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Abstract 

Neural Machine Translation (NMT) has improved dramatically in the past decade, 
with many NMT systems for high-resource languages approaching human-quality 
translations. However, many of the world’s languages are low-resource, with very 
little digitized parallel data available to train NMT models for them. Although there 
have been many advancements in developing techniques for low-resource NMT, 
many languages still have orders of magnitude less data than those used in the 
associated studies. One such extremely low-resource language is Cherokee, which 
has less than 15,000 parallel Cherokee-English sentences available. We present a 
case-study that evaluates the efficacy of common low-resource NMT techniques 
on Cherokee-English (ChrEn) translation. We analyze the performance of data 
augmentation, noisy self-training, back-translation, aggressive word dropout, pre- 
trained word embeddings, pre-trained decoders, mT5, and additional LSTM layers 
on improving a ChrEn NMT system. We find that pre-training the decoder with 
100,000 monolingual English Sentences and back-translation using 5,000 English 
sentences offer a 0.9 and 0.8 BLEU score improvement over the baseline, respec- 
tively, while noisy self-training and aggressive word dropout provide inconsistent 
benefits in this extremely low-resource setting. 

1 Introduction 

Recent advancements in neural machine translation model design have produced considerable 
improvements in both translation accuracy and quality. With these recently released models, machine 
translations between languages with a large amount of bilingual data (like Spanish to English) have 
started approaching human translations in both accuracy and quality. However, machine translations 
for many of the world’s endangered languages have not been able to see similar improvements 
because these languages lack the large corpuses of bilingual data that made models built for more 
frequently used languages more accurate. While there has been research in the field on overcoming 
the hurdle of data scarcity on NMT, most of it has focused primarily on languages that, while having 
less data than the dominant world languages, still have orders of magnitude more data than extremely 
low-resource languages like UNESCO’s endangered languages. 

Our work focuses on applying and evaluating many of these techniques for low-resource 
NMT towards improving a baseline model for translating an extremely low-resource language 
into English. We chose Cherokee for our case study: with less than 2000 fluent speakers left, the 
Cherokee language is highly at risk of dying out, and with less than 1OMB of digitized bilingual and 
monolingual data combined, its dataset is extremely small even by low-resource NMT standards. In 
this study, we look to investigate which of the common techniques used for overcoming data scarcity 
in low-resource NMT continue to perform well in the extremely low-resource scenario, and what 
sorts of architectural changes, augmentation, or pre-training techniques most improve the model’s 
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performance. Our motivation for undertaking this task is to help generate tools to assist with the 
prevention of cultural loss through language loss. Though we know NMT alone will not be the 
answer to preserving a language, we hope that automated translations can aid in the learning of the 
next generation of speakers and assist in translating existing works. 

2 Related Work 

Much of our work is built off of the existing work of Zhang, et. al., whose paper contributed 
the Cherokee-English dataset our work uses for training [1]. Though this paper helped form the 
foundation of our approach to tackling the generation of a better extremely low-resource NMT 
model, one limitation we noticed with it was that the authors did not try many different methods 
in their research to optimize their Cherokee-English model. Thus, the focus of our work became 
more directed towards applying the extensive variety of methods developed by recent research for 
low-resource NMT to tackle the issue of data scarcity. 

One of the more promising recently developed methods is self-training, in which more par- 
allel translation data is generated from monolingual sentences by placing each sentence through 
the forward or backward neural translation model. These generated translations are then fed back 
into the network as training data for future iterations of the NMT model. The work of Chen, et. 
al. at Facebook Research was able to increase the BLEU scores of their low-resource models for 
Burmese to English by anywhere from 3 to 8 points using this method [2]. Transfer learning, where 
the translation model for the low-resource language is trained on top of a model built for translating 
other languages, also has repeatedly proven to be highly effective, producing improvements in BLEU 
scores for low-resource NMT models by up to 7 points in some cases [3]. Other methods tried by 
low-resource NMT researchers had more mixed results: Qi et. al. found that using pre-trained word 
embeddings trained using fastText on Wikipedia either greatly improved low-resource NMT models 
(+11 BLEU score) or had negligible effect on them, with no in-between [4]. One specific minor 

optimization that we found especially interesting was the idea of aggressive word dropout, where up 
to half of all the words in a sentence were dropped at random during training. As described in the 
work of Sennrich et. al., adding this minor technique managed to increase their BLEU score by more 
than 3 points over their previous model [5]. 

A major caveat of many of these related papers, though, is that their research was based 
off of datasets many orders of magnitude larger than the dataset we are working with. Facebook’s 
low-resource NMT paper, for example, involved training a model off of a dataset of 28,000,000 
sentences of monolingual source data, while our dataset is composed of ~ 5,000 monolingual 
sentences. We thus realized that not all of the methods tried in the above papers may remain fully 
effective on our extremely low-resource NMT setting and would need to be evaluated. 

3 Approach 

3.1 Baseline 

Our baseline model uses a standard 1-layer LSTM architecture [6], with a bidirectional encoder and a 

decoder that uses multiplicative attention. It operates at the subword-level, with inputs tokenized using 
a SentencePiece tokenizer [7] that was trained from our parallel dataset. This LSTM architecture was 

maintained throughout the majority of our experiments, except where specified. 

3.2 mT5 

We also tried a separate baseline model where we trained the Cherokee-English corpus on top of the 
weights generated by Google’s transformer-based mT5 model [8]. This model was trained with the 
SimpleTransformers library, and was trained for two epochs with a learning rate of 0.00004. 

3.3. Noisy Self-Training 

For noisy self-training, we generated more data by putting each source-side monolingual sentence 
x through forward neural machine translation to produce a translation y. Noise was added to x by 
randomly shuffling words, dropping whole words, and inserting blank tokens to randomly replace 
words, as inspired by [9] - logic we implemented ourselves. This step of adding noise is theorized



to provide a strong regularization effect that is not seen in regular self-training. For three iterations, 
we produced this noisy dataset using the current model (starting with our baseline model and then 
using the model produced on the previous iteration for subsequent loops), trained a new model from 
scratch with it, and then further finetuned it on the original parallel corpus. 
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Figure 1: A diagram of our noisy self-training model. Note that the source sentences with translations are still 

used in second iteration of the translator, as well as all future iterations. 

3.4 Back-Translation 

Our implementation of back-translation works analogously to self-training, except using target-side 
monolingual data. We translated each target sentence y to the source language using a target-to-source 
NMT model to produce Z, which together generates the pseudo-parallel dataset (z, y). We first 
implemented and trained an English-to-Cherokee (EnChr) NMT model on our parallel dataset and 
then used it to produce this pseudo-parallel dataset. We then trained a new Cherokee-to-English 
model using a combination of the parallel and pseudo-parallel datasets [10]. 
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Figure 2: A diagram of our back-translation model 

3.5 Iterative Back-translation and Self-Training 

We also tried combining back-translation and self-training in an iterative fashion by generating 
pseudo-parallel datasets from both source and target monolingual data on each iteration. We then 
used these pseudo-parallel datasets in conjuction with the parallel data to train new forward and 
backward models. In our implementation, we produced the pseudo-parallel datasets using the current 
models (starting with our baseline ChrEn model and the EnChr model previously implemented for 
back-translation) and trained new forward and backward models from scratch using the pseudo- 
parallel and parallel datasets. We experimented with training the models using a combination of all 
the data and separately training first on the pseudo-parallel dataset and then finetuning on the true 
parallel dataset. 

3.6 Aggressive Word Dropout 

We also experimented with aggressive word dropout. As mentioned above, prior work had shown 
this method can increase BLEU scores of low-resource models by 3+ points [5]. As Cherokee 
is a polysynthetic language, we believed there was a chance that dropping entire words in the 
source sentence would result in too much context loss to produce a good translation, so we chose to 
implement both whole-word dropout and subword dropout in our models.



3.7 Pre-trained Word Embeddings 

The work of Qi et al. showed that using pre-trained embeddings can bring modest to large BLEU 
score improvements. The authors theorized that pre-training made the embedding spaces more 
consistent, which brings words with similar meanings closer together and creates similar "semantic 
neighborhoods" between the the two languages. Additionally, the pre-trained embeddings also were 
shown to have better representations of rare concepts in low-resource languages, resulting in better 
translations to English [4]. We made use of BPEmb subword embeddings for both Cherokee and 
English (which were pre-trained on Cherokee/English Wikipedia) and experimented both using and 
not using the subword tokenizer provided by the BPEmb library to process inputs to our model [11]. 

3.8 Pre-train Decoder 

While there is a dearth of Cherokee monolingual data, we had access to an abundance of English 
monolingual data that could be used to pre-train the decoder to make it a stronger conditional language 
model and produce more fluent translations. Previous exploration of similar techniques saw BLEU 
score improvements of 1.3 points [12]. In our implementation of this technique, we initialized our 
ChrEn model as usual, but only trained/exercised the decoder portion. We provided the decoder a 
zero-vector as its initial hidden state, as well as a single zero-vector as its encoder hidden states to 
remove the effects of attention on the next-word prediction and for ease of implementation. After 
pre-training, we finetuned the model on our parallel dataset. 

3.9 Two Layer LSTM 

We next tried two two-layer LSTM models, one with a single layer decoder, and one with a two-layer 
decoder. Both of these LSTM models were implemented with a two-layer bidirectional encoder and a 
decoder that utilized multiplicative attention, analogous to our one-layer LSTM baseline model. 

3.10 Data Augmentation 

We also tried standard data augmentation techniques we implemented ourselves such as randomly 
permuting text and dropping words on the source side, both "on-the-fly" during training and before- 
hand (producing up to 50% more data). As Cherokee is a language that does not have a set sentence 
structure, we expected such text permutation to be a viable route to producing semi-accurate synthetic 
data. 

4 Experiments 

4.1 Data 

For our NMT task, we used the ChrEn dataset produced by Zhang et. al [1]. This dataset is comprised 
mostly of text from the New Testament, as well as assorted news articles and children’s books like 

Charlotte’s Web. It is made up of a training set of 14,855 parallel Cherokee-English sentences, a dev 
set of 1,000 sentences, and a test set of 1,000 sentences. We tokenized sentences from this dataset 

into subwords using SentencePiece before inputting them into our model. We also made use of the 
5,210 monolingual Cherokee sentences provided in the ChrEn dataset. We additionally made use 
of up to 100,000 News Crawl 2017 ! sentences as compiled by the ChrEn paper authors as English 
monolingual data, as well as up to 3 million sentences from News Crawl 2007 that we retrieved 
ourselves. 

Lastly, we compiled a separate set of approximately 400,000 English monolingual sentences from 
Project Gutenberg. We wrote a custom Python script to retrieve the top 100 English books directly 
from Project Gutenberg’s website and tokenized the raw text into sentences using NLTK [13]. 

4.2 Evaluation Metric and Experimental Details 

We used BLEU scores (computed using SacreBLEU [14]) as our means of evaluating the performance 
of our ChrEn models. 
  

"http://data.statmt.org/news-crawl/en/



Our experiments were ran on Microsoft Azure machines, and had an initial learning rate of .0005 
(with a learning rate decay factor of 0.5) and a dropout rate of 0.3. We used a batch size of 32 for the 
majority of our experiments, but used a batch size of 16 for experiments using decoder pre-training 
due to memory limitations on our Azure machines. We trained for a maximum of 30 epochs and 
evaluated perplexity on the dev set every 200 iterations. We used early-stopping if perplexity on the 
dev set did not improve for 5 trials. 

We used the standard NMT mechanism of cross-entropy loss between the log probability distribution 
of the predicted subword and the target subword, summed over the timesteps of the target sentence. 

4.3 Results and Technique Analysis 

As seen in 1, our baseline achieved a BLEU Score of 12.5 on the dev set. We evaluate the performance 
of each of our techniques below. 

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

Name Architecture Technique It Ms Mt MtSre WD S_ WB BLEU Delta 
Baseline 1-L LSTM - - = - - - - = 12.5 - 

Al 1-L LSTM On the fly data aug. - - - 0.1 3 C- 11.7 -0.8 
A2 1-L LSTM Data aug. before - oe - - 0.1 3. 11.5 -1.0 

DI 1-L LSTM Aggr. WD - = - - 05  - - 13.2 +0.7 

D2 1-L LSTM Aggr. SWD - oe - - 05  - - 9.8 -2.7 
SI 1-L LSTM Noisy ST 3. 5250 - - 0.1 3 0.2 13.4 +0.9 

Bl 1-L LSTM BT - - 5K News Crawl - - = 133 +0.8 
B2 1-L LSTM BT - = 10K NewsCrawl - - = 12.9 +0.4 
B3 1-L LSTM BT - = SOK  NewsCrawl - - = 11.6 -0.9 

Ul 1-L LSTM BT + ST (Comb) 1 5250 10K  NewsCrawl - - = L5 -11.0 

2 1-L LSTM BT + ST (Sep) 1 5250 5K News Crawl - -  - 13.0 +0.5 

13 1-L LSTM BT + ST (Sep) 3. 5250 5K News Crawl - - = 13,2 +0.7 
14 1-L LSTM BT + ST (Sep) 6 5250 5K News Crawl - - = 12.5 +0.0 

15 1-L LSTM BT + ST (Sep) 1 5250 10K NewsCrawl - - = 12.3 -0.2 

El 1-L LSTM PT WE (F) - - - - - - - 1,3 -11.2 
E2 1-L LSTM PT WE (U) - = - - - - = 0.1 -12.4 

E3 1-L LSTM PT WE (U) + BPE - = - - - - = 1.3 -11.2 
MI Transformer mT5 - = - - - -  - 1.1 -11.4 

LI 2-L LSTM 2-L Enc/1-L Dec - - - - - - = 11.3 =]2 

L2 2-L LSTM 2-L Enc/Dec - oe - - - - = hak -4.8 
Pl 1-L LSTM PT Dec - = 50K News Crawl - -  - 12.7 +0.2 

P2 1-L LSTM PT Dec - - 100K News Crawl - -  - 14.0 +1.5 

P3 1-L LSTM PT Dec - = 1M News Crawl - = - 13.0 +0.5 
P4 1-L LSTM PT Dec - = 3M News Crawl - -  - 14.0 +1.5 

PS 1-L LSTM PT Dec - 400K Gutenberg - - > 9.8 -2.7 
Cl 1-L LSTM Noisy ST+ Aggr WD 3 5250 - - 0.5 3 0.2 13 +0.5 

C2 1-L LSTM Noisy ST + PT Dec 3. 5250 - - 0.1 3 0.2 13.4 +0.9 

C3 1-L LSTM Agg. WD + PT Dec -- - - 05  - - 9.1 -3.4   
Table 1: Results from all of our experiments. It=Number of iterations for techniques where the training loop 

needs to be repeated (ex: back-translation); M_s=Number of monolingual source sentences; M_t=Number of 

monolingual target sentences; M_t Src=Source of monolingual target sentences; WD/SWD=Word/Subword Drop 

Rate; S=Number of word shuffles; WB=Word Blank Rate; BLEU=BLEU Score on Dev Set; Delta=Difference 

in BLEU Score between this model and the baseline; ST=self-training; BT=back-translation; Comb=Combined 

training of pseudo-parallel and parallel datasets; Sep=Separate training of pseudo/parallel; PT=Pre-training; 

WE=Word Embeddings; F=Frozen; U=Unfrozen; BPE=Uses BPE Tokenizer; Enc=Encoder; Dec=Decoder 

mT5-Based Model: We received extremely disappointing results when we ran our mT5-based model 
on the dev set— after two epochs of training, the model was only able to achieve a BLEU score of 
1.1. We hypothesize this is because the mT5 model was heavily trained off of multilingual data from 
mostly European and Asian languages, and that our extremely small corpus of Cherokee data was 
unable to produce much of an effect on the preexisting mT5 weights. Thus, all of our following 
models were built on top of the LSTM architecture we used in our baseline. 

Noisy Self-Training: Given that our small amount of monolingual Cherokee data was of mixed 
quality, with many sentences a combination of English and Cherokee, and the baseline model we 
used to kick of the iterations was not particularly fluent, we expected self-training to perform poorly. 
Yet, it was among one of our best performing techniques (+0.9 on baseline). What this appears to 
demonstrate is that the strong regularization effect of noisy self-training that helps NMT models 
better generalize is not entirely dependent on the amount or quality of the monolingual data it uses. 

Back-translation: As the English-Cherokee NMT model we used to drive back-translation had a 
BLEU Score of 9, we did not expect this technique to perform well. Yet, back-translation performed



nearly as well as self-training. However, back-translation performed progressively worse as more 
target monolingual data was added, with the model trained with an additional 50,000 sentences 
performing worse than the baseline. The poor performance of this model is unsurprising as the 
pseudo-parallel dataset of likely very poor quality has a nearly 5:1 ratio with the parallel data when 
using 50,000 target sentences. This may suggest that in these extremely low-resource settings, the 
benefits of back-translation are best seen when the amount of target monolingual data is less than the 
parallel data. 

Iterative Back-translation and Self-Training: Iterative back-translation and self-training did not 
fare as well as either technique alone. Experimenting with combining the pseudo-parallel and parallel 
dataset and then training showed a dramatic drop in performance - likely because the high number of 
poor quality synthetic samples diluted the impact of the clean ones. Separating training on the two 
datasets was more effective, but again was dependent on the quantity of target monolingual sentences 
used, with the clear winner being using 5,000 of those sentences. From our experimentation, 3 
iterations of back-translation and self-training produced the highest BLEU score improvement over 
the baseline (+0.7). As this is worse than just doing noisy self-training or back-translation on their 
own, it may be that the combined pseudo-parallel dataset - which comes close to matching the size of 
the real parallel dataset - just has too many poor quality samples in it, which diminishes the benefits 
of both techniques. 

Aggressive Word Dropout: Aggressive word dropout performed very well on the dev set, only 
slightly under the performance of noisy self-training or back-translation - which is remarkable given 
how simpler and less computationally expensive this technique is. We expected subword dropout to 
perform better than dropping whole words, but it performed even worse than the baseline model. It 
seems that despite Cherokee being a polysynthetic language, dropping subwords does not help with 
regularization but just serves to be an impediment to training. However, it may also be that dropping 
subwords at a probability of 0.5 is too high. Further tuning experiments would be needed to make 
better assessments. Despite this, it seems that aggressive word dropout on its own can be a useful 
technique even in extremely low-resoutce settings. 

Pre-trained Word Embeddings: Using pre-trained word embeddings performed exceptionally 
poorly. Freezing or not freezing the pre-trained word embeddings or using the BPEmb tokenizer 
to better align our model’s vocabulary with the embeddings did little to improve this technique. 
However, its poor performance is not unexpected. Cherokee Wikipedia is known to be of poor 
quality [1] and this was evident even in the vocabulary of the subword embeddings, which was a 
+ the size of our SentencePiece-learned vocabulary and had many English subwords. While other 
Cherokee word-level pre-trained embeddings exist from FastText [15], they were also trained on 
Cherokee Wikipedia and did not seem worth trying. Clearly this technique is highly dependent 
on having good pre-trained word-embeddings. Given other extremely low-resource languages also 
would lack adequate monolingual text to pre-train quality word-embeddings, this technique does not 
seem promising in this domain. 

Pre-trained Decoder: Pre-training the decoder was by far the most successful approach we tried, 
with the best model (P2) providing a +1.5 BLEU score improvement over the baseline. Interestingly, 
the improvements do not scale linearly with the amount of target monolingual data the decoder is 
pre-trained on, with 1 million sentences performing worse than 100,000 sentences, but 3 million 
sentences performing roughly equal to 100,000. This may be an artifact of randomness of training and 
would need further exploration. Given that our target monolingual data was composed of 2007/2017 
news data, we believed using text from Gutenberg that was more aligned with the parallel dataset 
would produce larger gains. However, it caused a drop in performance compared to even the baseline. 
It is possible that this was due to the quality of the Gutenberg dataset we produced, which was 
done using a fairly basic web scrape and NLTK tokenization. Despite this, the general success from 
pre-training the decoder underscores its utility in extremely low-resoutce settings. 

Two-Layer LSTM: Both of our two layer LSTM models performed worse than the baseline, with 
the model with a 1-layer decoder performing closer to the baseline, and the model with a 2-layer 
decoder performing roughly 5 BLEU points worse. We surmise this is because we did not re-weight 
the dropout values properly for the latter model and were not able to perform extensive enough 
hyperparameter searching to find the best parameters to train both these models with. 

Data Augmentation: Both of our basic data augmentation strategies scored worse than the baseline. 
This was not surprising: as none of the authors of this paper are Cherokee speakers, we resorted



to using naive strategies for producing more parallel data that perturbed the source data without 
doing anything to the target data. This likely just filled our small dataset with many subpar examples. 
Clearly, more care must be taken when trying to augment an extremely small parallel dataset. 

Combining Techniques: We tried some quick experiments combining a few of our best performing 
techniques together (C1 to C3 in 1). No combination experiment provided any improvement over 
using the techniques alone, with combining aggressive word dropout with pre-training the decoder 
actually doing worse than the baseline. While its possible that these techniques may clash with each 
other (noisy self-training + aggressive word dropout in particular could be causing too intense of a 
regularization effect), we believe its more likely that the hyperparameters that worked well for each 
individually were ill-suited for using them in combination. Deeper experimentation would be needed 
to make a determination one way or the other. 

4.3.1 Evaluation of Best Models on Training Set 

  

Name Technique BLEU (Dev Set) BLEU (Test Set) Delta 
  

  

  

  

  

  

Baseline - 12.5 12.4 - 

P2 PT Dec 100K 14 13.3 +0.9 

P4 PT Dec 3M 14 13.1 +0.7 

S1 Noisy ST 13.4 12.4 +0 

Bl BT 13.3 13.2 +0.8 

D1 Agger. WD 13.2 12.4 +0 
  

Table 2: Delta=Difference between model and baseline on test set 

Overall, our best performance on the dev set came from P2 (Pre-training decoder on 100K sentences), 
which also achieves the best BLEU Score of 13.3 on our test set (+0.9 compared to the baseline). 

Aggressive word dropout, noisy self-training, and back-translation were also found to be helpful 
techniques on the dev set. 

Table 2 shows a sampling of the best models from our best performing techniques evaluated on 
the test set. While P2 was still the highest scoring model on the test set, its performance gain over 
the baseline was somewhat reduced compared to on the dev set. Noisy self-training and aggressive 
word dropout provided no gains over the baseline on the test set, which seems to indicate that in 
this extreme low-resource setting, these techniques may not provide consistent improvements for all 
inputs. However, back-translation remained almost perfectly consistent between the test set and the 
dev set. The consistency of back-translation but not self-training was suprising given how closely 
related the techniques are. We suspect the resiliency of back-translation may have to do with the 
EnChr model we built and the complexities of mapping the two languages: it is possible that the 
EnChr model captured certain relationship details between the languages that most of our ChrEn 
models did not. The data that was produced using back-translation, while of low quality, may have 
also better reflected (if not exaggerated) these other relationships, allowing the ChrEn model that was 
trained on this data to also capture these relationships, as well as those seen in the original data. As a 
result, the back-translation model may be better equipped to generalize to various different inputs. 

5 Qualitative Analysis 

BLEU Scores By Sentence Length 
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Figure 3: Grouped by length in words of golden English translation



5.1 Best Models By Sentence Length 

3 shows the test set BLEU Scores of some of our best models grouped by the length of the sentences. 
Unsurprisingly, all of the models do progressively worse as the length of the sentence increases. Some 
particularly noteworthy results are those for P2, D1, and B1. P2 and B1 both do better than other 
models on longer sentences. The monolingual English data that both were trained with tended to skew 
towards longer sentences, which may have primed both models to be able to try to translate more 
parts of longer source sentences, driving up the BLEU score by increasing the number of n-gram 
overlaps. D1 does noticeably worse than the other models on short (1-3 words) sentences, which we 
suspect is because dropping words in short sentences during training leaves little for the model to 
learn from and interferes with it’s ability to learn how to properly translate such inputs. 

5.2 Translation Examples 

¢ Gold: When I presented the letter and brought up my business—launching quickly into the 
details of citizenship and ownership of land—the look in Jackson’s eyes suggested he might 
have a killing or two left in him. 

Baseline: I started in the book and I heard what I could not see what I would have very small 
and their own ones. 

¢ S1: I could see how we could see how we could see how we could see how we could have 

two eyes on their eyes. 

D1: I told how what I didn’t know what what I could do, I told how it was that I could not 

have some of them with their own legs. 

¢ B1: Ihad done the books and I’m going to get the books and then what had been all of their 
eyes—the eyes of their eyes were right. 

e P2: When I had received the letter from the book and I told you and whatever it was like 
Jackson’s eyes, Jackson’s eyes were able to bear two of them 

¢ P4: When I had finished the letter and said, I was just very far at this <unk>ueens from the 
<unk>ueens of Jackson’s eyes that had been able to stand with their eyes. 

When examining their translation outputs for a long sentence, it is clear none of our models produce 
translations an English speaker would find fluent. However, the Pre-trained decoder models, as we 
suspected, do demonstrate a better ability to translate more parts of a long sentence: in this example, 
both P2 and P4 pick up on major words from the beginning (letter) and end (Jackson’s eyes) of the 
sentence - something none of the other models are able to do. All the models, however, struggle to 
capture any details from the middle of the sentence. In many other translation examples, the models 
all frequently produce translations with repeated phrases, as demonstrated by this output from P4: 
"Thou knowest the law, that thou shalt not kill, Thou shalt not kill, Thou shalt not steal, Thou shalt 

not steal, thy father and thy mother". 

6 Conclusion 

In this work, we evaluated a wide variety of techniques for addressing data scarcity in extremely 
low-resource neural machine translation on a Cherokee-English dataset. We trained multiple models 
using techniques such as self-training, back-translation, pre-trained decoders, two-layer LSTMs, and 
aggressive word dropout. We found that several of these models were able to produce results with 
higher BLEU scores than our baseline model, with pre-training the decoder achieving the highest 
BLEU score on our dataset, and noisy self-training and back-translation-based models coming in 
close behind. We additionally found that back-translation and pre-training decoders most consistently 
provide performance gains in this extremely low-resource setting. 

Steps for future work include more extensive hyperparameter tuning to see if the perfor- 
mance of the different techniques can be further improved, as well as studying more combinations of 
the methods we tried. Additionally, further assessing the impact of different monolingual English 
datasets on decoder pre-training and back-translation would be useful. Lastly, our findings could be 
replicated on small datasets for other endangered languages/language isolates to see how repeatable 
our results are in other extremely low-resource settings.
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