
How Low Can You Go? A Case Study in Extremely
Low-Resource NMT

Stanford CS224N Custom Project
Mentor: Prof. Christopher Manning

Anfal Siddiqui Daniel Zhang
Department of Computer Science Department of Computer Science

Stanford University Stanford University
anfal@stanford.edu dzhang3@stanford.edu

Abstract

Neural Machine Translation (NMT) has improved dramatically in the past decade,
with many NMT systems for high-resource languages approaching human-quality
translations. However, many of the world’s languages are low-resource, with very
little digitized parallel data available to train NMT models for them. Although there
have been many advancements in developing techniques for low-resource NMT,
many languages still have orders of magnitude less data than those used in the
associated studies. One such extremely low-resource language is Cherokee, which
has less than 15,000 parallel Cherokee-English sentences available. We present a
case-study that evaluates the efficacy of common low-resource NMT techniques
on Cherokee-English (ChrEn) translation. We analyze the performance of data
augmentation, noisy self-training, back-translation, aggressive word dropout, pre-
trained word embeddings, pre-trained decoders, mT5, and additional LSTM layers
on improving a ChrEn NMT system. We find that pre-training the decoder with
100,000 monolingual English Sentences and back-translation using 5,000 English
sentences offer a 0.9 and 0.8 BLEU score improvement over the baseline, respec-
tively, while noisy self-training and aggressive word dropout provide inconsistent
benefits in this extremely low-resource setting.

1 Introduction

Recent advancements in neural machine translation model design have produced considerable
improvements in both translation accuracy and quality. With these recently released models, machine
translations between languages with a large amount of bilingual data (like Spanish to English) have
started approaching human translations in both accuracy and quality. However, machine translations
for many of the world’s endangered languages have not been able to see similar improvements
because these languages lack the large corpuses of bilingual data that made models built for more
frequently used languages more accurate. While there has been research in the field on overcoming
the hurdle of data scarcity on NMT, most of it has focused primarily on languages that, while having
less data than the dominant world languages, still have orders of magnitude more data than extremely
low-resource languages like UNESCO’s endangered languages.

Our work focuses on applying and evaluating many of these techniques for low-resource
NMT towards improving a baseline model for translating an extremely low-resource language
into English. We chose Cherokee for our case study: with less than 2000 fluent speakers left, the
Cherokee language is highly at risk of dying out, and with less than 1OMB of digitized bilingual and
monolingual data combined, its dataset is extremely small even by low-resource NMT standards. In
this study, we look to investigate which of the common techniques used for overcoming data scarcity
in low-resource NMT continue to perform well in the extremely low-resource scenario, and what
sorts of architectural changes, augmentation, or pre-training techniques most improve the model’s

Stanford CS224N Natural Language Processing with Deep Learning

performance. Our motivation for undertaking this task is to help generate tools to assist with the
prevention of cultural loss through language loss. Though we know NMT alone will not be the
answer to preserving a language, we hope that automated translations can aid in the learning of the
next generation of speakers and assist in translating existing works.

2 Related Work

Much of our work is built off of the existing work of Zhang, et. al., whose paper contributed
the Cherokee-English dataset our work uses for training [1]. Though this paper helped form the
foundation of our approach to tackling the generation of a better extremely low-resource NMT
model, one limitation we noticed with it was that the authors did not try many different methods
in their research to optimize their Cherokee-English model. Thus, the focus of our work became
more directed towards applying the extensive variety of methods developed by recent research for
low-resource NMT to tackle the issue of data scarcity.

One of the more promising recently developed methods is self-training, in which more par-
allel translation data is generated from monolingual sentences by placing each sentence through
the forward or backward neural translation model. These generated translations are then fed back
into the network as training data for future iterations of the NMT model. The work of Chen, et.
al. at Facebook Research was able to increase the BLEU scores of their low-resource models for
Burmese to English by anywhere from 3 to 8 points using this method [2]. Transfer learning, where
the translation model for the low-resource language is trained on top of a model built for translating
other languages, also has repeatedly proven to be highly effective, producing improvements in BLEU
scores for low-resource NMT models by up to 7 points in some cases [3]. Other methods tried by
low-resource NMT researchers had more mixed results: Qi et. al. found that using pre-trained word
embeddings trained using fastText on Wikipedia either greatly improved low-resource NMT models
(+11 BLEU score) or had negligible effect on them, with no in-between [4]. One specific minor

optimization that we found especially interesting was the idea of aggressive word dropout, where up
to half of all the words in a sentence were dropped at random during training. As described in the
work of Sennrich et. al., adding this minor technique managed to increase their BLEU score by more
than 3 points over their previous model [5].

A major caveat of many of these related papers, though, is that their research was based
off of datasets many orders of magnitude larger than the dataset we are working with. Facebook’s
low-resource NMT paper, for example, involved training a model off of a dataset of 28,000,000
sentences of monolingual source data, while our dataset is composed of ~ 5,000 monolingual
sentences. We thus realized that not all of the methods tried in the above papers may remain fully
effective on our extremely low-resource NMT setting and would need to be evaluated.

3 Approach

3.1 Baseline

Our baseline model uses a standard 1-layer LSTM architecture [6], with a bidirectional encoder and a

decoder that uses multiplicative attention. It operates at the subword-level, with inputs tokenized using
a SentencePiece tokenizer [7] that was trained from our parallel dataset. This LSTM architecture was

maintained throughout the majority of our experiments, except where specified.

3.2 mT5

We also tried a separate baseline model where we trained the Cherokee-English corpus on top of the
weights generated by Google’s transformer-based mT5 model [8]. This model was trained with the
SimpleTransformers library, and was trained for two epochs with a learning rate of 0.00004.

3.3. Noisy Self-Training

For noisy self-training, we generated more data by putting each source-side monolingual sentence
x through forward neural machine translation to produce a translation y. Noise was added to x by
randomly shuffling words, dropping whole words, and inserting blank tokens to randomly replace
words, as inspired by [9] - logic we implemented ourselves. This step of adding noise is theorized

to provide a strong regularization effect that is not seen in regular self-training. For three iterations,
we produced this noisy dataset using the current model (starting with our baseline model and then
using the model produced on the previous iteration for subsequent loops), trained a new model from
scratch with it, and then further finetuned it on the original parallel corpus.

Cross-Entropy

Loss

Actual

Translation

Predicted

Decoder Translation
v1

|»

T Predicted

Translation

from V1 Cross-Entropy

Predicted EOES Monolingual Encoder Decoder rere
Source Sentence vy v2 v2 dyanslaton

Noise from V2

Future iterations

Source Sentence
w/ Translation Encoder »

v1 i

Figure 1: A diagram of our noisy self-training model. Note that the source sentences with translations are still

used in second iteration of the translator, as well as all future iterations.

3.4 Back-Translation

Our implementation of back-translation works analogously to self-training, except using target-side
monolingual data. We translated each target sentence y to the source language using a target-to-source
NMT model to produce Z, which together generates the pseudo-parallel dataset (z, y). We first
implemented and trained an English-to-Cherokee (EnChr) NMT model on our parallel dataset and
then used it to produce this pseudo-parallel dataset. We then trained a new Cherokee-to-English
model using a combination of the parallel and pseudo-parallel datasets [10].

English-Cherokee Cherokee-English
Translator Translator

 English
Monolingual Data cL

Cross-Entropy

Loss

Figure 2: A diagram of our back-translation model

3.5 Iterative Back-translation and Self-Training

We also tried combining back-translation and self-training in an iterative fashion by generating
pseudo-parallel datasets from both source and target monolingual data on each iteration. We then
used these pseudo-parallel datasets in conjuction with the parallel data to train new forward and
backward models. In our implementation, we produced the pseudo-parallel datasets using the current
models (starting with our baseline ChrEn model and the EnChr model previously implemented for
back-translation) and trained new forward and backward models from scratch using the pseudo-
parallel and parallel datasets. We experimented with training the models using a combination of all
the data and separately training first on the pseudo-parallel dataset and then finetuning on the true
parallel dataset.

3.6 Aggressive Word Dropout

We also experimented with aggressive word dropout. As mentioned above, prior work had shown
this method can increase BLEU scores of low-resource models by 3+ points [5]. As Cherokee
is a polysynthetic language, we believed there was a chance that dropping entire words in the
source sentence would result in too much context loss to produce a good translation, so we chose to
implement both whole-word dropout and subword dropout in our models.

3.7 Pre-trained Word Embeddings

The work of Qi et al. showed that using pre-trained embeddings can bring modest to large BLEU
score improvements. The authors theorized that pre-training made the embedding spaces more
consistent, which brings words with similar meanings closer together and creates similar "semantic
neighborhoods" between the the two languages. Additionally, the pre-trained embeddings also were
shown to have better representations of rare concepts in low-resource languages, resulting in better
translations to English [4]. We made use of BPEmb subword embeddings for both Cherokee and
English (which were pre-trained on Cherokee/English Wikipedia) and experimented both using and
not using the subword tokenizer provided by the BPEmb library to process inputs to our model [11].

3.8 Pre-train Decoder

While there is a dearth of Cherokee monolingual data, we had access to an abundance of English
monolingual data that could be used to pre-train the decoder to make it a stronger conditional language
model and produce more fluent translations. Previous exploration of similar techniques saw BLEU
score improvements of 1.3 points [12]. In our implementation of this technique, we initialized our
ChrEn model as usual, but only trained/exercised the decoder portion. We provided the decoder a
zero-vector as its initial hidden state, as well as a single zero-vector as its encoder hidden states to
remove the effects of attention on the next-word prediction and for ease of implementation. After
pre-training, we finetuned the model on our parallel dataset.

3.9 Two Layer LSTM

We next tried two two-layer LSTM models, one with a single layer decoder, and one with a two-layer
decoder. Both of these LSTM models were implemented with a two-layer bidirectional encoder and a
decoder that utilized multiplicative attention, analogous to our one-layer LSTM baseline model.

3.10 Data Augmentation

We also tried standard data augmentation techniques we implemented ourselves such as randomly
permuting text and dropping words on the source side, both "on-the-fly" during training and before-
hand (producing up to 50% more data). As Cherokee is a language that does not have a set sentence
structure, we expected such text permutation to be a viable route to producing semi-accurate synthetic
data.

4 Experiments

4.1 Data

For our NMT task, we used the ChrEn dataset produced by Zhang et. al [1]. This dataset is comprised
mostly of text from the New Testament, as well as assorted news articles and children’s books like

Charlotte’s Web. It is made up of a training set of 14,855 parallel Cherokee-English sentences, a dev
set of 1,000 sentences, and a test set of 1,000 sentences. We tokenized sentences from this dataset

into subwords using SentencePiece before inputting them into our model. We also made use of the
5,210 monolingual Cherokee sentences provided in the ChrEn dataset. We additionally made use
of up to 100,000 News Crawl 2017 ! sentences as compiled by the ChrEn paper authors as English
monolingual data, as well as up to 3 million sentences from News Crawl 2007 that we retrieved
ourselves.

Lastly, we compiled a separate set of approximately 400,000 English monolingual sentences from
Project Gutenberg. We wrote a custom Python script to retrieve the top 100 English books directly
from Project Gutenberg’s website and tokenized the raw text into sentences using NLTK [13].

4.2 Evaluation Metric and Experimental Details

We used BLEU scores (computed using SacreBLEU [14]) as our means of evaluating the performance
of our ChrEn models.

"http://data.statmt.org/news-crawl/en/

Our experiments were ran on Microsoft Azure machines, and had an initial learning rate of .0005
(with a learning rate decay factor of 0.5) and a dropout rate of 0.3. We used a batch size of 32 for the
majority of our experiments, but used a batch size of 16 for experiments using decoder pre-training
due to memory limitations on our Azure machines. We trained for a maximum of 30 epochs and
evaluated perplexity on the dev set every 200 iterations. We used early-stopping if perplexity on the
dev set did not improve for 5 trials.

We used the standard NMT mechanism of cross-entropy loss between the log probability distribution
of the predicted subword and the target subword, summed over the timesteps of the target sentence.

4.3 Results and Technique Analysis

As seen in 1, our baseline achieved a BLEU Score of 12.5 on the dev set. We evaluate the performance
of each of our techniques below.

Name Architecture Technique It Ms Mt MtSre WD S_ WB BLEU Delta
Baseline 1-L LSTM - - = - - - - = 12.5 -

Al 1-L LSTM On the fly data aug. - - - 0.1 3 C- 11.7 -0.8
A2 1-L LSTM Data aug. before - oe - - 0.1 3. 11.5 -1.0

DI 1-L LSTM Aggr. WD - = - - 05 - - 13.2 +0.7

D2 1-L LSTM Aggr. SWD - oe - - 05 - - 9.8 -2.7
SI 1-L LSTM Noisy ST 3. 5250 - - 0.1 3 0.2 13.4 +0.9

Bl 1-L LSTM BT - - 5K News Crawl - - = 133 +0.8
B2 1-L LSTM BT - = 10K NewsCrawl - - = 12.9 +0.4
B3 1-L LSTM BT - = SOK NewsCrawl - - = 11.6 -0.9

Ul 1-L LSTM BT + ST (Comb) 1 5250 10K NewsCrawl - - = L5 -11.0

2 1-L LSTM BT + ST (Sep) 1 5250 5K News Crawl - - - 13.0 +0.5

13 1-L LSTM BT + ST (Sep) 3. 5250 5K News Crawl - - = 13,2 +0.7
14 1-L LSTM BT + ST (Sep) 6 5250 5K News Crawl - - = 12.5 +0.0

15 1-L LSTM BT + ST (Sep) 1 5250 10K NewsCrawl - - = 12.3 -0.2

El 1-L LSTM PT WE (F) - - - - - - - 1,3 -11.2
E2 1-L LSTM PT WE (U) - = - - - - = 0.1 -12.4

E3 1-L LSTM PT WE (U) + BPE - = - - - - = 1.3 -11.2
MI Transformer mT5 - = - - - - - 1.1 -11.4

LI 2-L LSTM 2-L Enc/1-L Dec - - - - - - = 11.3 =]2

L2 2-L LSTM 2-L Enc/Dec - oe - - - - = hak -4.8
Pl 1-L LSTM PT Dec - = 50K News Crawl - - - 12.7 +0.2

P2 1-L LSTM PT Dec - - 100K News Crawl - - - 14.0 +1.5

P3 1-L LSTM PT Dec - = 1M News Crawl - = - 13.0 +0.5
P4 1-L LSTM PT Dec - = 3M News Crawl - - - 14.0 +1.5

PS 1-L LSTM PT Dec - 400K Gutenberg - - > 9.8 -2.7
Cl 1-L LSTM Noisy ST+ Aggr WD 3 5250 - - 0.5 3 0.2 13 +0.5

C2 1-L LSTM Noisy ST + PT Dec 3. 5250 - - 0.1 3 0.2 13.4 +0.9

C3 1-L LSTM Agg. WD + PT Dec -- - - 05 - - 9.1 -3.4
Table 1: Results from all of our experiments. It=Number of iterations for techniques where the training loop

needs to be repeated (ex: back-translation); M_s=Number of monolingual source sentences; M_t=Number of

monolingual target sentences; M_t Src=Source of monolingual target sentences; WD/SWD=Word/Subword Drop

Rate; S=Number of word shuffles; WB=Word Blank Rate; BLEU=BLEU Score on Dev Set; Delta=Difference

in BLEU Score between this model and the baseline; ST=self-training; BT=back-translation; Comb=Combined

training of pseudo-parallel and parallel datasets; Sep=Separate training of pseudo/parallel; PT=Pre-training;

WE=Word Embeddings; F=Frozen; U=Unfrozen; BPE=Uses BPE Tokenizer; Enc=Encoder; Dec=Decoder

mT5-Based Model: We received extremely disappointing results when we ran our mT5-based model
on the dev set— after two epochs of training, the model was only able to achieve a BLEU score of
1.1. We hypothesize this is because the mT5 model was heavily trained off of multilingual data from
mostly European and Asian languages, and that our extremely small corpus of Cherokee data was
unable to produce much of an effect on the preexisting mT5 weights. Thus, all of our following
models were built on top of the LSTM architecture we used in our baseline.

Noisy Self-Training: Given that our small amount of monolingual Cherokee data was of mixed
quality, with many sentences a combination of English and Cherokee, and the baseline model we
used to kick of the iterations was not particularly fluent, we expected self-training to perform poorly.
Yet, it was among one of our best performing techniques (+0.9 on baseline). What this appears to
demonstrate is that the strong regularization effect of noisy self-training that helps NMT models
better generalize is not entirely dependent on the amount or quality of the monolingual data it uses.

Back-translation: As the English-Cherokee NMT model we used to drive back-translation had a
BLEU Score of 9, we did not expect this technique to perform well. Yet, back-translation performed

nearly as well as self-training. However, back-translation performed progressively worse as more
target monolingual data was added, with the model trained with an additional 50,000 sentences
performing worse than the baseline. The poor performance of this model is unsurprising as the
pseudo-parallel dataset of likely very poor quality has a nearly 5:1 ratio with the parallel data when
using 50,000 target sentences. This may suggest that in these extremely low-resource settings, the
benefits of back-translation are best seen when the amount of target monolingual data is less than the
parallel data.

Iterative Back-translation and Self-Training: Iterative back-translation and self-training did not
fare as well as either technique alone. Experimenting with combining the pseudo-parallel and parallel
dataset and then training showed a dramatic drop in performance - likely because the high number of
poor quality synthetic samples diluted the impact of the clean ones. Separating training on the two
datasets was more effective, but again was dependent on the quantity of target monolingual sentences
used, with the clear winner being using 5,000 of those sentences. From our experimentation, 3
iterations of back-translation and self-training produced the highest BLEU score improvement over
the baseline (+0.7). As this is worse than just doing noisy self-training or back-translation on their
own, it may be that the combined pseudo-parallel dataset - which comes close to matching the size of
the real parallel dataset - just has too many poor quality samples in it, which diminishes the benefits
of both techniques.

Aggressive Word Dropout: Aggressive word dropout performed very well on the dev set, only
slightly under the performance of noisy self-training or back-translation - which is remarkable given
how simpler and less computationally expensive this technique is. We expected subword dropout to
perform better than dropping whole words, but it performed even worse than the baseline model. It
seems that despite Cherokee being a polysynthetic language, dropping subwords does not help with
regularization but just serves to be an impediment to training. However, it may also be that dropping
subwords at a probability of 0.5 is too high. Further tuning experiments would be needed to make
better assessments. Despite this, it seems that aggressive word dropout on its own can be a useful
technique even in extremely low-resoutce settings.

Pre-trained Word Embeddings: Using pre-trained word embeddings performed exceptionally
poorly. Freezing or not freezing the pre-trained word embeddings or using the BPEmb tokenizer
to better align our model’s vocabulary with the embeddings did little to improve this technique.
However, its poor performance is not unexpected. Cherokee Wikipedia is known to be of poor
quality [1] and this was evident even in the vocabulary of the subword embeddings, which was a
+ the size of our SentencePiece-learned vocabulary and had many English subwords. While other
Cherokee word-level pre-trained embeddings exist from FastText [15], they were also trained on
Cherokee Wikipedia and did not seem worth trying. Clearly this technique is highly dependent
on having good pre-trained word-embeddings. Given other extremely low-resource languages also
would lack adequate monolingual text to pre-train quality word-embeddings, this technique does not
seem promising in this domain.

Pre-trained Decoder: Pre-training the decoder was by far the most successful approach we tried,
with the best model (P2) providing a +1.5 BLEU score improvement over the baseline. Interestingly,
the improvements do not scale linearly with the amount of target monolingual data the decoder is
pre-trained on, with 1 million sentences performing worse than 100,000 sentences, but 3 million
sentences performing roughly equal to 100,000. This may be an artifact of randomness of training and
would need further exploration. Given that our target monolingual data was composed of 2007/2017
news data, we believed using text from Gutenberg that was more aligned with the parallel dataset
would produce larger gains. However, it caused a drop in performance compared to even the baseline.
It is possible that this was due to the quality of the Gutenberg dataset we produced, which was
done using a fairly basic web scrape and NLTK tokenization. Despite this, the general success from
pre-training the decoder underscores its utility in extremely low-resoutce settings.

Two-Layer LSTM: Both of our two layer LSTM models performed worse than the baseline, with
the model with a 1-layer decoder performing closer to the baseline, and the model with a 2-layer
decoder performing roughly 5 BLEU points worse. We surmise this is because we did not re-weight
the dropout values properly for the latter model and were not able to perform extensive enough
hyperparameter searching to find the best parameters to train both these models with.

Data Augmentation: Both of our basic data augmentation strategies scored worse than the baseline.
This was not surprising: as none of the authors of this paper are Cherokee speakers, we resorted

to using naive strategies for producing more parallel data that perturbed the source data without
doing anything to the target data. This likely just filled our small dataset with many subpar examples.
Clearly, more care must be taken when trying to augment an extremely small parallel dataset.

Combining Techniques: We tried some quick experiments combining a few of our best performing
techniques together (C1 to C3 in 1). No combination experiment provided any improvement over
using the techniques alone, with combining aggressive word dropout with pre-training the decoder
actually doing worse than the baseline. While its possible that these techniques may clash with each
other (noisy self-training + aggressive word dropout in particular could be causing too intense of a
regularization effect), we believe its more likely that the hyperparameters that worked well for each
individually were ill-suited for using them in combination. Deeper experimentation would be needed
to make a determination one way or the other.

4.3.1 Evaluation of Best Models on Training Set

Name Technique BLEU (Dev Set) BLEU (Test Set) Delta

Baseline - 12.5 12.4 -

P2 PT Dec 100K 14 13.3 +0.9

P4 PT Dec 3M 14 13.1 +0.7

S1 Noisy ST 13.4 12.4 +0

Bl BT 13.3 13.2 +0.8

D1 Agger. WD 13.2 12.4 +0

Table 2: Delta=Difference between model and baseline on test set

Overall, our best performance on the dev set came from P2 (Pre-training decoder on 100K sentences),
which also achieves the best BLEU Score of 13.3 on our test set (+0.9 compared to the baseline).

Aggressive word dropout, noisy self-training, and back-translation were also found to be helpful
techniques on the dev set.

Table 2 shows a sampling of the best models from our best performing techniques evaluated on
the test set. While P2 was still the highest scoring model on the test set, its performance gain over
the baseline was somewhat reduced compared to on the dev set. Noisy self-training and aggressive
word dropout provided no gains over the baseline on the test set, which seems to indicate that in
this extreme low-resource setting, these techniques may not provide consistent improvements for all
inputs. However, back-translation remained almost perfectly consistent between the test set and the
dev set. The consistency of back-translation but not self-training was suprising given how closely
related the techniques are. We suspect the resiliency of back-translation may have to do with the
EnChr model we built and the complexities of mapping the two languages: it is possible that the
EnChr model captured certain relationship details between the languages that most of our ChrEn
models did not. The data that was produced using back-translation, while of low quality, may have
also better reflected (if not exaggerated) these other relationships, allowing the ChrEn model that was
trained on this data to also capture these relationships, as well as those seen in the original data. As a
result, the back-translation model may be better equipped to generalize to various different inputs.

5 Qualitative Analysis

BLEU Scores By Sentence Length

40 @ Baseline

@ p2

30 mPa

@ Di

20 @si

@ Bi

1-3 4-7 8-11 12+

Figure 3: Grouped by length in words of golden English translation

5.1 Best Models By Sentence Length

3 shows the test set BLEU Scores of some of our best models grouped by the length of the sentences.
Unsurprisingly, all of the models do progressively worse as the length of the sentence increases. Some
particularly noteworthy results are those for P2, D1, and B1. P2 and B1 both do better than other
models on longer sentences. The monolingual English data that both were trained with tended to skew
towards longer sentences, which may have primed both models to be able to try to translate more
parts of longer source sentences, driving up the BLEU score by increasing the number of n-gram
overlaps. D1 does noticeably worse than the other models on short (1-3 words) sentences, which we
suspect is because dropping words in short sentences during training leaves little for the model to
learn from and interferes with it’s ability to learn how to properly translate such inputs.

5.2 Translation Examples

¢ Gold: When I presented the letter and brought up my business—launching quickly into the
details of citizenship and ownership of land—the look in Jackson’s eyes suggested he might
have a killing or two left in him.

Baseline: I started in the book and I heard what I could not see what I would have very small
and their own ones.

¢ S1: I could see how we could see how we could see how we could see how we could have

two eyes on their eyes.

D1: I told how what I didn’t know what what I could do, I told how it was that I could not

have some of them with their own legs.

¢ B1: Ihad done the books and I’m going to get the books and then what had been all of their
eyes—the eyes of their eyes were right.

e P2: When I had received the letter from the book and I told you and whatever it was like
Jackson’s eyes, Jackson’s eyes were able to bear two of them

¢ P4: When I had finished the letter and said, I was just very far at this <unk>ueens from the
<unk>ueens of Jackson’s eyes that had been able to stand with their eyes.

When examining their translation outputs for a long sentence, it is clear none of our models produce
translations an English speaker would find fluent. However, the Pre-trained decoder models, as we
suspected, do demonstrate a better ability to translate more parts of a long sentence: in this example,
both P2 and P4 pick up on major words from the beginning (letter) and end (Jackson’s eyes) of the
sentence - something none of the other models are able to do. All the models, however, struggle to
capture any details from the middle of the sentence. In many other translation examples, the models
all frequently produce translations with repeated phrases, as demonstrated by this output from P4:
"Thou knowest the law, that thou shalt not kill, Thou shalt not kill, Thou shalt not steal, Thou shalt

not steal, thy father and thy mother".

6 Conclusion

In this work, we evaluated a wide variety of techniques for addressing data scarcity in extremely
low-resource neural machine translation on a Cherokee-English dataset. We trained multiple models
using techniques such as self-training, back-translation, pre-trained decoders, two-layer LSTMs, and
aggressive word dropout. We found that several of these models were able to produce results with
higher BLEU scores than our baseline model, with pre-training the decoder achieving the highest
BLEU score on our dataset, and noisy self-training and back-translation-based models coming in
close behind. We additionally found that back-translation and pre-training decoders most consistently
provide performance gains in this extremely low-resource setting.

Steps for future work include more extensive hyperparameter tuning to see if the perfor-
mance of the different techniques can be further improved, as well as studying more combinations of
the methods we tried. Additionally, further assessing the impact of different monolingual English
datasets on decoder pre-training and back-translation would be useful. Lastly, our findings could be
replicated on small datasets for other endangered languages/language isolates to see how repeatable
our results are in other extremely low-resource settings.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Shiyue Zhang, Benjamin Frey, and Mohit Bansal. Chren: Cherokee-english machine translation
for endangered language revitalization. In EMNLP 2020, 2020.

Peng-Jen Chen, Jiajun Shen, Matt Le, Vishrav Chaudhary, Ahmed El-Kishky, Guillaume Wen-
zek, Myle Ott, and Marc’ Aurelio Ranzato. Facebook ai’s wat19 myanmar-english translation
task submission, 2019.

Barret Zoph, Deniz Yuret, Jonathan May, and Kevin Knight. Transfer learning for low-resource
neural machine translation, 2016.

Ye Qi, Devendra Sachan, Matthieu Felix, Sarguna Padmanabhan, and Graham Neubig. When

and why are pre-trained word embeddings useful for neural machine translation? In Proceedings
of the 2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 529-535, New
Orleans, Louisiana, June 2018. Association for Computational Linguistics.

Rico Sennrich and Biao Zhang. Revisiting low-resource neural machine translation: A case study.
In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pages 211-221, Florence, Italy, July 2019. Association for Computational Linguistics.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735-1780, 1997.

Taku Kudo and John Richardson. Sentencepiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. arXiv preprint arXiv: 1808.06226, 2018.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant,

Aditya Barua, and Colin Raffel. mt5: A massively multilingual pre-trained text-to-text trans-
former. pages 1-13, October 2020.

Junxian He, Jiatao Gu, Jiajun Shen, and Marc’ Aurelio Ranzato. Revisiting self-training for
neural sequence generation, 2020.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Improving neural machine translation
models with monolingual data. arXiv preprint arXiv: 1511.06709, 2015.

Benjamin Heinzerling and Michael Strube. BPEmb: Tokenization-free Pre-trained Subword
Embeddings in 275 Languages. In Nicoletta Calzolari (Conference chair), Khalid Choukri,
Christopher Cieri, Thierry Declerck, Sara Goggi, Koiti Hasida, Hitoshi Isahara, Bente Maegaard,

Joseph Mariani, Héléne Mazo, Asuncion Moreno, Jan Odijk, Stelios Piperidis, and Takenobu

Tokunaga, editors, Proceedings of the Eleventh International Conference on Language Re-
sources and Evaluation (LREC 2018), Miyazaki, Japan, May 7-12, 2018 2018. European
Language Resources Association (ELRA).

Prajit Ramachandran, Peter Liu, and Quoc Le. Unsupervised pretraining for sequence to
sequence learning. In Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing, pages 383-391, Copenhagen, Denmark, September 2017. Association
for Computational Linguistics.

Edward Loper and Steven Bird. NItk: The natural language toolkit. In In Proceedings of the ACL
Workshop on Effective Tools and Methodologies for Teaching Natural Language Processing and
Computational Linguistics. Philadelphia: Association for Computational Linguistics, 2002.

Matt Post. A call for clarity in reporting BLEU scores. In Proceedings of the Third Conference
on Machine Translation: Research Papers, pages 186-191, Belgium, Brussels, October 2018.
Association for Computational Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word vectors

with subword information. Transactions of the Association for Computational Linguistics,
5:135-146, 2017.

