
Translating Natural Language Questions to SQL

Queries

Stanford CS224N Custom Project

Omkar Salpekar
Department of Computer Science

Stanford University
omkars@stanford. edu

Abstract

Sequence-to-sequence models have performed well at the Text-to-SQL task on
datasets such as WikiSQL. However, most prior work does not examine generaliz-
ability of the models to unfamiliar table schemas. We build on the ideas introduced
by Chang et al. [1] to improve a sequence-to-sequence dual-task learning model by
generalizing better on a zero-shot testbed, which consists of schemas the model has
never encountered before. We use the pre-trained BERT-based TAPAS transformer
model to encode more expressive table representations for the schema, in addition
to the existing BiLSTM-based encodings. Additionally, we use techniques from
semantic parsing research such as the coverage mechanism and more flexible at-
tention algorithms to propose a model that achieves a 5+% accuracy improvement
over the base dual-task sequence-to-sequence model on the zero-shot test set.

1 Key Information

¢ Mentor: Shikhar Murty

e External Collaborators: N/A

e Sharing Project: N/A

2 Introduction

The proliferation of inexpensive hardware and cloud services has enabled vast amounts of data to
be stored in databases and data warehouses globally. Extracting insights from this data requires
an intuitive understanding of Structured Query Language (SQL), a language which allows the
composition of potentially complex and highly nested declarative queries to obtain results from across
data sources. Since learning to compose complex SQL queries may restrict many potential users from
interacting with data, much work has gone into enabling an alternative and more intuitive interface to
query data in lieu of SQL: natural language questions in English.

Translating natural language English questions to valid SQL queries that can be issued to a database
can be posed as sequence-to-sequence neural machine translation (NMT) problem with some unique
properties. These unique properties stem from the relatively standard template of SQL queries that
most Text-to-SQL datasets like WikiSQL [2] follow, as seen in Listing 1.

Listing 1: SQL Structure (* indicates there may be multiple WHERE clauses)

SELECT $AGG $SEL_COLUMN FROM table_id WHERE ($COND_COL $COND_OP $COND_VAL) *

Given a standardized template, the translation problem can be thought of as a sketch/slot-filling
problem where only the aggregation and column names in the SELECT clause and the condition

Stanford CS224N Natural Language Processing with Deep Learning

columns, values, and operations in the WHERE clause must be predicted. The Text-to-SQL task
involves translating a natural language English question Q into a SQL query Y given a table schema
C by correctly filling the specified slots

While it is clear that accurate Text-to-SQL models could have a massive democratizing effect on
data analytics, they are currently not effective enough to be used in a production environment. The
primary issue is generalization - most existing models overfit to table schemas encountered during
training, and thus cannot generalize well to unfamiliar schemas. Chang et al. is among the first works
to address this generalization issue by proposing a dual-task model architecture and introducing a
zero-shot testbed, which evaluates models on how well they translate queries from unfamiliar schemas
(hence the "zero-shot" nature of the testbed) [1].

In this work, we explore a variety of techniques from semantic parsing, transformers, and attention
to propose a model superior to the base dual-task model in Chang et al. Specifically, we use the
coverage mechanism to prevent output sequence repetition, a modified loss function that includes
coverage vectors for better regularization, Bahdanau attention, and pre-trained BERT-based schema
encodings to achieve a 5+% improvement in query execution accuracy on the zero-shot testbed over
the model proposed in Chang et al.

3 Related Work

There is a rich body of research that explores translating natural language questions into SQL queries.
Early work in this area began with logic-based approaches to the ATIS (Air Traffic Information
Service) [3] task and GEO queries [4], although both of these assumed a standard schema since the

translation systems were specific to a database. More recent work in the field includes sequence
to sequence models combined with Reinforcement Learning to generate SQL queries in Seq2SQL
[2]. Seq2SQL consists of an augmented pointer network to learn the aggregations in the SELECT
and WHERE clauses as well as the column names, and separately determines the randomly ordered
WHERE conditions by using a policy gradient. This work also introduced the WikiSQL dataset
which contains pairs of natural language questions and SQL queries for a wide variety of schemas,
unlike the standardized schemas in ATIS and GEO.

SQLNet produced better accuracy than Seq2SQL models by removing reinforcement learning and
sequence-to-sequence methods and replacing them with a dependency graph approach that took
advantage of the standard structure of SQL queries and column attention [5]. Newer work like

TypeSQL [6] used the types of SQL query operators (such as column names, aggregators, condition
operands, and condition values) to pose a slot-filling problem that outperformed SQLNet, as well
as took advantage of the typing information in the table schema to learn expressive table encodings.
Techniques like Coarse-to-Fine Decoding [7] [8] introduced multiple layers of decoding for higher-
and lower-level understanding to better learn semantic relationships. SyntaxSQLNet combined
column-attention encoders with syntax-tree based decoders to support more complex SQL query
operators than previous work, such as nested queries and joins [9].

The Zero-Shot Text-to-SQL paper by Chang et al. incorporates many of the techniques described
above but focuses much more on generalizability. This paper presents a far more generalizable model
for Text-to-SQL translation that will work across a variety of schemas. While other work also explores
generalizability in Text-to-SQL, such as that by Suhr et al. [10] on even more challenging datasets
such as Spider [11], the results from these works suggest there is significant room for improvement
in Text-to-SQL models generalizing to unfamiliar schemas.

4 Approach

We propose a model that builds upon the dual-task learning architecture in Chang et al. with new
techniques such as the coverage mechanism in attention computations with regularizing coverage
loss, BERT/TAPAS-based embeddings as pre-trained table representations, and Bahdanau attention.

4.1 Baseline

Seq2SQL kicked off much of the Deep Learning-based work on the Text-to-SQL task [2], and newer

work in the field use Seq2SQL as a baseline. Briefly, Seq2SQL consists of an augmented pointer

network to learn the SELECT and WHERE aggregations as well as the column names, and separately
determines the randomly ordered WHERE conditions by using a policy gradient.

4.2 Primary SQL Generation Task

The dual-task learning architecture in our proposed model consists of a main task for predicting
the SELECT clause and the WHERE clause, as well as an auxiliary task that learns the mapping
between conditional values and conditional columns in the WHERE clause. We build on top of the
code provided by Chang et al. (a link to the original code base is provided in Appendix A.1), making
significant changes to enable the approaches described below.

Per Table 5.1, the model input consists of a question @ and a typed table schema C’. The natural
language question @ is encoded with a standard bidirectional LSTM [12] to produce hidden rep-
resentations h?. We implemented a new preprocessing pipeline for encoding the table schema C,
since we hypothesized learning better table representations should improve generalizability. The
question @ and schema C are padded to a standard length, tokenized to add standard separators,
and passed as input into the pre-trained TAPAS transformer model [13]. TAPAS is a BERT-based
transformer model [14] [15] that is focused on question answering, in that it takes queries and a table

(from which it infers a schema given the column index) and outputs answers to those queries. Since
we are interested in translating to SQL, we run inference with TAPAS on only the table schema and
all queries corresponding to that table in order to extract pre-trained table representations from the
transformer’s encoder. These pre-trained representations pass through an additional linear layer that
learns a relative weighting of different aspects of the table schema (relative importance of columns
and their types) to produce table encodings h°. The preprocessing pipeline was implemented from
scratch, and we used the TAPAS transformer model in the Huggingface library [16].

We next combine the question encoding 4, and table encoding h° into hidden representations H°
and H% using bi-attention. h{ and h4, are concatenated to form the final WHERE clause encoding

qW HERE | 74 is passed into an attentive pooling layer [17], which utilizes the coverage mechanism
[18] [19] (implemented from scratch, explained in the following paragraphs), to form a final SELECT
clause encoding q°”". The encoder diagram and preprocessing pipeline are found in Figure 1.

Our model uses 3 different decoders: a classifier decoder for predicting the aggregation in the
SELECT clause, a pointer decoder for predicting column names [20], and a coarse-to-fine decoder
for predicting the WHERE clause [7]. The decoders use Bahdanau (additive) attention [21] instead of

Luong (multiplicative) attention [22] attention to better recall features in the encodings. Additionally,
we address the common repetition problem in seq-to-seq models by using the coverage mechanism in
the attention computations, which is described in the equations below.

Assume a‘ models the attention distribution, computed by taking the softmax of attention scores e'.
The attention scores are computed using Bahdanau attention as follows:

ef = uv! tanh(Wphi + Ws8t + b)
(1)

a’ = softmaz(e')

We then introduce a coverage vector, which is a running sum of the attention distributions of all the
previous time steps:

t-1

t 7 t/
C= a

t’=0

oO =0

We modify the attention computation to use this coverage vector. Specifically, we incorporate the
coverage vector into the MLP when computing the Bahdanau attention scores:

i= uv! tanh(Wphi + W,s: + weet +b) (2)

As such, attention scores from previous time steps influence the attention scores at the current time
step more, which can maintain context from earlier in the sequence. We also incorporate coverage

into the loss function by adding a coverage loss covloss scaled by some hyperparameter (to the
main loss function. Below is the coverage loss term for a decoder d and an element ¢ in the input
sequence.

covloss? = S> min(at, ct) (3)

The total coverage loss will involve summing these losses across sequence length, as well as across
the 3 decoders. Assume the set D consists of layers using the coverage mechanism (decoders and
attentive pooling). We can then compute the total coverage loss as follows:

7

Lewerage = — S> S> covloss? (4)

deD t=1

The final encodings q°#", qW@4##"£, and H¢ are passed into the attentive decoders. The classifier
decoder uses q°“ to predict AGG in the SELECT clause. The pointer decoder, which can point
to a specific token in the input sequence instead of taking a weighted average of them, is useful
for predicting column names since these are usually present verbatim in both the input question
and schema. As such, the pointer takes both g°"" and H° as input to predict SELECT column
names. Lastly, g” “"" is passed to the classifier and then to the coarse-to-fine decoder to predict
conditional phrases in the WHERE clause. The decoder diagram can be found in Figure 2.

Preprocessing Stage

aia a eee Cie
Tokenizer

TAPAS

Biull
Schema
(Input)

Hc

eC

ONTO
He Perle}

Lettre ela
LSTM

Question
(Input)

qWHERE

Figure 1: Architecture of the encoder and preprocessing stage of our proposed model. Note that the
Question (Q) and Schema (C) are the model inputs, and 3 separate encoded representations (H°,

Qe", and qW #¥*) are encoder outputs.

4.3 Auxiliary Mapping Task

The auxiliary task will predict a mapping between condition columns and condition values in the
WHERE clause. A Name-Entity Recognition technique called BIO tags [23] is used to label question
words as entities, values, or neither - producing a tag vector y'*’. The tagged words are passed
into the pointer decoder along with H° to predict the pairs (called y™””) of column names/values
of each WHERE clause, which are used with conditional operations predicted by the main task to
construct each WHERE condition. While this same technique is used in Chang et al., our H° table
representations are derived from the TAPAS-based preprocessing pipeline and the pointer decoder
generalizes better with the coverage mechanism. A diagram of this task can be found in Figure 4 in
the Appendix.

The primary task uses cross entropy loss to compare the expected and predicted filled slots y°?. The
cross-entropy loss is also used for the auxiliary task, in which we take the sum of individual cross

qset

le Cg gSeL
1plTefels (1g

AGG OUTPUT

Pointer
ic Hi prayers SEL OUTPUT

Classifier Perera on alas

Ly totete (Ig Le -torels(
qWHERE > WHERE OUTPUT

Figure 2: Architecture of the decoder. Note the decoders are using Bahdanau attention and the
coverage mechanism as described in Section 4.2.

entropy losses for y’*4 (to optimize the model for correct NER tagging) and y"*? (to generate the
correct column/value pairs). The total loss function of the model is a weighted sum of the losses of
the 2 tasks and the coverage loss, as described in the equations below.

IY

Leortmary = S> ys” log go” (5)

i=1

|Q| K
_ tag atag map | Amap Laue =— > yi" log 95% — S~ yi"? log Gi} (6)

i=l i=1

Liotal = Lprimary + OLaux + BLcoverage (7)

5 Experiments

5.1 Data

This work used the WikiSQL dataset from Salesforce [2], which consists of over 80K examples drawn

from nearly 20K unique tables on Wikipedia. Concretely, each example consists of 3 items: a natural
language English question Q, a typed table schema C’, and a SQL query Y. Q and C are inputs to
the model, and Y is the output. One example from the dataset is shown in Table 5.1. Note that the
task does not require selecting a table name, so the FROM clause is not present in the examples.

Question (Q) What was the time for Peter Burwick of team Suzuki?

Table Schema (C) Rank (real) | Rider (str) | Team (str) | Speed (real) | Time (real)

SQL Query (Y) SELECT Time WHERE Rider=’ Peter Burwick’ AND Team=’ Suzuki’

Table 1: This table displays an input and output example from Chang et al. Note that the question

and table schema are both input and the SQL Query is the output.

The exact data format of the examples is a nested JSON with column names, SELECT aggregations,
and conditional operators tokenized into indices. A verbatim example can be found in Listing 2 in
the appendix. The dataset separately includes a JSON for the tables, which specifies the schema and

a few rows of data for each table. The actual data for the tables is used to verify that the predicted
SQL queries can return the correct results when run on a small database.

In accordance with our unique evaluation criteria, the dataset was then partitioned to create a zero-shot
testbed. There were approximately 65K training examples, 10K validation examples, and 5K test
examples. The testbed contained queries from over 1500 schemas that were not present in the training
and validation sets.

5.2 Evaluation method

We compute six qualitative evaluation metrics on the zero-shot testbed. All of these are computed
automatically in an evaluation script run after training. Of these, the Query-Match Accuracy (AC C'gm)
and Query-Execution Accuracy (ACC...) are the most important and holistic measures of accuracy
on the Text-to-SQL task. Their details are described below:

* Query-Match Accuracy: The percentage of matches between the predicted and ground
truth queries - checking aggregators, column names, condition values, etc. If there are
multiple WHERE conditions, their order does not matter.

* Query-Execution Accuracy: The percentage of matches between the tables returned when
the predicted and ground truth query are executed on the given data. This is a more forgiving
metric than Query-Match accuracy since multiple queries can return correct results.

The remaining four metrics evaluate accuracy on specific slots or clauses in the predicted SQL query.
These are generally less important than the above two metrics, but large variations in these metrics
may suggest certain experimental models are significantly better or worse are predicting specific
slots. This additional insight can help suggest which parts of the model can be further improved in
the debugging and experimentation process.

¢ Aggregator Accuracy: Compares the SELECT aggregators (COUNT, SUM, etc.) between
predicted and ground truth queries

¢ SELECT Accuracy: Compares the SELECT clause (column names and SELECT aggrega-
tors) between predicted and ground truth queries

¢ WHERE Accuracy: Compares the WHERE components (condition columns, operations,
and values) between the predicted and ground truth queries.

¢ COLUMN Accuracy: Compares all column names (in both SELECT and WHERE) be-
tween the predicted and ground truth queries.

5.3 Experimental details

The experiments build off the code from the base dual-task model in Chang et al. [1] with new
functionality implemented from scratch and integrated into the model per experiment, such as various
attention types, the coverage mechanism, and the TAPAS preprocessing pipeline. The model is
implemented in PyTorch [24].

The experiments were run for 45 epochs with a 0.001 learning rate that starts decaying by 2% after
the 8th epoch. While we did not extensively tune hyperparameters, we used a = 8 = 0.01 in our
weighted cross-entropy based loss function described in Equation 7 in Section 4.2. We use the Adam
optimizer [25] for gradient descent. Model training took approximately 6-8 hours on a single GPU.

The existing model and TAPAS could not both fit in GPU memory (12.0GB on a single GPU), and
running either on CPU was prohibitively slow, so the table representations were pre-generated using
TAPAS inference on GPU and stored in a JSON. This JSON was later parsed into a large PyTorch
Float Tensor, used to populate an embedding layer, and serialized, so that it could be used for batched
embedding lookups during training. The embedding layer itself is frozen during training.

5.4 Results

Results from select experiments are shown in Table 2. Seq2SQL is the baseline, and (DT) Base
indicates the model from Chang et al. as is. The rest of the experiments denote changes made on top
of the base dual-task model.

Model ACCym ACCez ACCagg ACCser1 ACCwnere ACCeot

Seq2SQL - 59.4 90.1 88.9 60.2 69.12

(DT) Base 62.06 70.70 90.29 89.38 74.26 79.06

(DT) Bahdanau 62.83 70.72 90.43 89.15 75.30 79.83

(DT) Typed Attn + 64.11 71.84 90.25 90.00 77.18 82.42
Cov

(DT) Cov 64.73 72:35 90.06 90.16 77.57 82.50

(DT) Cov + Cov 65.09 72.79 90.08 89.89 T7AI 82.40
Loss

(DT) TAPAS + 69.61 76.54 90.18 91.58 81.12 84.41
Cov + Cov Loss

Table 2: Accuracy results from select experiments. Numbers are all percentages. DT stands for dual-
task, referring to the dual-task seq2seq model proposed in Chang et al. The last 5 experiments all use
Bahdanau attention. "Cov" indicates the Coverage Mechanism used in the Attention Computations.

The model using Coverage and Coverage Loss in the decoders and Attentive Pooling layer along with
TAPAS-generated table representations showed the best accuracy across the board, and particularly
for the 2 critical metrics: AC'Cgm and ACC. While it was expected that generalizability-focsed
techniques would yield accuracy benefits, the 5.84% improvement over the base model from Chang
et al. is an encouraging result. This makes sense as the coverage mechanism provides a powerful
tool for preventing incorrect repetition in the output sequence. Additionally, the TAPAS-based table
encodings take advantage of a powerful, pre-trained BERT-based transformer as opposed to a simple
bidirectional LSTM that is learned from scratch in the Chang et al. model. The model that only used
Coverage also displayed significant improvements over the base Dual-Task model from Chang et al.,
and adding Coverage Loss to this further increased performance. The type-aware attention, inspired
by TypeSQL [6], uses a weighted average of the individual word vectors in the schema to form a final
table representation, yet this experiment combined with coverage yielded worse performance than
the experiment with coverage alone.

6 Analysis

In order to more accurately judge the generalizability of the model, we conduct a similarity study on
the zero shot testbed. Specifically, we sought to determine how different test set table schemas really
are from those in the training set. We then use a measure of this difference to determine whether the
familiarity of schemas is correlated with accuracy on the test set.

In order to do this, we start with the BERT-based table encodings generated in the pre-processing
pipeline using the TAPAS transformer. Next, for each example the in the test set, we computed the
average distance between its table encoding and the table encodings of its three nearest neighbors
in the training set. We can call this average distance the "uniqueness score" of each table schema,
since lower scores indicate smaller distances from familiar schemas, meaning the test schema is
more familiar and less unique. The nearest neighbor computation was done using Facebook’s FAISS
library [26], in which we created a searchable binary index of all the training set table encodings and
computed both cosine similarity and L2 norm as distance metrics.

We then computed the query-match accuracy of our proposed model on the testbed grouped by table
schema. Combining the accuracy observed per table schema with the uniqueness score of each
schema results in the plot in Figure 3.

From the plot, we can infer that truly unique schemas, while not altogether too common in the test
set, do typically result in lower accuracy. This makes intuitive sense since it is difficult for most

Test Set Accuracies vs Uniqueness Scores

10{\ Geese «ep

tos; 2m % e
amp e eee

9 —== os e 6° ®
“ 06) a= a ase e toa)

wv

@ See &S @ we 20 ® ©

5041 epeeeecee e
o au====e @ eee °° ®

5 a e ® @

G02) Sees 8° °

00; GPa. ee @ @e °

0 50000 100000 150000 200000
L2 Distance of table embedding from Nearest Neighbor in Training Set

Figure 3: Similarity Study plot. Each point represents a table schema in the test set. The Y axis
depicts the accuracy for each schema in the test set, and the X axis depicts the distance from the
schemas’ nearest neighbor in the training set. Note the clear trend that very unique schemas, while
relatively rare in the test set, see low accuracy.

models to predict accurately when the input example is very different from any example encountered
during training, especially given this study is conducted on the most stringent metric (AC'Cg) that
expects a verbatim match between the predicted and gold SQL queries. However, it also suggests that
additional work is needed to predict accurately for "long-tail" schemas.

While the model proposed in this work achieved an accuracy improvement over the model in Chang et
al., the plot shows there is still room for improvement on the zero-shot testbed for relatively familiar
schemas. Many tables with lower uniqueness scores also see low accuracy, suggesting factors apart
from table schema are still sub-optimal. Further optimizations outside of generalizability, such as
in model architecture and hyperparameter tuning, can contribute to more accurate translations on
relatively familiar examples. This may also suggest that improving the question encodings, exploring
end-to-end transformer-based methods, and using other techniques that improve SQL translation
quality may yield more accuracy benefits on this testbed than trying to improve generalizability to
accurately translate with very unique schemas.

7 Conclusion

We built an improved Text-to-SQL model that translates natural language English questions to
valid SQL queries, while showing better accuracy on a zero-shot testbed than previous work. Our
dual-task model uses a pre-trained BERT-based TAPAS transformer model to generate expressive
table representations in the encoder. We draw from semantic parsing research by feeding these table
encodings, along with question encodings, into a set of generalizable decoders that use Bahdanau
attention, the coverage mechanism for better recall and preventing repetition in the translation, and
coverage loss. These techniques allow us to demonstrate a 5+% improvement over the base dual-task
model architecture in Chang et al. on the zero-shot testbed.

Our similarity study showed that accuracy on examples decreases as the uniqueness of the table
schema increases, past a certain threshold. Very unique schemas are still difficult to generalize to,
and future work may explore further generalization techniques including using only transformer
encodings for both the question and schema or even variations of transformers for the entire task.
To improve accuracy on less unique schemas, future work can similarly draw on advancements in
transformer networks to produce high-quality translations.

References

[1]

[2 “
4

[3 “
4

[4 a

[5 “
4

[6 =

[7 a

[8 “
4

[9 —
“

[10]

[11]

[12]

[13]

[14]

Shuaichen Chang, Pengfei Liu, Yun Tang, Jing Huang, Xiaodong He, and Bowen Zhou. Zero-
shot text-to-sql learning with auxiliary task. Proceedings of the AAAI Conference on Artificial
Intelligence, 34(05):7488-7495, Apr. 2020.

Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating structured queries
from natural language using reinforcement learning. CoRR, abs/1709.00103, 2017.

Deborah A. Dahl, Madeleine Bates, Michael Brown, William Fisher, Kate Hunicke-Smith,

David Pallett, Christine Pao, Alexander Rudnicky, and Elizabeth Shriberg. Expanding the scope
of the ATIS task: The ATIS-3 corpus. In Human Language Technology: Proceedings of a
Workshop held at Plainsboro, New Jersey, March 8-11, 1994, 1994.

John M. Zelle and Raymond J. Mooney. Learning to parse database queries using inductive logic
programming. In Proceedings of the Thirteenth National Conference on Artificial Intelligence -
Volume 2, AAAT 96, page 1050-1055. AAAT Press, 1996.

Xiaojun Xu, Chang Liu, and Dawn Song. Sqlnet: Generating structured queries from natural
language without reinforcement learning. CoRR, abs/1711.04436, 2017.

Tao Yu, Zifan Li, Zilin Zhang, Rui Zhang, and Dragomir Radev. TypeSQL: Knowledge-based
type-aware neural text-to-SQL generation. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 2 (Short Papers), pages 588-594, New Orleans, Louisiana, June 2018.
Association for Computational Linguistics.

Li Dong and Mirella Lapata. Coarse-to-fine decoding for neural semantic parsing. CoRR,
abs/1805.04793, 2018.

Mazen Mel, Umberto Michieli, and Pietro Zanuttigh. Incremental and Multi-Task Learning
Strategies for Coarse-to-Fine Semantic Segmentation. Technologies, special issue on Computer
Vision and Image Processing Technologies, 8(1), 2020.

Tao Yu, Michihiro Yasunaga, Kai Yang, Rui Zhang, Dongxu Wang, Zifan Li, and Dragomir R.
Radev. Syntaxsqlnet: Syntax tree networks for complex and cross-domaintext-to-sql task.
CoRR, abs/1810.05237, 2018.

Alane Suhr, Ming-Wei Chang, Peter Shaw, and Kenton Lee. Exploring unexplored general-
ization challenges for cross-database semantic parsing. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pages 8372-8388, Online, July 2020.
Association for Computational Linguistics.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene
Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev. Spider: A large-scale
human-labeled dataset for complex and cross-domain semantic parsing and text-to-SQL task.
In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
pages 3911-3921, Brussels, Belgium, October-November 2018. Association for Computational
Linguistics.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural Comput.,
9(8):1735-1780, November 1997.

Jonathan Herzig, Pawet Krzysztof Nowak, Thomas Miiller, Francesco Piccinno, and Julian Mar-

tin Eisenschlos. Tapas: Weakly supervised table parsing via pre-training. In Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), Seattle, Washington, United States, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), pages 4171-4186, Minneapolis,
Minnesota, June 2019. Association for Computational Linguistics.

[15] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,

undefinedukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of
the 31st International Conference on Neural Information Processing Systems, NIPS’ 17, page
6000-6010, Red Hook, NY, USA, 2017. Curran Associates Inc.

[16] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony

Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,

Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain

Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-
art natural language processing. In Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing: System Demonstrations, pages 38-45, Online, October 2020.
Association for Computational Linguistics.

[17] C. D. Santos, M. Tan, Bing Xiang, and Bowen Zhou. Attentive pooling networks. ArXiv,
abs/1602.03609, 2016.

[18] Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu, and Hang Li. Coverage-based neural
machine translation. CoRR, abs/1601.04811, 2016.

[19] Abigail See, Peter J. Liu, and Christopher D. Manning. Get to the point: Summarization with
pointer-generator networks. CoRR, abs/1704.04368, 2017.

[20] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks, 2017.

[21] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. CoRR, abs/1409.0473, 2015.

[22] Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches to attention-
based neural machine translation. CoRR, abs/1508.04025, 2015.

[23] David Nadeau and Satoshi Sekine. A survey of named entity recognition and classification.
Lingvisticae Investigationes, 30(1):3—26, 2007.

[24] Adam Paszke, S. Gross, Francisco Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,

N. Gimelshein, L. Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zach DeVito, Martin

Raison, Alykhan Tejani, Sasank Chilamkurthy, B. Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. Pytorch: An imperative style, high-performance deep learning library. In NeurIPS,
2019.

[25] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2015.

[26] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. arXiv
preprint arXiv: 1702.08734, 2017.

A Appendix

A.1 Zero-Shot Base Code

The code provided by Chang et al. can be found here: https://github.com/JD-AI-Research-Silicon-
Valley/auxiliary-task-for-text-to-sql. We also also use the Huggingface Transformer library for
generating the TAPAS encodings [16].

10

A.2. Auxiliary Task Diagram

Table schema: | Rank | Rider | Team | Speed | Time | Table Schema

@) Rank

@ Rider

O O O O ~~.
A A A 4 “2eSae,

 |@ © @ @ ® Team
Question ; : :

What was the time for Peter Berwick of team Suzuki ?

e Speed

S Time
SQL: SELECT Time WHERE Rider = Peter Berwick AND Team = Suzuki

Figure 4: Architecture of the Auxiliary Task Model. This diagram is from Zero-Task paper by Chang
et al. An NER technique is used to detect entities in the input question. Each entity is passed into
the pointer decoder and attended with the table schema to "point" to corresponding column in the
schema, producing a mapping from entities (condition values) to condition columns.

A.3. WikiSQL Data Format

Listing 2: WikiSQL data format. Note that columns and operations have all been tokenized.

if
2 "phase": 2,

3 "table_id": "2-15496934-1",
4 "question": "What is the Serial number of the Locomotive that Entered

Service in November 1984 and has an Owner of Chicago Freight Car
Leasing Australia?",

5 "sql": {
6 "sel": 1,
7 "conds": [[2, 0, "november 1984"],
8 (3, 0, "chicago freight car leasing australia"]],
9 “age”: 0

10 }
i }

11

