



    

<START>: <chain> 

<chain>: (<bond>? <branched_atom>)* 

<branched_atom>: <atom> <ringbond>* <branch>* 

<atom>: <bracket_atom> | <symbol> 

<bond>: "-"{"=" )"#" E"$" b's bE'77 0 '\" 

<dot>: "." 

<ringbond>: <bond>? <digit> | <bond>? "%" <digit> <digit> 

<branch>: "(" <chain> ")" | "(" <bond> <chain> ")" 

<bracket_atom>: "[" <isotope>? <symbol> <chiral>? <hcount>? <charge>? <class>? "]" 

<symbol>: <element_symbol> | <aromatic_symbol> | "*" 

<isotope>: <number> 

<element_symbol>: "H" | "He" |... |"No" | "Lr" 

<aromatic_symbol>: "b" | "c"1"n"["o" | "p"["s" | "se" | "as" 

<chiral>: "@"|"@@" 

<hcount>: "H" |"H" <digit> 

<charge>: wow | ow <digit> | wae" | nae <digit> | wow | pe” 

<class>: ":" <number> 

<digit>: "O" 1... ["9" 

<number>: <digit>+ 
  

Figure 3: The modified SMILES context-free grammar for dependency parsing. 

duplicate reactions, and only considers reactions leading to the formation of a single product [14]. 
Unlike the popular subset of the data USPTO-50K, USPTO-STEREO maintains the stereochemical 
configuration of the atoms. The 1,002,970 reactions are split into 902,581 / 50,131 / 50,258 reactions 

for train / validation / test, respectively. Due to space constraints, during preprocessing, we further 
remove reactions whose tokenizations exceed 200 tokens, which removes 60 reactions for a total 

of 1,002,610 reactions split into 902,261 / 50,113 / 50,236 reactions for train / validation / test, 

respectively. 

The data consists of reaction SMILES, which have the form reactants>reagents>products. Reagents 
are formally defined by molecules participating in the reaction whose atom mappings are not found 
in the resulting product. We leverage an atom-wise tokenization of the reactants and products, while 
we use a molecule-wise tokenization of the reagents [14]. 

4.2 Baselines 

We use two standard sequence-to-sequence models as our baselines. The first is the recurrent neural 
network described by Schwaller et al., which is comprised of a bidirectional LSTM with learnable 
attention weights between decoder and encoder outputs, denoted BiLSTM + Attn [14]. Our second 

sequence-to-sequence baseline is a vanilla transformer model, denoted MT. We also compare our 
model to highly expressive graph neural networks; our third baseline is a Weisfeiler-Lehman network 
(WLN), which has reported higher top-3* accuracies than BiLSTM + Attn [15], and currently 
represents the state of the art for diverse, accurate retrosynthesis prediction. 

To the best of our knowledge, no other transformer-based network architecture has been evaluated in 
the literature on USPTO-STEREDO for retrosynthesis. The results for BiLSTM + Attn and WLN were 
reported from the work of Schwaller et al. and Jin et al. [14, 15].



4.3 Evaluation method 

The models are evaluated on the top-n accuracy of the predictions. The top-n accuracy is the 
frequency with which the ground truth target appears within the top-n predictions of the model. 
As a change in one token can result in a completely different molecule, the model’s predictions 
must exactly match the ground truth to be considered correct. However, one molecule can have 
a large number of valid SMILES representations. It’s possible that the model could output the 
correct molecule with a syntactically correct SMILES string, but in non-canonical form. Since every 
molecule can only have one canonical SMILES string, we canonicalize the predictions using the 
RDKit Python API [16]. This method has previously shown to increase calculated accuracies up to 
1.5% [14]. 

The models are also evaluated on the invalid SMILES rate, which is the frequency with which 
the model outputs syntactically, semantically, or chemically invalid SMILES. This was similarly 
computed using RDKit. 

4.4 Experimental details 

We train the network on a NVIDIA T4 Tensor Core GPU using Adam optimization with parameters 
a = 0.001, 6; = 0.9, G2 = 0.999, and e = 10e~8. We additionally include a learning rate decay 

of 0.1. The input reactions have a maximum reaction length of 200 tokens, and each token has an 
embedding dimension of 256. The BiLSTM + Attn network has hidden dimension 512 and utilizes 
the teacher forcing method during training. We use gradient clipping with a max norm of 1.0 to 
prevent exploding gradients. To train, we use minibatch gradient descent with a batch size of 32. At 
inference time, we use a beam search with a beam width of 10. 

4.5 Results 

4.5.1 Top-n accuracy 

  

USPTO-STEREO Top-n Accuracy [%] 
  

  
Category Model Top-1 Top-2 Top-3 Top-5 

sequence-to-sequence BiLSTM + Attn 80.3 84.7 86.2 87.5 

MT 80.4 84.6 86.7 87.6 

SDMT 80.8 86.1 87.4 88.5 

graph-based WLN 79.6 87.7 89.2 
  

Table 2: Top-n accuracies for the evaluated models. 

The top-n accuracies evaluated on the USPTO-STEREDO test set are reported in Table 2. Notably, 
SDMT outperforms all of the baselines in top-1 and top-2 accuracy for which the data is known. 
However, WLN outperforms all other models in the top-3 and top-5 accuracy. This is likely due 
to a difference in the training procedures: during training, WLN learns to rank multiple potential 
candidates, whereas each of the sequence-to-sequence models were only trained to predict the top-1 
set of reactants. This also supports why SDMT and each of the other sequence-to-sequence models 
outperform WLN in top-1 accuracy. 

SDMT surpasses all other sequence-to-sequence models across all top-n accuracy, suggesting that 
the syntax-guided layer is improving the model’s ability to reason about reactions. 

4.5.2 Invalid SMILES rate 

The top-n invalid SMILES rate evaluated on the USPTO-STEREDO test set are reported in Table 
3. There is a large difference between the top-! invalid rate of the transformer-based models and 
the BiLSTM + Attn model. Namely, the transformer models perform better at outputting valid 
SMILES strings than does BiLSTM + Attn. This indicates that transformer networks may be able to



  

USPTO-STEREO Top-n Invalid SMILES Rate [%] 
  

  

Category Model Top-1 Top-2 Top-3 Top-5 Top-10 

sequence-to-sequence BiLSTM + Attn 1.3 

MT 0.2 0.2 0.5 1.2 2.7 

SDMT 0.1 0.1 0.1 0.3 0.5 

graph-based WLN 
  

Table 3: Top-n invalid SMILES rate for the evaluated models. 

understand the SMILES grammar better than recurrent neural networks, even without the presence of 
a syntax-guided layer. 

Furthermore, the top-2* accuracies suggest that SDMT is more consistent than MT in outputting 
syntactically valid molecules. The top-1, top-2, and top-3 accuracies are the same for SDMT, and 
they increase marginally for n > 3, while the top-10 accuracy for MT is over 5 times that for SDMT. 

Considering that SDMT and MT have nearly the same number of parameters, yet SDMT has higher 
top-n accuracies and lower invalid SMILES rates, the syntax-guiding layer is a worthwhile addition 
to the transformer architecture for modeling chemical reactions. 

4.5.3 Alternative retrosynthetic steps 

One limitation of the USPTO dataset is that it does not account for retrosynthetic steps that are 
plausible but not the same as what’s been patented. Currently, there are no definitive methods other 
than human discretion to affirm the feasibility of alternative reactions. We investigated some of 
the reactions for which SDMT’s top-1 prediction was incorrect, and found that there is a nontrivial 
number of alternate reaction schemes that are plausible within the context of the reaction. An example 
of this is given in Figure 4, which illustrates that one common mistake is that the model often chooses 
different leaving groups for nucleophilic substitution reactions. These are marked incorrect by the 
evaluation metric, but in most cases, they represent plausible reaction schemes. 

Ground Truth 

N 

COO : x ———-> CD) i. SNS 

NNN N 
H 

Predicted 

COD anf: S 

Figure 4: A nucleophilic substitution reaction marked incorrect that differs only in the choice of 
halide leaving group (ground truth: bromine, predicted: chlorine). 

5 Conclusion 

In this paper, we develop a transformer-based model that competes with the state-of-the-art for ret- 
rosynthesis prediction. Our model, which incorporates a lightweight syntax-guided transformer block, 
achieves high top-1 and top-2 accuracies. Furthermore, SDMT consistently outputs syntactically,



semantically, and chemically valid predictions, suggesting that the syntax-guided layer is improving 
the transformer model’s ability to replicate the SMILES grammar. Our approach is fully data-driven, 
template- and rule-free, and compatible with stereoselective reactions, allowing it to be applied to a 
larger and more complex set of molecular decompositions. Hopefully, with the improvements from 
this model, retrosynthesis is something that can be more reliably automated.
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