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Abstract 

Sequence-to-sequence models have performed well at the Text-to-SQL task on 
datasets such as WikiSQL. However, most prior work does not examine generaliz- 
ability of the models to unfamiliar table schemas. We build on the ideas introduced 
by Chang et al. [1] to improve a sequence-to-sequence dual-task learning model by 
generalizing better on a zero-shot testbed, which consists of schemas the model has 
never encountered before. We use the pre-trained BERT-based TAPAS transformer 
model to encode more expressive table representations for the schema, in addition 
to the existing BiLSTM-based encodings. Additionally, we use techniques from 
semantic parsing research such as the coverage mechanism and more flexible at- 
tention algorithms to propose a model that achieves a 5+% accuracy improvement 
over the base dual-task sequence-to-sequence model on the zero-shot test set. 

1 Key Information 

¢ Mentor: Shikhar Murty 

e External Collaborators: N/A 
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2 Introduction 

The proliferation of inexpensive hardware and cloud services has enabled vast amounts of data to 
be stored in databases and data warehouses globally. Extracting insights from this data requires 
an intuitive understanding of Structured Query Language (SQL), a language which allows the 
composition of potentially complex and highly nested declarative queries to obtain results from across 
data sources. Since learning to compose complex SQL queries may restrict many potential users from 
interacting with data, much work has gone into enabling an alternative and more intuitive interface to 
query data in lieu of SQL: natural language questions in English. 

Translating natural language English questions to valid SQL queries that can be issued to a database 
can be posed as sequence-to-sequence neural machine translation (NMT) problem with some unique 
properties. These unique properties stem from the relatively standard template of SQL queries that 
most Text-to-SQL datasets like WikiSQL [2] follow, as seen in Listing 1. 

Listing 1: SQL Structure (* indicates there may be multiple WHERE clauses) 

SELECT $AGG $SEL_COLUMN FROM table_id WHERE ($COND_COL $COND_OP $COND_VAL) * 

  

  

Given a standardized template, the translation problem can be thought of as a sketch/slot-filling 
problem where only the aggregation and column names in the SELECT clause and the condition 

Stanford CS224N Natural Language Processing with Deep Learning



columns, values, and operations in the WHERE clause must be predicted. The Text-to-SQL task 
involves translating a natural language English question Q into a SQL query Y given a table schema 
C by correctly filling the specified slots 

While it is clear that accurate Text-to-SQL models could have a massive democratizing effect on 
data analytics, they are currently not effective enough to be used in a production environment. The 
primary issue is generalization - most existing models overfit to table schemas encountered during 
training, and thus cannot generalize well to unfamiliar schemas. Chang et al. is among the first works 
to address this generalization issue by proposing a dual-task model architecture and introducing a 
zero-shot testbed, which evaluates models on how well they translate queries from unfamiliar schemas 
(hence the "zero-shot" nature of the testbed) [1]. 

In this work, we explore a variety of techniques from semantic parsing, transformers, and attention 
to propose a model superior to the base dual-task model in Chang et al. Specifically, we use the 
coverage mechanism to prevent output sequence repetition, a modified loss function that includes 
coverage vectors for better regularization, Bahdanau attention, and pre-trained BERT-based schema 
encodings to achieve a 5+% improvement in query execution accuracy on the zero-shot testbed over 
the model proposed in Chang et al. 

3 Related Work 

There is a rich body of research that explores translating natural language questions into SQL queries. 
Early work in this area began with logic-based approaches to the ATIS (Air Traffic Information 
Service) [3] task and GEO queries [4], although both of these assumed a standard schema since the 

translation systems were specific to a database. More recent work in the field includes sequence 
to sequence models combined with Reinforcement Learning to generate SQL queries in Seq2SQL 
[2]. Seq2SQL consists of an augmented pointer network to learn the aggregations in the SELECT 
and WHERE clauses as well as the column names, and separately determines the randomly ordered 
WHERE conditions by using a policy gradient. This work also introduced the WikiSQL dataset 
which contains pairs of natural language questions and SQL queries for a wide variety of schemas, 
unlike the standardized schemas in ATIS and GEO. 

SQLNet produced better accuracy than Seq2SQL models by removing reinforcement learning and 
sequence-to-sequence methods and replacing them with a dependency graph approach that took 
advantage of the standard structure of SQL queries and column attention [5]. Newer work like 

TypeSQL [6] used the types of SQL query operators (such as column names, aggregators, condition 
operands, and condition values) to pose a slot-filling problem that outperformed SQLNet, as well 
as took advantage of the typing information in the table schema to learn expressive table encodings. 
Techniques like Coarse-to-Fine Decoding [7] [8] introduced multiple layers of decoding for higher- 
and lower-level understanding to better learn semantic relationships. SyntaxSQLNet combined 
column-attention encoders with syntax-tree based decoders to support more complex SQL query 
operators than previous work, such as nested queries and joins [9]. 

The Zero-Shot Text-to-SQL paper by Chang et al. incorporates many of the techniques described 
above but focuses much more on generalizability. This paper presents a far more generalizable model 
for Text-to-SQL translation that will work across a variety of schemas. While other work also explores 
generalizability in Text-to-SQL, such as that by Suhr et al. [10] on even more challenging datasets 
such as Spider [11], the results from these works suggest there is significant room for improvement 
in Text-to-SQL models generalizing to unfamiliar schemas. 

4 Approach 

We propose a model that builds upon the dual-task learning architecture in Chang et al. with new 
techniques such as the coverage mechanism in attention computations with regularizing coverage 
loss, BERT/TAPAS-based embeddings as pre-trained table representations, and Bahdanau attention. 

4.1 Baseline 

Seq2SQL kicked off much of the Deep Learning-based work on the Text-to-SQL task [2], and newer 

work in the field use Seq2SQL as a baseline. Briefly, Seq2SQL consists of an augmented pointer



network to learn the SELECT and WHERE aggregations as well as the column names, and separately 
determines the randomly ordered WHERE conditions by using a policy gradient. 

4.2 Primary SQL Generation Task 

The dual-task learning architecture in our proposed model consists of a main task for predicting 
the SELECT clause and the WHERE clause, as well as an auxiliary task that learns the mapping 
between conditional values and conditional columns in the WHERE clause. We build on top of the 
code provided by Chang et al. (a link to the original code base is provided in Appendix A.1), making 
significant changes to enable the approaches described below. 

Per Table 5.1, the model input consists of a question @ and a typed table schema C’. The natural 
language question @ is encoded with a standard bidirectional LSTM [12] to produce hidden rep- 
resentations h?. We implemented a new preprocessing pipeline for encoding the table schema C, 
since we hypothesized learning better table representations should improve generalizability. The 
question @ and schema C are padded to a standard length, tokenized to add standard separators, 
and passed as input into the pre-trained TAPAS transformer model [13]. TAPAS is a BERT-based 
transformer model [14] [15] that is focused on question answering, in that it takes queries and a table 

(from which it infers a schema given the column index) and outputs answers to those queries. Since 
we are interested in translating to SQL, we run inference with TAPAS on only the table schema and 
all queries corresponding to that table in order to extract pre-trained table representations from the 
transformer’s encoder. These pre-trained representations pass through an additional linear layer that 
learns a relative weighting of different aspects of the table schema (relative importance of columns 
and their types) to produce table encodings h°. The preprocessing pipeline was implemented from 
scratch, and we used the TAPAS transformer model in the Huggingface library [16]. 

We next combine the question encoding 4, and table encoding h° into hidden representations H° 
and H% using bi-attention. h{ and h4, are concatenated to form the final WHERE clause encoding 

qW HERE | 74 is passed into an attentive pooling layer [17], which utilizes the coverage mechanism 
[18] [19] (implemented from scratch, explained in the following paragraphs), to form a final SELECT 
clause encoding q°”". The encoder diagram and preprocessing pipeline are found in Figure 1. 

Our model uses 3 different decoders: a classifier decoder for predicting the aggregation in the 
SELECT clause, a pointer decoder for predicting column names [20], and a coarse-to-fine decoder 
for predicting the WHERE clause [7]. The decoders use Bahdanau (additive) attention [21] instead of 

Luong (multiplicative) attention [22] attention to better recall features in the encodings. Additionally, 
we address the common repetition problem in seq-to-seq models by using the coverage mechanism in 
the attention computations, which is described in the equations below. 

Assume a‘ models the attention distribution, computed by taking the softmax of attention scores e'. 
The attention scores are computed using Bahdanau attention as follows: 

ef = uv! tanh(Wphi + Ws8t + b) 
(1) 

a’ = softmaz(e') 

We then introduce a coverage vector, which is a running sum of the attention distributions of all the 
previous time steps: 

t-1 

t 7 t/ 
C= a 

t’=0 

oO =0 

We modify the attention computation to use this coverage vector. Specifically, we incorporate the 
coverage vector into the MLP when computing the Bahdanau attention scores: 

i= uv! tanh(Wphi + W,s: + weet +b) (2) 

As such, attention scores from previous time steps influence the attention scores at the current time 
step more, which can maintain context from earlier in the sequence. We also incorporate coverage



into the loss function by adding a coverage loss covloss scaled by some hyperparameter ( to the 
main loss function. Below is the coverage loss term for a decoder d and an element ¢ in the input 
sequence. 

covloss? = S> min(at, ct) (3) 

The total coverage loss will involve summing these losses across sequence length, as well as across 
the 3 decoders. Assume the set D consists of layers using the coverage mechanism (decoders and 
attentive pooling). We can then compute the total coverage loss as follows: 

7 

Lewerage = — S> S> covloss? (4) 

deD t=1 

The final encodings q°#", qW@4##"£, and H¢ are passed into the attentive decoders. The classifier 
decoder uses q°“ to predict AGG in the SELECT clause. The pointer decoder, which can point 
to a specific token in the input sequence instead of taking a weighted average of them, is useful 
for predicting column names since these are usually present verbatim in both the input question 
and schema. As such, the pointer takes both g°"" and H° as input to predict SELECT column 
names. Lastly, g” “"" is passed to the classifier and then to the coarse-to-fine decoder to predict 
conditional phrases in the WHERE clause. The decoder diagram can be found in Figure 2. 
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Figure 1: Architecture of the encoder and preprocessing stage of our proposed model. Note that the 
Question (Q) and Schema (C) are the model inputs, and 3 separate encoded representations (H°, 

Qe", and qW #¥*) are encoder outputs. 

4.3 Auxiliary Mapping Task 

The auxiliary task will predict a mapping between condition columns and condition values in the 
WHERE clause. A Name-Entity Recognition technique called BIO tags [23] is used to label question 
words as entities, values, or neither - producing a tag vector y'*’. The tagged words are passed 
into the pointer decoder along with H° to predict the pairs (called y™””) of column names/values 
of each WHERE clause, which are used with conditional operations predicted by the main task to 
construct each WHERE condition. While this same technique is used in Chang et al., our H° table 
representations are derived from the TAPAS-based preprocessing pipeline and the pointer decoder 
generalizes better with the coverage mechanism. A diagram of this task can be found in Figure 4 in 
the Appendix. 

The primary task uses cross entropy loss to compare the expected and predicted filled slots y°?. The 
cross-entropy loss is also used for the auxiliary task, in which we take the sum of individual cross 

qset
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Figure 2: Architecture of the decoder. Note the decoders are using Bahdanau attention and the 
coverage mechanism as described in Section 4.2. 

entropy losses for y’*4 (to optimize the model for correct NER tagging) and y"*? (to generate the 
correct column/value pairs). The total loss function of the model is a weighted sum of the losses of 
the 2 tasks and the coverage loss, as described in the equations below. 

IY 

Leortmary = S> ys” log go” (5) 

i=1 

|Q| K 
_ tag atag map | Amap Laue =— > yi" log 95% — S~ yi"? log Gi} (6) 

i=l i=1 

Liotal = Lprimary + OLaux + BLcoverage (7) 

5 Experiments 

5.1 Data 

This work used the WikiSQL dataset from Salesforce [2], which consists of over 80K examples drawn 

from nearly 20K unique tables on Wikipedia. Concretely, each example consists of 3 items: a natural 
language English question Q, a typed table schema C’, and a SQL query Y. Q and C are inputs to 
the model, and Y is the output. One example from the dataset is shown in Table 5.1. Note that the 
task does not require selecting a table name, so the FROM clause is not present in the examples. 

    

Question (Q) What was the time for Peter Burwick of team Suzuki? 

Table Schema (C) Rank (real) | Rider (str) | Team (str) | Speed (real) | Time (real) 

SQL Query (Y) SELECT Time WHERE Rider=’ Peter Burwick’ AND Team=’ Suzuki’ 
    

Table 1: This table displays an input and output example from Chang et al. Note that the question 

and table schema are both input and the SQL Query is the output. 

The exact data format of the examples is a nested JSON with column names, SELECT aggregations, 
and conditional operators tokenized into indices. A verbatim example can be found in Listing 2 in 
the appendix. The dataset separately includes a JSON for the tables, which specifies the schema and



a few rows of data for each table. The actual data for the tables is used to verify that the predicted 
SQL queries can return the correct results when run on a small database. 

In accordance with our unique evaluation criteria, the dataset was then partitioned to create a zero-shot 
testbed. There were approximately 65K training examples, 10K validation examples, and 5K test 
examples. The testbed contained queries from over 1500 schemas that were not present in the training 
and validation sets. 

5.2 Evaluation method 

We compute six qualitative evaluation metrics on the zero-shot testbed. All of these are computed 
automatically in an evaluation script run after training. Of these, the Query-Match Accuracy (AC C'gm) 
and Query-Execution Accuracy (ACC...) are the most important and holistic measures of accuracy 
on the Text-to-SQL task. Their details are described below: 

* Query-Match Accuracy: The percentage of matches between the predicted and ground 
truth queries - checking aggregators, column names, condition values, etc. If there are 
multiple WHERE conditions, their order does not matter. 

* Query-Execution Accuracy: The percentage of matches between the tables returned when 
the predicted and ground truth query are executed on the given data. This is a more forgiving 
metric than Query-Match accuracy since multiple queries can return correct results. 

The remaining four metrics evaluate accuracy on specific slots or clauses in the predicted SQL query. 
These are generally less important than the above two metrics, but large variations in these metrics 
may suggest certain experimental models are significantly better or worse are predicting specific 
slots. This additional insight can help suggest which parts of the model can be further improved in 
the debugging and experimentation process. 

¢ Aggregator Accuracy: Compares the SELECT aggregators (COUNT, SUM, etc.) between 
predicted and ground truth queries 

¢ SELECT Accuracy: Compares the SELECT clause (column names and SELECT aggrega- 
tors) between predicted and ground truth queries 

¢ WHERE Accuracy: Compares the WHERE components (condition columns, operations, 
and values) between the predicted and ground truth queries. 

¢ COLUMN Accuracy: Compares all column names (in both SELECT and WHERE) be- 
tween the predicted and ground truth queries. 

5.3 Experimental details 

The experiments build off the code from the base dual-task model in Chang et al. [1] with new 
functionality implemented from scratch and integrated into the model per experiment, such as various 
attention types, the coverage mechanism, and the TAPAS preprocessing pipeline. The model is 
implemented in PyTorch [24]. 

The experiments were run for 45 epochs with a 0.001 learning rate that starts decaying by 2% after 
the 8th epoch. While we did not extensively tune hyperparameters, we used a = 8 = 0.01 in our 
weighted cross-entropy based loss function described in Equation 7 in Section 4.2. We use the Adam 
optimizer [25] for gradient descent. Model training took approximately 6-8 hours on a single GPU. 

The existing model and TAPAS could not both fit in GPU memory (12.0GB on a single GPU), and 
running either on CPU was prohibitively slow, so the table representations were pre-generated using 
TAPAS inference on GPU and stored in a JSON. This JSON was later parsed into a large PyTorch 
Float Tensor, used to populate an embedding layer, and serialized, so that it could be used for batched 
embedding lookups during training. The embedding layer itself is frozen during training. 

5.4 Results 

Results from select experiments are shown in Table 2. Seq2SQL is the baseline, and (DT) Base 
indicates the model from Chang et al. as is. The rest of the experiments denote changes made on top 
of the base dual-task model.



    

Model ACCym  ACCez  ACCagg  ACCser1 ACCwnere  ACCeot 
  

Seq2SQL - 59.4 90.1 88.9 60.2 69.12 

(DT) Base 62.06 70.70 90.29 89.38 74.26 79.06 

(DT) Bahdanau 62.83 70.72 90.43 89.15 75.30 79.83 

(DT) Typed Attn + 64.11 71.84 90.25 90.00 77.18 82.42 
Cov 

(DT) Cov 64.73 72:35 90.06 90.16 77.57 82.50 

(DT) Cov + Cov 65.09 72.79 90.08 89.89 T7AI 82.40 
Loss 

(DT) TAPAS + 69.61 76.54 90.18 91.58 81.12 84.41 
Cov + Cov Loss 
    

Table 2: Accuracy results from select experiments. Numbers are all percentages. DT stands for dual- 
task, referring to the dual-task seq2seq model proposed in Chang et al. The last 5 experiments all use 
Bahdanau attention. "Cov" indicates the Coverage Mechanism used in the Attention Computations. 

The model using Coverage and Coverage Loss in the decoders and Attentive Pooling layer along with 
TAPAS-generated table representations showed the best accuracy across the board, and particularly 
for the 2 critical metrics: AC'Cgm and ACC. While it was expected that generalizability-focsed 
techniques would yield accuracy benefits, the 5.84% improvement over the base model from Chang 
et al. is an encouraging result. This makes sense as the coverage mechanism provides a powerful 
tool for preventing incorrect repetition in the output sequence. Additionally, the TAPAS-based table 
encodings take advantage of a powerful, pre-trained BERT-based transformer as opposed to a simple 
bidirectional LSTM that is learned from scratch in the Chang et al. model. The model that only used 
Coverage also displayed significant improvements over the base Dual-Task model from Chang et al., 
and adding Coverage Loss to this further increased performance. The type-aware attention, inspired 
by TypeSQL [6], uses a weighted average of the individual word vectors in the schema to form a final 
table representation, yet this experiment combined with coverage yielded worse performance than 
the experiment with coverage alone. 

6 Analysis 

In order to more accurately judge the generalizability of the model, we conduct a similarity study on 
the zero shot testbed. Specifically, we sought to determine how different test set table schemas really 
are from those in the training set. We then use a measure of this difference to determine whether the 
familiarity of schemas is correlated with accuracy on the test set. 

In order to do this, we start with the BERT-based table encodings generated in the pre-processing 
pipeline using the TAPAS transformer. Next, for each example the in the test set, we computed the 
average distance between its table encoding and the table encodings of its three nearest neighbors 
in the training set. We can call this average distance the "uniqueness score" of each table schema, 
since lower scores indicate smaller distances from familiar schemas, meaning the test schema is 
more familiar and less unique. The nearest neighbor computation was done using Facebook’s FAISS 
library [26], in which we created a searchable binary index of all the training set table encodings and 
computed both cosine similarity and L2 norm as distance metrics. 

We then computed the query-match accuracy of our proposed model on the testbed grouped by table 
schema. Combining the accuracy observed per table schema with the uniqueness score of each 
schema results in the plot in Figure 3. 

From the plot, we can infer that truly unique schemas, while not altogether too common in the test 
set, do typically result in lower accuracy. This makes intuitive sense since it is difficult for most
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Figure 3: Similarity Study plot. Each point represents a table schema in the test set. The Y axis 
depicts the accuracy for each schema in the test set, and the X axis depicts the distance from the 
schemas’ nearest neighbor in the training set. Note the clear trend that very unique schemas, while 
relatively rare in the test set, see low accuracy. 

models to predict accurately when the input example is very different from any example encountered 
during training, especially given this study is conducted on the most stringent metric (AC'Cg) that 
expects a verbatim match between the predicted and gold SQL queries. However, it also suggests that 
additional work is needed to predict accurately for "long-tail" schemas. 

While the model proposed in this work achieved an accuracy improvement over the model in Chang et 
al., the plot shows there is still room for improvement on the zero-shot testbed for relatively familiar 
schemas. Many tables with lower uniqueness scores also see low accuracy, suggesting factors apart 
from table schema are still sub-optimal. Further optimizations outside of generalizability, such as 
in model architecture and hyperparameter tuning, can contribute to more accurate translations on 
relatively familiar examples. This may also suggest that improving the question encodings, exploring 
end-to-end transformer-based methods, and using other techniques that improve SQL translation 
quality may yield more accuracy benefits on this testbed than trying to improve generalizability to 
accurately translate with very unique schemas. 

7 Conclusion 

We built an improved Text-to-SQL model that translates natural language English questions to 
valid SQL queries, while showing better accuracy on a zero-shot testbed than previous work. Our 
dual-task model uses a pre-trained BERT-based TAPAS transformer model to generate expressive 
table representations in the encoder. We draw from semantic parsing research by feeding these table 
encodings, along with question encodings, into a set of generalizable decoders that use Bahdanau 
attention, the coverage mechanism for better recall and preventing repetition in the translation, and 
coverage loss. These techniques allow us to demonstrate a 5+% improvement over the base dual-task 
model architecture in Chang et al. on the zero-shot testbed. 

Our similarity study showed that accuracy on examples decreases as the uniqueness of the table 
schema increases, past a certain threshold. Very unique schemas are still difficult to generalize to, 
and future work may explore further generalization techniques including using only transformer 
encodings for both the question and schema or even variations of transformers for the entire task. 
To improve accuracy on less unique schemas, future work can similarly draw on advancements in 
transformer networks to produce high-quality translations.
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A Appendix 

A.1 Zero-Shot Base Code 

The code provided by Chang et al. can be found here: https://github.com/JD-AI-Research-Silicon- 
Valley/auxiliary-task-for-text-to-sql. We also also use the Huggingface Transformer library for 
generating the TAPAS encodings [16]. 
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A.2. Auxiliary Task Diagram 

Table schema: | Rank | Rider | Team | Speed | Time | Table Schema 

  

  

  

@) Rank 

@ Rider 

O O O O ~~. 
A A A 4 “2eSae, 

 |@ © @ @ ® Team 
Question ; : : 

What was the time for Peter Berwick of team Suzuki ? 

e Speed 

S Time 
SQL: SELECT Time WHERE Rider = Peter Berwick AND Team = Suzuki 

Figure 4: Architecture of the Auxiliary Task Model. This diagram is from Zero-Task paper by Chang 
et al. An NER technique is used to detect entities in the input question. Each entity is passed into 
the pointer decoder and attended with the table schema to "point" to corresponding column in the 
schema, producing a mapping from entities (condition values) to condition columns. 

A.3. WikiSQL Data Format 

Listing 2: WikiSQL data format. Note that columns and operations have all been tokenized. 
  

if 
2 "phase": 2, 

3 "table_id": "2-15496934-1", 
4 "question": "What is the Serial number of the Locomotive that Entered 

Service in November 1984 and has an Owner of Chicago Freight Car 
Leasing Australia?", 

5 "sql": { 
6 "sel": 1, 
7 "conds": [[2, 0, "november 1984"], 
8 (3, 0, "chicago freight car leasing australia"]], 
9 “age”: 0 

10 } 
i } 
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