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Abstract 

With the continuous rise of online social media platforms, efficient moderation of 
toxic content has became an indispensable solution to keep the Internet safe. But 
this classification task remains challenging, with false positives driving to excessive 
moderation and public dissatisfaction. In this project, we aim to study if the toxicity 
level of a written comment can be better assessed by also considering its target 
(e.g. towards whom it is directed). Working with a professional French dataset and 
latest NLP deep learning models, we managed to confirm this hypothesis. We also 
showed that the target itself can be accurately predicted from the comments. Many 
things remain to discover and test in this sensitive and complex challenge, but our 
results already confirm that better professional moderation is possible thanks to 
deep learning-based tools. Our code is available here. 

1 Approach 

2 Introduction 

Detecting and moderating toxic written content is a challenging task, given the variety of language 
forms used in social media typically (slang, mispellings, emojis, etc.). 
Over the past few years, some researchers have investigated the automated detection of specific types 
of toxic content (such as sarcasm [1], racism [2], aggression and misogyny [3]). Meanwhile, others 

have focused on ways to improve the level of detection whatever the form of abusive language: for 
instance in [4], leveraging the context of the post on top of its own content. 

Our project analyzes a derivative of this last approach: since the target of a toxic content can influence 
its meaning and intention, can it also influence its level of toxicity? As an example, "go kill yourself" 
is much more toxic than "she told him: go kill yourself". We had thus two main objectives in this 
project: first, check if using the target on top of the comment improves the prediction of toxicity level. 
Second, accurately identify the true target of the comment. Since we couldn’t find previous research 
tackling specifically this second problem, we investigated several approaches detailed below. 

To date, research on forms of abusive language detection is mainly focused on English. Few datasets 
exist in other languages (such as Greek, Arabic or German), but none seem to be yet available in 
French. So we partnered with the company Bodyguard [5], which develops an expert moderation 
solution based on static rules. They provided us a labelled dataset of real-word samples from French 
social media accounts, to perform our analysis and benchmark deep learning models for our specific 
objectives. 

3 Related Work 

Toxic content is an umbrella term for many sub-levels of severity. In [6], up to 46 different variations 
are defined and used: hateful, offensive, fearful, abusive, etc. Using computational resources to detect 
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and handle such content is a challenge which has gained lots of interest in the recent years. This is 
both due to the continuous rise of social media, and to the emergence of new algorithms. 

Initially, the first classifiers for toxic content used approaches such as dictionaries look up [7] or bag 
of words [8]. If they had the benefit of being easy to interpret, these solutions also generated high 
false positive rates, and suffered from data sparsity issues. Some progress later resulted from the 
incorporation of additional features such as N-gram graphs [9] or Part of Speech [10], allowing more 
subtle analysis of semantic content typically by Support Vector Machines (SVMs). 

As more data became publicly available, specialized datasets were released to help detect toxic 
content. They enabled researchers to develop more complex approaches, typically leveraging deep 
learning models or graph embedding techniques [11]. They also benefited from advanced word 
embedding techniques such as Word2Vec [12] and GloVe [13], which produce continuous and dense 

representations of the content. 

The first deep learning models leading to a significant rise in the prediction scores where Recurrent 
Neural Networks (RNNs), particularly as they made it possible to model larger sequences of text. 
Gated RNNs such as LSTMs [14] and GRUs [15] have been shown to be very efficient at representing 

long term dependencies. In 2017, Transformers [16] made a breakthrough by capturing contextualized 
embeddings for a sentence thanks to the attention-mechanism. Even more recently, BERT [17] 
was released and achieved state-of-the-art performance in text classification, question answering, 
and language inference without substantial task-specific modifications. Based on the transformer 
architecture, this model produces contextualized embeddings extendable to classification tasks with 
an additional output layer. 

Lastly, the recent multiplication of datasets in languages other than English led to the development of 
multilingual classifiers. They take several forms and address various challenges, such as classification 
in low resource setting [18], benchmarks for zero-shot multilingual classification [19], or online 

prediction tools such as [20] or Jigsaw’s Perspective API [21]. 

4 Approach 

4.1 Baselines 

Since Bodyguard built our dataset, including both "Target" and "Toxicity Level" labels, they represent 
for us a baseline of 100% precision and 0% False Positive Rate. 
We also used Perspective API toxicity score on our dataset as a baseline. This score indicates how 
likely it is that a reader would perceive the comment provided in the request as toxic. We thought this 
was an acceptable proxy, splitting the score range (from 0 to 1) in 5 equal segments to reflect our 5 
toxicity levels, but averaging prediction results for each segment to the closest 2 levels (to account 
for nuances of level definition). Given Perspective API quota restriction (1 request per second), we 
computed their score for 100000 samples from our dataset. It resulted in a global precision of 62%. 

4.2 Model architectures and pipelines 

As in [4], we experimented a small set of models, specialized for text analysis. We chose a Bi- 
LSTM (128 units) [22], a Transformer (1 block, 2 attention heads) [23] and CamemBERT [24]. 
CamemBERT was developed by Facebook, based on the RoBERTa architecture and pretrained on 
the French subcorpus of OSCAR [25]. We built our models from scratch with Keras API, except 
CamemBERT that we replicated from this colab, based on Hugging Face Transformers API and 
PyTorch. 

For the first part of our primary objective, which was to predict the Toxicity Level directly from 
the Comment, we used CamemBERT architecture for classification. This is the normal Camem- 

BERT model with an added single linear layer on top for classification, that we use as a sentence 
classifier. As we feed input data, in our case the comments in raw text, the entire pre-trained 
CamemBERT model and the additional untrained classification layer are fine-tuned on our specific 
task. For implementation, Hugging Face Transformers API provides this model under the name 
CamembertForSequenceClassification. 

For the second part of our primary objective, which was to also take into account the Target in 
our predictions, we concatenated both the Comment and the Target via distinct layers, before



applying a standard classification layer to the output. As describe in Figure 1, the Comment was 
first passed into a regular version of CamemBERT pretrained model, named CamemBERTModel in 
Hugging Face Transformers API. In its output, we extracted the CLS embedding and used it as input 
for the concat function. 
In parallel, the Target was encoded as one hot vector and passed into a Linear layer of same size 
as the CLS embedding, before feeding the concat function. The output of the concat function was 
then fed into an ultimate Linear layer, and passed to a Softmax layer. Its output was the probability 
distribution per Toxicity Level. 
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Figure 1: Model architecture to predict Toxicity level from Comment and Target. 

For our second main objective, e.g. Target identification, we relied on two approaches: the first one 
was basic deep learning classification. We fed the CamembertForSequenceClassification model 
with the comments and fine-tuned it to detect the Target. Even if it was the simplest solution, it turned 
our to be the most effective as well. 
Our second approach relied on a custom pipeline for syntactic features identification. After a 
close analysis of our dataset, we noticed that several patterns seemed to be more related to specific 
targets: comments with one "@" sign were 10 to 15 more likely to be addressed to "User" or "User 
family" than to any other target, and comments with 2 "@" signs saw this ratio rise to 25. A second 
important pattern was the presence and nature of certain personal pronouns (subject or object): for 
instance, the presence of the pronoun ’vous’ (or its misspellings: ’vou’, ’vos’) increased the likelihood 
of the comment to be addressed to "Everyone" or "Group" by a factor 10 versus other Targets. Our 
pipeline involved 4 of these patterns. 
To detect the occurrences of the pronouns, we used CamemBERT pretrained model for Part-of- 
Speech (PoS) tagging. Again, Hugging Face provides a relevant implementation named French- 
Camembert-Postag-Model [26], pretrained on the free-french-treebank dataset. This model detects 

29 different tags, based on [27], but we regrouped them into 11 essential categories for clarity. Due to 
French slang and misspellings, the model had troubles to identify all relevant PoS tags. For instance, 
most pronouns written via abbreviations (such as "t" for "tu es", meaning "you are") were tagged as 
common name. We found static rules (based on substring research in the token lists) more effective 

to identify all relevant PoS tags, and used their outcomes as input for concatenation with the output 
of a CamemBERT model. 

5 Experiments 

5.1 Data 

The Bodyguard dataset includes 190.000 examples of toxic comments in raw text coming from 
French real social media accounts. They are labelled with 3 fields: Target, Toxicity Level and Toxicity 
Type. The dataset also contains 200.000 examples of non toxic comments in raw text, without label.



Toxicity Level and Target were the two labels we focused on. As shown in Table 1, their distribution 
is imbalanced, but Bodyguard confirmed that it reflects the real world they see. We encoded them as 
one-hot vectors, to use them as input of our concatenated layers. 

arget 
Toxicity Level | Author of | User User | Single | Group | Everyone Total 

comment fami Person     
  

ll Total | 2.547 | 96.997 | 6.462 | 36.000 | 36.000 | 16.587 || 194.593 || 

Table 1: Distribution of toxic examples per Target and Toxicity Level 
  

  

As social media language is full of misspellings, slang and emoji, so were our input comments. We 
thus had to perform data preparation on the whole dataset: comments cleaning via custom functions 
(case lowering, removal of URL, HTML and punctuation), Emoji removal (but kept apart for further 
analysis). We left misspellings and slang untouched due to their large quantity and diversity, as well 
as kept stopwords and frequent words since our tests shown they gave better results. Once cleaned, 
we tokenized our inputs via NLTK Word Tokenizer, and padded sequences to 150 characters. 

Due to the specificity of our training data (French social media content), we had limited choice for 
the word embeddings used to feed our Bi-LSTM model. We found that building our own vectors 
via Word2Vec (Gensim implementation) provided the best results, versus FastText (either Gensim 

or pretrained French vectors). We chose to create 200-dimensional vectors, which allowed a good 
performance trade-off. 
Out-of-vocabulary words are drawbacks of word embeddings. But in our tests, even slang and 
misspelled words were encoded since we created our own vectors by applying the Word2Vec 
framework (not using their pretrained vectors). We analyzed the quality of some slang or misspelled 
word embeddings by looking at their most similar words. For most of them, these similar words 
made sense, so we assessed that words embeddings were satisfactory enough for our project. 

In order to deal with the imbalanced distribution of our dataset, we tested several solutions. First, 

we tried to simply use class weights to influence the loss function calculation. We computed these 
weights via a custom function, which basically boosts the less represented class by a factor function 
of their size relative to the total number of comments. But it didn’t provide much positive impact. 
Second, we tried data augmentation via a Google Translate loop (FR -> EN -> FR) applied to our 
input comments. We tested various intermediate languages but English seemed to produce the best 
balance between wording variation and global meaning preservation. To confirm that, we computed 
sentence similarity between input and output of the loop, with SentenceTransformers [28], a Python 
framework for state-of-the-art sentence and text embeddings. This implementation follows the work 
described in [29]. This technique allowed us to create 128253 new inputs on less represented classes, 
of which 97240 had a similarity score between 0.7 and 1. We appended these latter to the dataset 
with the same labels as their respective original comment. Figure 2 illustrates some samples of the 
dataset with their English translation as provided by Google Translate. 

Sentence Type Level Target Google_Translate 

@Michou t un mytho ton pseudo aurais changé sinon Hate MEDIUM USER @Michou t un mytho your nickname would have ch... 

J'suis une merde, de A a Z Insult LOW AUTHOR_OF_COMMENT I'm a shit, from A to Z 

Oh des gays moches # #2424242 Homophobia HIGH GROUP Oh ugly gays a2 aD 

Allez vous faire foutre bande de connards Insult VERY_HIGH EVERYONE Fuck you all you assholes 

On va bien rigoler Neutral NONE UNDEFINED We'll have some fun 

Figure 2: Dataset extract. Last column illustrates English translation obtained from Google Translate 

Finally, we tried a widely used approach to synthesizing new examples, called the Synthetic Minority 
Oversampling Technique (SMOTE) [30]. SMOTE works by selecting examples that are close in the 
input feature space, drawing a line between the examples in the feature space and choosing a new



sample at a point along that line. SMOTE allowed us to pass from 295098 to 597290 examples, 
perfectly balanced since all Level classes had an equal number of examples (119458). 

Lastly, emojis are clearly part of social media culture, and as such often used to enrich our written 
comments (almost 80% of our dataset comments included at least one emoji). Luckily, they are often 
redundant with the spirit of the comment, in which case excluding them from the comment doesn’t 
significantly change its meaning. Yet, for the cases where the emoji adds a strong level of toxicity to a 
neutral comment, omitting them is penalizing. That’s why we applied a simple pipeline to take them 
into account: first, we converted them into their text description, taken from the official UTS Unicode 

Emoji dictionary [31]. Then, we leveraged this additional feature on top of the text comment, via two 
approaches: first, by concatenating both text segments, before vectorization and input into one of our 
model. Alternatively, we vectorized the text description of emojis and passed it through a separate 
dense layer concatenated before the final softmax. Despite these various attempts, we didn’t manage 
to get improvement in the performance metrics of our classifiers. 

5.2 Evaluation method 

Since the ultimate objective of our project was to improve the quality of toxic content moderation, we 
definitely wanted to avoid over-moderation. In terms of metrics, and given the dataset is imbalanced, 
this translates into a focus on Precision and False Positive Rate. As an aggregated metric for each, 
we used the macro-average computation since we do value the minority classes (toxic examples). 

5.3 Experimental details 

We trained our models over 10 epochs, with the global same set of hyperparameters at first: Adam 
optimizer with default learning rate (0.001) and parameters, Categorical Cross-entropy loss, Dropout 
(at start 0.2), Early Stopping. 
Using a Nvidia V100 GPU, training for 10 epochs took approx 5 hours for CamemBERT, 3 hours for 
Bi-LSTM, and 15 minutes for Transformer. Given these duration, we run most of our tests with the 

Transformer model, and kept the two others to fine-tune our best test scenarios. 

We tried several fine-tuning options. Since our Transformer tend to overfit, we tested an increase in 
Dropout (from 0.2 to 0.5), but it didn’t improve the performance. Data augmentation helped a little 
reduce the overfitting, but not significantly. 
As mentioned earlier, we also tried loss balancing via custom class weights, but it didn’t improve the 
overall performance of our models. The utilization of SMOTE was the best option in that case. 

5.4 Results 

The following table recaps our main quantitative results after fine-tuning, on our two main objectives: 

  

    

  

  

Predict Level Predict Target 
Model from Comment from Comment & Target | from Comment 

Precision FPR Precision FPR Precision FPR 

Bi-LSTM 89% 2.0% 91% 1.7% 94% 1.0% 

Transformer 88% 2.1% 89% 2.0% 92% 1.6% 

CamemBERT 91% 1.7% 93% 1.2% 96% 0.6%             
Table 2: Main quantitative results for our 3 models, computed as Macro-average of label classes 

We definitely bet the Perspective API baseline, but didn’t manage to perfectly predict all labels from 
Bodyguard. 
Overall, these results provide the answers for our two main objectives: first, they tend to prove that 
the target of a comment can indeed be used as complementary feature to improve the performance of 
toxicity level detectors. We obtained an improvement of +2pts in average precision and -0.5pts in 
FPR for our state-of-the-art model. 
Second, they show that the target can even be predicted from the comment by deep learning models 
with high precision, up to 96% for our best model. However, for this second objective, adding 
syntactic features didn’t allow us to improve the prediction metrics. For instance, our Transformer



model reached an average 92% precision on test set when trained on the comment only, but 90% 
precision only when pronouns (encoded as one hot vector representing their distribution) were added 
as complementary input feature. Interestingly, it also reached an average 91% when using three 
input features: the comment, pronouns, and ’@’ symbol presence (also encoded as one hot vectors). 
Further investigation of other possible syntactic features may help improve the average precision. 

The pretrained CamemBERT model outperformed the two others, showing that transfer learning 
worked well despite the specificity of social media language. 
In order to more completely assess its potential, we trained the CamemBERT model to predict each 
of the 3 labels of our dataset (Level, Type, Target) from the comments only. We also added a simple 
binary label Toxic / Neutral, and trained our classifier to predict it as well. Table 3 summarizes the 
results. 

  

Predict Level Predict Target Predict Type Pred. Toxic/Neutral 
Precision FPR | Precision FPR | Precision FPR | Precision FPR 

| CamemBERT | 91% 1.7% | 96% 0.6% | 93% 1.5% | 98% 0.02 % | 

Table 3: CamemBERT performance metrics to predict the 4 types of label of the dataset 

Model 

                  
  

  

These results demonstrate that the CamemBERT architecture can be used to predict all labels from 
the input sentence with more than 90% average precision. Among those results, the performance on 
the binary prediction is particularly outstanding. 

Finally, thanks to data augmentation, and particularly SMOTE, we managed to slightly improve 
the prediction performance even for less represented classes. Table 4 illustrates the results for the 
Transformer model, trained on comments only to predict Toxicity Levels. 

  
Toxicity Level Transformer w/o SMOTE Transformer with SMOTE 

predicted Precision Precision           
one 

  

  
| Average 86% 88% | 

Table 4: Main quantitative results for our 3 models, computed as Macro-average of label classes 
  

6 Analysis 

We performed error analysis by manually investigating classification errors from our best models. We 
noticed that, within the top 100 errors with highest prediction confidence, almost 60 had a questionable 
label. This challenges the 100% baseline of our dataset, and will provide some interesting feedback 
for Bodyguard. It also means that our best models, even trained on partially mislabelled data, still 
managed to learn the characteristics of the various toxicity levels. This generalization ability is a very 
positive output. 
Among those top 100 errors, the false negatives (eg ranked as neutral although the comment was 
toxic) were mostly due to very toxic emojis added to neutral comments. Since our model didn’t 
analyze them, its prediction relied on the text only. 

On another note, it is well known that pretraining helps a model learn the meaning of 
words, as well as some broader knowledge. But we could question the ability of such models 
to also perform well on social media content, due to its language specificity and multiple misspellings.



The good results we got from our CamemBERT models 
provide some reinsurance on their ability to generalize to 
such specific content. This may in part be due to the fact mabe’ 
that CamemBERT was trained on diverse web crawled data, Layer: | 11v 

rather than Wikipedia data. EmmEant 
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illustrates the weights of the last attention layer. As we can | bs 
see, most of the attention seems to be focused on the first anes ee 

part of the comment, which contains all the toxic words x a 

("gueule", which is a slang word for "mouth", and "con" leu lhe 
which is a vulgar version of "stupid") and the target ("tu", de de 
meaning "you"). More globally, This is definitely not an passer passer 
exact science, as already stated by [33], and all checked pour pour 

samples were not as convincing. Yet, it provides an inter- un un 

esting perspective to analyze the exact role of the attention con con 
mechanism in the good prediction performance obtained justifiant justifiant 
by our model. le le 

From the results shown in previous section, we can also tab tab 
note that the Bi-LSTM systematically got better perfor- a a 
mance metrics than the Transformer. Beyond the differ- ssage ssage 
ence of architecture between the two models, which we de da 

kept very simple in this project, we can question the influ- : . 
ence of word embedding techniques as they also differ. aye eave 
In our manual tests mentioned earlier, Word2Vec seemed . sans sans 

témoins témoins to provide relevant embeddings for slang and misspellings. 
To get a broader perspective on how Word2Vec represents </s> </s> 
toxic content, we computed a K-means of 10 clusters on its 
vectors. We used a KD Tree to get the 20 words closer to 
the centroids of our clusters, and displayed them in Word 
Clouds. Figure 4 illustrates 3 of these clusters. Most of the words inside each cluster tend to have 
related meaning, as we could expect. But curiously, they don’t include much of the most frequent 
hate words the dataset contained. Overall, the words present in these clusters could also appear in the 
neutral part of the dataset. Based on this, we may deduct that the dense representations provided by 
the embeddings doesn’t specifically capture toxicity of words. 

over-teck 

   dictionnaire 

Figure 4: Toxic content representation by Word2Vec measured by K-means of its embeddings 

7 Conclusion 

In this work, we managed to show that the toxicity level of a written comment can be better assessed 
by also considering its target, and that the target can be accurately predicted from the comment by 
deep learning models. 
We also found that large models pretrained on massive amount of public data such as CamemBERT 
provide state-of-the-art results even on social media language, despite its large amount of slang and 
misspelling.



We made some findings in terms of syntactic features likely to help better predict the target of toxic 
content, but we didn’t manage yet to leverage them for improved performance of our classifiers. 

Along this project we touched multiple possibilities offered by current NLP techniques, but several 
additional experimentation remain possible in the future. As potential next steps, we'd like to further 
study the influence of emojis on the toxicity level of comments, and their potential to improve the 
detection by assessing and leveraging their own toxicity level. We'd also be keen to further investigate 
the interpretability of our classifiers, as many gray areas remain in this domain. Another possible next 
step would be to test character-level modelling and see if it allows even better word representations 
than Word2Vec in our context. 

Finally, we hope our work will help companies such as Bodyguard further improve their own 
moderation algorithms, and support them in their important mission of keeping the Internet safe. 
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