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Abstract 

Automatic label extraction from free-text radiology reports enables efficient and 
large-scale training of natural language processing models for the medical setting. 
The current state-of-the-art label-extraction model, CheXbert [1], has been shown 

to work well on English-language radiology reports, but has not yet been tested 
in the multilingual setting. In this work, we explore how well Multilingual BERT 
performs on Spanish-language radiology reports. We find that regardless of whether 
the model is finetuned on English reports or Spanish reports, Multilingual BERT 
offers no real performance gains over English BERT when evaluating on Spanish- 
language reports. Furthermore, we show that while finetuning on human-labeled 
reports is better than finetuning on automatically-labeled reports, finetuning first on 
automatically-labeled reports and then further finetuning on human-labeled reports 
offers the best results. 

1 Key Information to include 

¢ External collaborators (if you have any): Anuj Pareek (radiology resident for domain 
expertise) 

¢ External mentor (if you have any): Pranav Rajpurkar (Stanford ML Group) 

* Code: Our codebase can be found here: https://github.com/ASaporta/multilingual-CheXbert 
(we have given Akshay Smit and Pranav Rajpurkar access to it). Much of our code- 
base was adapted from the CheXbert repo: https://github.com/stanfordmlgroup/CheX bert. 
The following scripts are new: evaluate.py, preprocess.py, split_data.py, and 
translate.py. 

2 Introduction 

Chest X-rays, the most common radiological exam, are a crucial tool in healthcare, allowing healthcare 
practitioners to rule out, identify, or monitor the progress of various (often critical) health conditions. 
Chest X-rays are typically accompanied by textual summaries of key observations and findings 
made by the attending radiologist. These radiology reports represent a radiologist’s professional 
interpretation of the chest X-ray image, including statements on which conditions are (1) unlikely 
(negative), (2) likely (positive), and (3) not to be ruled out as a possibility (uncertain). However, this 

information is encoded in language rather than a more structured format. Extracting structured labels 
from the reports could yield efficiency improvements in medical settings. For instance, healthcare 
practitioners could better prioritize patients if they could sort them by potential diagnosis severity. 
Structured labels are also needed in order to perform research (for instance, learning diagnoses 
from the image alone), and automatic methods would remove the burden from expert radiologists of 
manually labeling datasets that are sufficiently large. 
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In the past, researchers have explored automatic label extraction using a variety of approaches, 
including rule-based and neural methods. Rule-based methods failed to extract key insights obfuscated 
by complex natural language, and initial neural approaches, though successful, were highly dependent 
on large volumes of expert-annotated data for training without making use of existing labeler systems. 
More recently, a model called CheXbert [1], found great success by utilizing the scaling opportunity 
provided by existing rule-based labelers and also incorporating high-quality expert-labeled data. 

CheXbert helps solve the limitations posed by small volumes of expert annotations in the medical 
domain. This problem is only exacerbated when we look to foreign languages, many of which 
are low-resource, and especially so when it comes to the medical domain. We explore the extent 
to which the methods used to develop CheXbert can be modified and applied in a multilingual 
setting. Specifically, we compare the performance on a positive label extraction task of multilingual 
BERT-base models [2] ("M-BERT") to the performance of the monolingual, English BERT-base 

model [3] ("EN-BERT") used by CheXbert. Our experiments entail finetuning the M-BERT model 

on various combinations of English- and Spanish-language, and automatically- and human-labeled 
reports, and then evaluating these models on human-labeled Spanish-language reports. 

We find that regardless of whether the model is finetuned on English reports or Spanish reports, 
M-BERT offers no real performance gains over EN-BERT when evaluating on Spanish-language 
reports. Furthermore, we show that while finetuning on human-labeled reports is better than finetuning 
on automatically-labeled reports, finetuning first on automatically-labeled reports and then further 
finetuning on human-labeled reports offers the best results. 

3 Related Work 

Our research directly builds off of the efforts of the authors of CheXbert. CheXbert not only made 
efficient use of available resources, but also outperformed the previous state-of-the-art rule-based 
labeler with statistical significance. The CheXbert task was to classify each of 14 "observations" 
as blank, positive, negative, or uncertain. Observations included pathologies such as "Edema" 
or "Enlarged Cardiomediastinum", and non-pathological observations in the chest X-ray such as 
"Fracture" or "Support Devices". A "blank" label indicated that a particular observation wasn’t 
mentioned in the summary. Negative and positive affirmed the respective absence or presence 
of a particular observation based on the summary. Uncertain meant the summary mentioned the 
observation without confirming or excluding the possibility of its presence. This 4-class paradigm 
played a critical role in our training process. 

Che Xbert was obtained by starting with a BERT model called BlueBERT, which was pretrained on 
a biomedical corpus [4]. This BERT model was then finetuned in two steps using CheXpert [5], a 
large publicly available dataset of chest X-rays. In the first step, the pretrained BlueBERT model 
was finetuned on labels automatically generated by the rule-based CheXpert labeler. In the second 
step, the model was finetuned on the CheXpert manual set, a subset of CheXpert that was labeled by 
expert radiologists, and augmented by backtranslation. Backtranslation is the process of translating a 
sequence into another language and then translating it back, exploiting the information loss inherent in 
imperfect translation models to yield semantically similar but syntactically different textual data. This 
was especially useful because of the limited amount of manually-labeled data available. Our approach 
differed in that we did not pretrain on a biomedical corpus, nor did we always finetune in two steps. 
We also did not employ backtranslation. Though we currently deviate from the CheXbert method 
in these ways, our experimental process was heavily informed by CheXbert and the conceptual 
similarities are not insignificant. Our future work will in part focus on thinning the gap between their 
methods and ours. 

One of the ways CheXbert was evaluated was with an average of F1 scores calculated for each 
observation. According to this metric, CheXbert achieved statistically superior performance compared 
to CheXpert, the previous state-of-the-art labeler. CheXbert also achieved statistically superior 
performance on a per-observation level for 9 of the 14 observations. The authors analyze specific 
examples where CheXbert was able to identify positive, negative, and uncertain observation labels 
that CheXpert missed, demonstrating that the complexity of natural language stands to benefit from a 
more sophisticated approach than rule-based. 

The success of CheXbert demonstrated that the overall approach of training on a combination of 
automatically- and manually-labeled data (and the use of backtranslation as a dataset augmentation



technique) could be worth applying across other medical domains—and other languages. Where 
high-quality expert-labeled data is not so widely available or easy to obtain, training in conjunction 
with automatically-labeled data can yield promising results. 

4 Approach 

4.1 Task 

The report labeling task is to take as input the Impression section of a free-text radiology report 
(which summarizes the key findings in a chest X-ray image) and output 14 labels for 14 conditions 
that could be seen on a chest X-ray. Each of the 14 labels is binary: a positive output indicates that 
the class is present according to the radiology report and a negative output indicates that the class is 
absent according to the radiology report. 

4.2 Data 

In this work, we use two large publicly available chest X-ray datasets. As our English-language 
dataset, we used MIMIC-CXR [6], which has 187,674 radiology reports that were automatically 
labeled for the 14 conditions of interest using the CheXpert labeler [5]. For 13 of the 14 conditions, 
the CheXpert labeler outputs four possible classes: position, negative, uncertain, and blank. For the 
"No Finding" condition, the CheXpert labeler outputs a binary positive or negative label. Uncertain 
indicates that the condition was mentioned in the report, but it is uncertain whether the condition is 
present in the chest X-ray image. Blank indicates that the condition was not mentioned at all in the 
report. We convert all blank labels in MIMIC to negative labels, so that the MIMIC dataset had only 
three labels: positive, negative, and uncertain. 

As our Spanish-language dataset, we use PadChest [7], which has 84,170 radiology reports. Of those 
reports, 63,889 were automatically-labeled using a supervised method based on a recurrent neural 
network with attention mechanisms, and 20,281 were manually annotated by trained physicians. 
While MIMIC has only 14 labels, PadChest has 193 labels for radiographic findings or differential 
diagnoses. Therefore, in order to map each of the 193 PadChest labels to one or more of the CheXpert 
labels (or ‘N/A’, if there was no comparable label), we built a mapping with the help of Anuj Pareek, 
a radiology resident in the Stanford Machine Learning Group. Although the majority of the PadChest 
labels either have one corresponding CheXpert label or no corresponding label (“many-to-one" or 
“many-to-none"), a couple of the PadChest labels have two corresponding CheXpert labels (“one- 
to-many"). Each report in the PadChest dataset has a corresponding list of labels. We consider any 
condition in that list to be positive and any condition absent from that list to be negative. 

We randomly shuffle and split the MIMIC dataset into a training set (185,174 reports) and a validation 
set (2,500 reports). We divide the PadChest dataset into automatically-labeled reports and human- 
labeled reports. We then randomly shuffle and further split each of those two groups of PadChest 
reports: the automatically-labeled reports are split into a training set (61,389 reports) and a validation 
set (2,500), and the human-labeled reports are split into a training set (15,281), a validation set 

(2,500), and a test set (2,500). See Table 1 the prevalence of each condition in each of our dataset 

splits (two splits for MIMIC and five splits for PadChest). 

4.3. Model Architecture 

For all of our models, we follow the approach taken by the authors of CheXbert and use a modification 
of the BERT-base architecture [3] that has 14 linear heads, one for each condition (see Figure 1). The 

text of each radiology report is tokenized, and the maximum number of tokens in each input sequence 
is capped at 512. The hidden state corresponding to the CLS token in the model’s final layer is then 
fed as input to each of the 14 linear heads. Deviating slightly from CheXbert’s approach, we have 13 
of the 14 linear heads generate three class scores (positive, negative, and uncertain), and have the 
linear head for "No Finding" generate two class scores (positive and negative).



  

  

    

MIMIC (English) PadChest (Spanish) 

Train set Val set Train set Val set Train set Val set Test set 
Condition auto-labeled auto-labeled auto-labeled auto-labeled human-labeled human-labeled — human-labeled 

Atelectasis 32,517 (17.6%) 457 (18.3%) 4,357 (7.1%) 161 (6.4%) 1,140 (7.5%) 165 (6.6%) 188 (7.5%) 

Cardiomegaly 30,660 (16.6%) 376 (15.0%) 6,880 (11.2%) 272 (10.9%) 1,865 (12.2%) 292 (11.7%) 293 (11.7%) 

Consolidation 8,365 (4.5%) 109 (4.4%) 1,333 (2.2%) 61 (2.4%) 178 (1.2%) 29 (1.2%) 27 (1.1%) 

Edema 21,242 (11.5%) 277 (11.1%) 3,603 (5.9%) 145 (5.8%) 1,207 (7.9%) 186 (7.4%) 204 (8.2%) 

Enlarged Cardiom. 4,932 (2.7%) 64 (2.6%) 2,113 (3.4%) 81 (3.2%) 583 (3.8%) 85 (3.4%) 92 (3.7%) 

Fracture 3,220 (1.7%) 46 (1.8%) 2,797 (4.6%) 105 (4.2%) 865 (5.7%) 150 (6.0%) 142 (5.7%) 

Lung Lesion 4,950 (2.7%) 46 (1.8%) 5,012 (8.2%) 215 (8.6%) 1,310 (8.6%) 219 (8.8%) 221 (8.8%) 

Lung Opacity 37,158 (20.1%) 501 (20.0%) 11,285 (18.4%) 473 (18.9%) 2,734 (17.9%) 449 (18.0%) 442 (17.7%) 

Pleural Effusion 40,099 (21.7%) 522 (20.9%) 5,407 (8.8%) 218 (8.7%) 900 (5.9%) 148 (5.9%) 168 (6.7%) 

Pleural Other 1,478 (0.8%) 16 (0.6%) 2,050 (3.3%) 79 (3.2%) 947 (6.2%) 157 (6.3%) 160 (6.4%) 

Pneumonia 12,991 (7.0%) 175 (7.0%) 3,856 (6.3%) 161 (6.4%) 816 (5.3%) 141 (6.6%) 136 (5.4%) 

Pneumothorax 7,474 (4.0%) 94 (3.8%) 277 (0.5%) 11 (0.4%) 50 (0.3%) 4 (0.2%) 13 (0.5%) 

Support Devices 44,797 (24.2%) 596 (23.8%) 10,560 (17.2%) 412 (16.5%) 1,637 (10.7%) 250 (10.0%) 298 (11.9%) 

No Finding 68,983 (37.3%) 960 (38.4%) 25,285 (41.2%) 1,044 (41.8%) 6,647 (43.5%) 1,139 (45.6%) 1,086 (43.4%) 

Total size of split 185,174 (100.0%) 2,500 (100.0%) |61,389 (100.0%) 2,500 (100.0%) 15,281 (100.0%) 2,500 (100.0%) 2,500 (100.0%)   

Table 1: Number of positive examples for each condition in each of the dataset splits for MIMIC 
and PadChest. In parentheses are the percentage of positive examples over total size of the relevant 
dataset split (shown in the last row). 

4.4 Training Details 

Each of our BERT-base models is pretrained either on lower-cased English text (EN-BERT) or on 
cased text in the top 104 languages with the largest Wikipedias (Multilingual BERT, or M-BERT). 
EN-BERT contains 110M parameters and M-BERT contains 179M parameters. 

Just as in CheXbert, all models are finetuned for eight epochs using cross-entropy loss and Adam 
optimization with a learning rate of 2 x 10~°. The cross-entropy losses for each of the 14 conditions 
are added to produce the final loss. We finetune all layers of our models, including the embeddings. 
During training, we use a dropout layer before the 14 linear heads, and we periodically evaluate our 
model on the validation set and save the checkpoint with the highest performance according to the 
Cohen’s Kappa statistic. Unless otherwise specified, all models are trained using one Tesla K80 GPU 
with a batch size of 18. 

4.5 Evaluation 

To label radiology reports, MIMIC uses three classes (positive, negative, and uncertain) and PadChest 
uses two classes (positive and negative). Therefore, we chose to generate binary predictions from 
each model’s three class scores for 13 of the conditions (as mentioned, the model already outputs 
only two class scores for "No Finding"). For each of the 13 conditions with three class scores, we 
ignore the score for the class "uncertain" and assign to that condition whichever of the remaining two 
classes, positive or negative, has the higher score. 

Since the goal of this study is to determine how our models perform on Spanish-language radiology 
reports, all models are evaluated on the PadChest human-labeled test set. We evaluate our models 

using the F1 score for each of the 14 conditions. We also compute a weighted F1 score, where each 
condition is weighted by the proportion of positive labels for that condition in the ground truth test 
set. 

5 Experiments 

5.1 Baselines 

We ran two baselines, for which we finetuned EN-BERT on the English-language MIMIC dataset. 
During training, we evaluate our model on the validation set every 2,000 iterations. For our first 
baseline, we evaluated the model on the Spanish-language PadChest test set. For our second baseline, 
we first translated the test set into English using HuggingFace’s MarianMT [8], and then evaluated 
the model on that translated test set.
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Figure 1: Following CheXbert’s approach, all models use a modification of the BERT-base architec- 
ture with 14 linear heads. 

Results As shown in Table 2, our first baseline, evaluated on the original test set in Spanish, 
achieves a weighted F1 score of 0.379. Our second baseline, evaluated on the translated test set in 
English, achieves a weighted F1 score of 0.492. This improvement in performance from our first 
baseline to our second baseline is likely due to the fact that EN-BERT is pretrained and finetuned on 
English datasets. Therefore, translating the test set’s Spanish radiology reports into English before 
evaluation helped the model’s performance significantly. 

The FI scores for Atelectasis are higher than for any other condition for both the first baseline (0.788) 
and the second baseline (0.950). Our first baseline obtains an F1 score of 0.000 for Fracture, Pleural 

Effusion, Pneumonia, and Pneumothorax. Our second baseline obtains an F1 score of 0.000 for 

Pleural Effusion. For all conditions with a baseline F1 score of 0.000 except Pneumonia, our models 
predict negative labels on all reports; for Pneumonia on our first baseline, our model predicts negative 
labels on all reports except for a single false positive prediction. 

We hypothesize that Pneumonia is a particular difficult condition for EN-BERT given that 8.4% of 
the MIMIC radiology reports has an uncertain label for Pneumonia (significantly higher than for any 
other condition), and only 7.0% of the reports has a positive label for Pneumonia. Furthermore, the 
14 conditions are a mix of radiographic findings (which are completely observable in a chest X-ray 
image) and differential diagnoses (which, according to the authors of PadChest, "are characterized by 
intrinsic uncertainty and a highly multidimensional context which is not included in the image"). The 
two differential diagnoses in our study are Pneumonia and Edema, on which neither our first baseline 
(Pneumonia 0.000; Edema 0.047) or our second baseline (Pneumonia 0.082; Edema 0.056) performs 

particularly well.



5.2 Experiments 

We ran four experiments using M-BERT and one experiment using EN-BERT. For M-BERT ft-en 
auto, we finetune M-BERT on the English-language MIMIC dataset (whose labels were generated 
automatically using CheXpert). We evaluate our model on the validation set every 2,000 iterations. 
We use a Tesla P100-PCIE-16GB GPU instead of a Tesla K80 GPU. 

For M-BERT ft-sp auto, we finetune M-BERT on the Spanish-language PadChest split of 
automatically-labeled reports. For M-BERT ft-sp human, we finetune M-BERT on the Spanish- 
language PadChest split of human-labeled reports. For M-BERT ft-sp auto-human, we initialize 
the model with the weights from M-BERT ft-sp auto and then finetune further on the PadChest split of 
human-labeled reports. During training for M-BERT ft-sp auto, M-BERT ft-sp human, and M-BERT 
ft-sp auto-human, we evaluate our model on the validation set every 200 iterations. See Figure 2 for 
the pipeline for M-BERT ft-sp experiments. 

For EN-BERT ft-sp auto-human, we first finetune EN-BERT on the Spanish-language PadChest 
split of automatically-labeled reports, and then further finetune on the PadChest split of human-labeled 
reports. During both finetune steps, we evaluate our model on the validation set every 200 iterations 
and use a Tesla P100-PCIE-16GB GPU instead of a Tesla K80 GPU. 
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Figure 2: Pipeline for M-BERT ft-sp experiments. 

Results As shown in Table 2, M-BERT ft-en auto obtains a weighted F1 score of 0.489, which 

is slightly worse than the weighted F1 score for our second baseline (0.492). While M-BERT ft-en 
auto is finetuned on English reports, we expected that the model would perform better than either 
of the two baseline given that it was pretrained on a multilingual dataset. However, it seems that 
using a multilingual BERT-base model gives no performance gains on a Spanish dataset than an 
English BERT-base model on a Spanish dataset naively translated into English before evaluation. 
We hypothesize that there are domain-specific terms that EN-BERT and M-BERT are both able to 
learn in English during finetuning, and that EN-BERT is able to recognized during evaluation after 
a naive translation, but that M-BERT isn’t able to recognize in Spanish. Furthermore, just like the 
two baselines, M-BERT ft-en auto struggles on Pleural Effusion, for which it obtains an F1 score of 
0.000. 

Table 2 also shows the results for M-BERT ft-sp auto, M-BERT ft-sp human, and M-BERT ft-sp 
auto-human, all of which perform significantly better than the baselines and M-BERT ft-en auto 
across all 14 conditions. This indicates that finetuning M-BERT directly on Spanish-language reports 
significantly, and positively, impacts model performance on Spanish-language reports. 

For 11 of the 14 conditions, M-BERT ft-sp human outperforms M-BERT ft-sp auto, which might be 
expected given that human labels are likely more accurate than automatically generated labels. That 
said, the automatically-labeled PadChest split is significantly larger than the human-labeled PadChest



split, which could explain M-BERT ft-sp auto’s better performance than M-BERT ft-sp human on 
Consolidation, Lung Lesion, and Pleural Effusion. Of the three M-BERT ft-sp models, M-BERT 
ft-sp auto-human performs the best on all conditions except Cardiomegaly and Pneumonia, and has 
the highest weighted F1 score (0.985), followed by M-BERT ft-sp human (0.979) and then M-BERT 

ft-sp auto (0.964). 

Of all the conditions, the M-BERT ft-sp models perform the worst on Pneumothorax (auto 0.556; 
human 0.700; auto-human 0.870). We hypothesize that this is due to the low prevalence of Pneumoth- 
orax in the PadChest dataset: only 0.4% of the PadChest reports are positive for Pneumothorax. This 
suggests that prevalence is an important factor for model performance on a condition. 

Finally, Table 2 shows the results of EN-BERT ft-sp auto-human. Of all the experiments we run, 
EN-BERT ft-sp auto-human has the highest weighted F1 score (0.986), and performs the best on 
8 of the 14 conditions. Since our second baseline, even using a subpar translation model, has a 
higher weighted F1 score than M-BERT ft-en auto, and since the performances of M-BERT ft-sp 
auto-human and EN-BERT ft-sp auto-human are fairly comparable, it seems that M-BERT offers 
no real performance gains over EN-BERT, regardless of whether the model is finetuned on English 
reports or Spanish reports. 

EN-BERT EN-BERT M-BERT M-BERT M-BERT M-BERT EN-BERT 

  

  

ft-en auto ft-en auto ft-en auto ft-sp auto ft-sp human _ft-sp ft-sp 
test set: orig test set: trans auto-human auto-human 

Condition (Baseline 1) (Baseline 2) 

Atelectasis 0.788 0.950 0.966 0.981 0.992 0.997 0.997 

Cardiomegaly 0.683 0.673 0.685 0.920 0.988 0.978 0.980 

Consolidation 0.432 0.333 0.303 0.863 0.848 0.962 0.981 

Edema 0.047 0.056 0.092 0.981 0.990 0.990 0.993 

Enlarged Cardiom. 0.250 0.210 0.328 0.885 0.889 0.906 0.902 

Fracture 0.000 0.584 0.737 0.982 0.983 0.986 0.983 

Lung Lesion 0.347 0.416 0.633 0.964 0.943 0.982 0.973 

Lung Opacity 0.058 0.223 0.181 0.916 0.969 0.970 0.974 

Pleural Effusion 0.000 0.000 0.000 0.988 0.985 0.988 0.994 

Pleural Other 0.056 0.140 0.111 0.978 0.981 0.991 0.987 

Pneumonia 0.000 0.082 0.043 0.967 0.974 0.960 0.975 

Pneumothorax 0.000 0.375 0.000 0.556 0.700 0.870 0.870 

Support Devices 0.013 0.443 0.037 0.987 0.993 1.000 0.997 

No Finding 0.743 0.780 0.828 0.988 0.994 0.996 0.997 

Weighted Average 0.379 0.492 0.489 0.964 0.979 0.985 0.986 
  

Table 2: The F1 scores for each condition and the weighted F1 scores across all conditions for all six 
experiments, including baseline. Underlined values indicate best F1 score between the two baseline 
experiments, and bolded values indicate the best Fl score for each condition across all experiments. 

6 Analysis 

We analyze why our second baseline, EN-BERT ft-en auto evaluated on the translated test set, 
performs more poorly than expected and find that the MarianMT translations are noticeably lacking. 
For example, a PadChest report that is positive for Lung Opacity and Pleural Other reads, "cambi 
pulmonar cronic . engros pleuroparenquimat biapical . sign atrap aere con aplan diafragmat ." The 
English translation produced by MarianMT is, "cambi pulmonary cronic. engros pleuroparenquimat 
biapical. sign atrap aere con aplan diaphragm." We see that there are abbreviations of fairly 
basic words in Spanish that MarianMT fails to translate at all. For example, cambi and cronic are 
abbreviations that likely mean cambio (""change" in English) and cronico ("chronic" in English), 
respectively. More surprisingly, even full, common Spanish words such as con, which means "with" 
in English, do not seem to be translated at all by MarianMT. 

Given this limitation of MarianMT, it is not surprising that the translation model fails to recognize 
medical abbreviations such as pleuroparenquimat, which is short for pleuroparenquimatos meaning 
"pleuroparenchymal" in English. This inability to translate Spanish abbreviations, medical or



otherwise, is apparent across reports in the test set and across conditions, and is likely a large 
reason that our second baseline performs so poorly. 

This limitation of MarianMT does not explain, though, why both baseline models seem to perform 
fairly well on Atelectasis. To investigate this further, we choose the Spanish word or prefix most 
commonly associated with 11 of the conditions in the PadChest dataset and count the number of 
times that that word or prefix is mentioned in reports that are positive for each of the conditions (see 
Figure 3). For example, neumon is the Spanish prefix most commonly used in the PadChest reports 
to refer to Pneumonia. 

Three conditions—Enlarged Cardiomediastinum, Lung Opacity, and Support Devices—do not have 
a single most common word or prefix associated with them, so we exclude them from the list. 
For example, a positive label for Enlarged Cardiomediastinum often co-occurs with the Spanish 
abbreviation for "mediastinum", which is mediastin. Enlarged Cardiomediastinum is also often 
indicated by terms such as aument siluet cardiac (meaning "increased cardiac silhouette" in English) 
and elongacion aort (meaning "aortic elongation" in English). Even for the 11 conditions that 
do seem to have a natural Spanish translation, they are often referred to by multiple names. For 
example, Lung Lesion is indicated by nodul ("nodule"), only slightly more often than it is indicated 
by granulom calcific (calcified granuloma") or masa ("mass"). Because Atelectasis is consistently 
referred to as atelectasi in PadChest, it is unsurprising that the M-BERT ft-sp models perform well 
on it. Furthermore, since atelectasi is so close to the English "atelectasis," this could explain why the 
baseline models and M-BERT ft-en auto are able to still perform well on this condition. That said, 

it is especially surprising that the baseline models and M-BERT ft-en perform so poorly on Pleural 
Effusion, especially given that the terms in English and Spanish share the word "pleural". 

# reports positive # (%) that contain 

  

Condition PadChest mention for condition mention 

Atelectasis atelectasi 6,011 5,905 (98%) 

Cardiomegaly cardiomegali 9,602 6,022 (63%) 

Consolidation consolidacion 1,628 165 (10%) 

Edema hili 5,345 4,295 (80%) 

Enlarged Cardiom. - - - 

Fracture fractur 4,059 2,789 (69%) 

Lung Lesion nodul 6,977 4,479 (64%) 

Lung Opacity - - - 

Pleural Effusion derram pleural 6,841 6,456 (94%) 

Pleural Other engros pleur 3,393 2,607 (77%) 

Pneumonia neumon 5,110 3,491 (68%) 

Pneumothorax neumotorax 355 329 (93%) 

Support Devices - - - 

No Finding sin hallazg 35,201 11,986 (34%) 
  

Figure 3: For 11 of the 14 conditions, we choose the Spanish word or prefix most commonly 
associated with that condition. We then count the number of times that that word or prefix is 
mentioned in the PadChest reports that have positive labels for that condition. 

7 Conclusion 

In this study, we extend the work of CheXbert to explore the relative performance of EN-BERT 
and M-BERT on the task of radiology report labeling. We reach three important conclusions. First,



we find that regardless of whether the model is finetuned on English reports or Spanish reports, 
Multilingual BERT offers no real performance gains over English BERT when evaluating on Spanish- 
language reports. Second, while finetuning on human-labeled reports is better than finetuning on 
automatically-labeled reports (even if the dataset of human-labeled reports is smaller), it is best to 
first finetune on automatically-labeled reports and then further finetune on human-labeled reports. 
Third, keeping the BERT model type fixed, finetuning on Spanish reports offers significant gains 
when evaluating on Spanish-language reports than finetuning on English reports. 

There are several limitations to our work. First, due to some ambiguities, our mapping from 193 
PadChest to 14 CheXpert labels is somewhat subjective. Future work should incorporate consensus 
on this mapping among several radiologists. Second, it will be important to investigate further why 
both baselines and M-BERT ft-en auto perform so poorly on Pleural Effusion, a condition that past 
research suggests is easier to label than other conditions. Third, neither of the authors of this paper 
is a domain expert, and future work should work closely with a Spanish-speaking radiologist for a 
more thorough qualitative analysis of potentially problematic abbreviations in our dataset. Fourth, 
the translation model that we used for our second baseline, EN-BERT ft-en auto evaluated on the 

translated test set, was noticeably faulty. It would be interesting to explore how much better the 
second baseline would perform if we were to use a stronger translation model than MarianMT. 

Our hope is that this study serves as the basis for future work that explores radiology report labeling 
in the multilingual setting. 
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