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Abstract

Though there is an abundance of medical information collected in patient clinical
records, these records are typically in the form of fragmented free text, such that
the task of extracting the relevant pieces can be costly. In this project, we revisit the
2014 i2b2 challenge for identifying risk factors for heart disease in clinical records,
focusing on annotating the smoking status and family history of cardiovascular
disease, two of the most difficult risk factors in the challenge due to the sparsity of
their less common classes. The teams participating in the 2014 challenge applied a
combination of hand-written rules and classifiers such as SVM; the objective of
this paper is to adapt more recently developed transformer models for this task in
order to evaluate the suitability of these models and to understand whether these
models can be trained as a substitute for more explicit reasoning in rule-based
systems. Fine-tuning BERT, as well as Clinical BERT and BlueBERT - two BERT-
initialized models further pre-trained for the clinical and biomedical domains, we
find that Clinical BERT and BlueBERT achieve slightly higher F1 scores than
BERT, but within margin of error. Moreover, we find that basic oversampling
and class weighting approaches to address the class imbalance do not improve
the overall performance of the BERT models on this task, as the tradeoff weakens
the model’s performance on more common classes. The extraction of the span of
text within a clinical record most relevant to the risk factor, and the length of the
span that is extracted, however, do significantly impact the performance — and for
the smoking risk factor, with simple heuristics for extracting the relevant part of
a clinical record, BERT models achieve performance comparable to many of the
highest scoring models from the 2014 challenge.
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2 Introduction

Extracting useful medical information from patient clinical records, which are often only available
as fragmented free-form text, is an important but difficult and manually labor-intensive task. The
2014 i2b2 challenge exposed the potential for automatic extraction of risk factors for cardivascular
disease from clinical records of diabetes patients, with the highest-performing participating teams
achieving F1 scores close to 0.9 on the test data, using a combination of hand-written rules with
traditional machine learning classification models such as SVM. In this project, we investigate the
performance of recent transformer models - BERT, Clinical BERT, and BlueBERT - applied to the
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task of identifying the smoking status and family history of cardiovascular disease risk factors in
clinical records, through the lens of the 2014 Risk Factor identification challenge on the i2b2 dataset.
Further, we consider approaches to address the challenges of data sparsity and class imbalance in the
data and how they affect the performance of these models.

Most existing approaches for this task relied heavily on explicit rule-based systems, and though these
systems were able to attain strong performance, there were some areas on which the systems had a
little more difficulty. In particular, on the 2014 challenge dataset, though the top participating teams
achieved F1 scores over 0.9, performance on the risk factor categories that appeared more sparsely in
the data was weaker across almost all teams [1].

Since then, the newest deep learning advances in text processing - transformers in particular - have not
been thoroughly explored for this task. Since these recent transformer models such as BERT, Clinical
BERT, and BlueBERT have been shown to achieve strong performance on similar biomedical NLP
tasks, the objective of this paper is to determine whether fine-tuning these models on this task may
lead to strong performance as well, and to better understand the strengths and weaknesses of these
transformer model variants for the task as compared to more traditional models and hand-written
rule-based systems - at a higher level, whether or to what extent these learned neural models can act
as a substitute for more human-involved explicit reasoning in the clinical domain.

3 Related Work

The task of annotating clinical records is not a new one; however, prior to the i2b2 challenge there
were few shared tasks using clinical texts for training and testing due to the barriers in obtaining
and sharing medical data [2]. Other tasks have involved annotating information such as obesity [3]
and medications [4]. In these tasks as well as the 2014 challenge, the best performing teams useda
combination of classifiers such as SVM and logistic regression with hand-written rules such as regular
expression matching for specific phrases [5], and extraction of features such as document structure
and medical entities [6]. Only in most recently developed shared tasks have teams begun to take
advantage of the newest NLP advances in deep learning models such as BERT [7].

The introduction of BERT [8] was a transformative step in natural language processing. Through
pretraining bidirectional representations using a novel “masked language model” objective and
next sentence prediction, the BERT model, pretrained on large general text corpora and fine-tuned
for specific tasks, advanced the state-of-the-art in numerous NLP tasks. One of the most notable
contributions of BERT was that whereas previous language models were either unidirectional or
treated left and right context independently, the “masked language model” objective enabled BERT
to fuse the left and right contexts and ultimately produce a more robust model. Moreover, BERT
was one of the first general language models that was able to achieve high performance on a wide
variety of tasks simply by fine-tuning. However, because BERT was pretrained on general text -
BooksCorpus and English Wikipedia - it was not as well-adapted to different domains that drew
from heavily domain-specific vocabularies. The biomedical domain is one such area that uses a large
amount of specific technical terminology not typically found in general-purpose text corpora.

BioBERT [9] was the first of its kind to address this problem for the biomedical domain. The authors
started with the pretrained base BERT model and pretrained additionally with a large amount of
PubMed abstracts and PubMed Central full-text articles. The authors then fine-tuned their BioBERT
models for three common biomedical NLP tasks - named entity recognition, relation extraction, and
question-answering, and showed a significant improvement over the performance of the general
pretrained BERT on these tasks as a baseline.

The authors of Clinical BERT [10] chose to build on these existing models because clinical text, such
as physician notes, can differ substantially in vocabulary and linguistic structure compared to both
general-purpose text as the books and Wikipedia articles used to pretrain BERT as well as non-clinical
biomedical text as the biomedical research abstracts and texts used to pretrain BioBERT. Because
there are many existing and potential important applications of natural language processing that
involve clinical text, the authors sought to build a model that would improve upon the performance of
BERT and BioBERT for these clinical domain applications and to make this model publicly available.

Though Clinical BERT outperforms BERT and BioBERT in some biomedical tasks such as the
MedNLI - a natural language inference task, as well as a concept extraction and entity extraction task,



in other tasks such as de-identification, it does more poorly. This may be attributed to differences in
vocabulary and parameters, or that the authors fine-tune using only clinical data from the intensive
healthcare unit of a single healthcare institution [10]. To facilitate model development for a wider
variety of biomedical tasks, the authors of the BlueBERT model introduce a benchmark called
Biomedical Language Understanding Evaluation (BLUE), with five tasks with varying textual datasets,
data sizes, and difficulties [11]. The models they develop are pretrained on a combination of PubMed
abstracts and clinical notes, and are shown to outperform a set of baselines including BioBERT and
ELMo [11]. In this project, we aim to attain a better understanding of the usability of these models
for clinical domain NLP tasks by comparing the performance of the general BERT model with that
of the BERT models pretrained on clinical texts - Clinical BERT and BlueBERT - on the specific
task of extracting sparse risk factors from clinical records.

4 Approach

In this project, we fine-tune BERT, Clinical BERT, and BlueBERT to identify two sparse risk factors
for cardiovascular disease, smoking status and family history of cardiovascular disease. The task is
challenging not only because of the relatively small amount of data — a common problem with clinical
data in practice due to privacy issues and the costliness of manual annotation — and the complex
nuances of the annotation rules, but also because the class distributions of the labels are significantly
skewed, as discussed in the Data section. Further, the clinical records are often long and noisy —
the parts relevant to each risk factor vary in length but typically comprise only a relatively small
span within a clinical record, and the phrases, abbreviations, syntax, sections, and overall document
structure vary across documents.

BERT, Clinical BERT, and BlueBERT are pretrained embedding models. For classification the final
hidden state h of the first token is taken as the representation of the whole sequence, and then a
simple softmax classifier is used to predict the probability of the label c as

p(c/h) = softmax(Wh)

and W and BERT parameters are fine-tuned to maximize the log-probability of the correct label [12].
This is done with BertForSequenceClassification and AutoModelForSequenceClassification [13].

One drawback of directly applying a BERT model to the clinical records is that the length of the
clinical records often significantly exceeds the maximum length that BERT can handle. The maximum
length of an input sequence to BERT is 512 tokens; however, the clinical record texts are often about
1000 tokens, so that applying a BERT model directly results in the clinical record text being truncated
to only the first 512 characters. Since the description of a patient’s smoking status often does not
occur at the beginning of the clinical record, this leads to a loss of critical information for determining
the smoking status.

To overcome this, we implement heuristic extraction functions to extract a continuous span of n
characters from the clinical record most likely to be relevant to the risk factor based on a priority list
of keywords. These keywords were determined based on examining documents in the training data
set. For smoking status, the extraction function priority-matches on the keywords “smok”, “tobacco”,
“cigar”, “tob”, “sh”, and “social history”, and for family history of CAD, the extraction function
priority-matches on the keywords “family history”, “family”, “fhx”, “mother”, “father”, “sister”,
“brother”, “fth”, “sh”, and “social history”. If none of the keywords is found in the text, a random

n-character span of the text is chosen.

In addition, we consider basic approaches to address the problem of class imbalance, using the
commonly used techniques of specifying class weights and oversampling less frequent classes
[14]. Though BertForSequenceClassification and AutoModelForSequenceClassification do not
accommodate class weights, we implement class weights by modifying the training process to
use CrossEntropyLoss with specified weights rather than the internal loss implementation of those
models. Though there are several ways to formulate class weights that set higher weights for less
frequent classes and lower weights for frequent classes, on this task they made little difference, so the
computations used to produce the models that are reported in the Results section are

w(cg) =1 —len(c,)/len(total)

where w(c;) is the class weight for class x, len(c,) is the number of records in class z in the set and
len(total) is the total number of records in the set. The oversampling is done by selecting for each



class a random sample, with replacement, of length equal to the number of data records in the largest
class.

S Experiments

5.1 Data

The dataset used in the 2014 i2b2 challenge is split into training, validation, and test sets, divided
into parts of approximately 40%-20%-40%. The corpus consisted of 1,304 records representing 296
patients. The records are in the form of unstructured text in XML files with the gold label tags. From
these files, the smoking status and family history labels is extracted from the tags, and files missing
the label of interest are discarded. Table 1 and 2 display the distribution of each label in the training,
validation, and test sets, for smoking status and family history, respectively.

The smoking status annotation consists of five mutually exclusive labels — Current, Past, Ever, Never,
and Unknown. A patient’s clinical record is annotated as Current for the smoking status risk factor if
the patient is currently a smoker or quit less than a year ago — for instance, as indicated by the phrases
“Patient says trying to quit 1pack/day habit” or “quit 6mos ago”. Meanwhile, the Past label is used
when a patient used to smoke but quit over a year ago, the Never label is used when a patient has
never smoked, and the Ever label is used when it is unclear whether the patient has quit or there is
no information on the timeframe when the patient quit smoking — for instance, if the description is
“quit smoking” or “remote history of tobacco dependence”. If there is no information about smoking
status, the clinical record is labeled as Unknown; the class proportions for smoking status are heavily
skewed and this is the most frequent class in the data by a significant margin [1].

The family history annotation is an indicator that is ‘present’ if the patient has a first-degree relative
(parents, siblings, or children) who was diagnosed prematurely (younger than 55 for male relatives,
younger than 65 for female relatives) with CAD, and ‘not present’ otherwise. For instance, clinical
records with phrases such as “Father diagnosed w CAD at 49” or “Fam.hist. significant for premature
CAD” would be annotated as ‘present’ while phrases such as “Father w/ CAD, died at 82 yrs”, “No
known relatives with CAD”, or “Both grandfathers prem. CAD”, should not be annotated for the risk
factor. The vast majority of the clinical records are annotated as ‘not present’ [1].

Data Count Unknown (%) Never (%) Past(%) Current(%) Ever (%)
Training set 511 0.47 0.25 0.20 0.07 0.01
Validation set 260 0.50 0.22 0.18 0.09 0.01
Test set 511 0.47 0.23 0.22 0.06 0.01

Table 1: Distribution of Smoking Status Labels

Data Count Not Present (%) Present (%)
Training set 521 0.98 0.02
Validation set 269 0.95 0.05
Test set 514 0.96 0.04

Table 2: Distribution of Family History of CAD Labels

5.2 Evaluation method

The micro-averaged F1 score is used to evaluate the models, to be consistent with the evaluation
metric from the 2014 i2b2 challenge. Note that F1 is the same as the precision and recall when
micro-averaging in a multi-class problem. Accuracy is considered as well, for each of the five classes
for the smoking factor, or each of the two classes in the case of the family history factor. The micro-F1
scores of the models trained in this work are compared against those of the top performing teams
in the challenge, as well as a baseline of predicting the most frequent class in the training data —
‘unknown’ for smoking status and ‘not present’ for family history of cardiovascular disease.



5.3 Experimental details

The code for loading the data, building the models, and training and testing utilize the Huggingface
transformers library [13] and adapt code from [15]. The BERT model used is the base, uncased model
[8], the Clinical BERT model is the model initialized from BioBERT and trained on all MIMIC notes
[10], and the BlueBERT model is the uncased model pretrained on PubMed and MIMIC clinical
notes [11]. Each of the models was trained for 10 epochs, and the final model is selected selected
from the epoch with the lowest validation set loss. A learning rate of le-5 was used with the Adam
optimizer [16], and a batch size of 3 is used. The training took about an hour for each model in the
Azure environment.

5.4 Results

The results of the trained models on the test data are displayed in tables 3-5 for the smoking status
risk factor, including median micro-F1 scores with their 95% confidence intervals for all model
variants and micro-F1 scores from the baseline and from top teams in the 2014 challenge as reported.
Table 6 reports the accuracies by class of smoking status for a subset of these models. The BERT
variant used is indicated in the tables, along with the number of characters extracted; for instance,
BERT-800 denotes a model initialized with the original BERT base model, and fine-tuned and tested
on 800-character extracts from the clinical records, extracted as described in the Approach section.

Each of the model approaches varying the extraction length, weights and oversampling, and using
BERT, Clinical BERT, and BlueBERT, was also trained and tested for the family history risk factor.
However, in all but a few cases, the models produce identical F1 scores to that of the baseline that
predicts the most frequent class — family history not present — in all cases. Thus, Table 7 displays the
micro-F1 scores and class accuracies where available for only a selected set of these models.

We find that for both risk factors, the highest scoring model from the 2014 challenge was still the
result with the highest F1 score, but that the best performing BERT models achieve F1 scores on
par with several of the top teams in the challenge. As shown in Tables 5 and 7, the best performing
BERT, Clinical BERT, and BlueBERT models all achieve F1 scores that would rank within the top 5
highest scores from the challenge for both smoking status and family history of CAD. The extraction
function makes a significant difference for performance on annotating smoking status, improving the
models from performance comparable to the baseline of always predicting the most frequent class
— a micro-F1 score of close to 0.475 — to highest scores of 0.865 for BERT with extracts of 1000
characters, 0.881 for Clinical BERT with extracts of 600 characters, and 0.867 for BlueBERT with
extracts of 600 characters. Class weights and oversampling, however, in most cases do not appear to
make any difference for the performance of the models outside of the margin of error. On average, the
scores of the models with class weights and oversampling tend to be lower than those of the models
without any adjustment, with the exception of BlueBERT.

Number of characters

extracted

BERT

Clinical BERT

BlueBERT

No extraction
400

600

800

1000

1200

1400

0.473 (0.432, 0.518)
0.828 (0.795, 0.861)
0.863 (0.832, 0.893)
0.865 (0.836, 0.895)
0.865 (0.836, 0.900)
0.857 (0.824, 0.887)
0.820 (0.787, 0.854)

0.475 (0.434, 0.520)
0.846 (0.811, 0.879)
0.881 (0.850, 0.906)
0.865 (0.832, 0.873)
0.846 (0.832, 0.895)
0.834 (0.803, 0.865)
0.826 (0.791, 0.859)

0.476 (0.434, 0.520)
0.848 (0.814, 0.879)
0.867 (0.834, 0.895)
0.830 (0.797, 0.863)
0.844 (0.811, 0.873)
0.816 (0.783, 0.848)
0.806 (0.773, 0.842)

Table 3: Smoking classification micro-F1 scores with 95% confidence interval, best result for each

BERT model bolded

6 Analysis

The reason that the models achieve stronger performance when the extraction is used is intuitive:
because BERT simply uses the first 512 tokens when in many cases the smoking status is described



No Adjustment

Class Weights

Oversampling

BERT-800
BERT-1000
Clinical BERT-600
Clinical BERT-800
BlueBERT-400
BlueBERT-600

0.865 (0.836, 0.895)
0.865 (0.836, 0.900)
0.881 (0.850, 0.906)
0.865 (0.832, 0.873)
0.848 (0.814, 0.879)
0.867 (0.834, 0.895)

0.863 (0.832, 0.893)
0.863 (0.834, 0.893)
0.875 (0.844, 0.902)
0.848 (0.814, 0.879)
0.842 (0.807, 0.871)
0.873 (0.844, 0.902)

0.840 (0.807, 0.869)
0.828 (0.795, 0.863)
0.877 (0.846, 0.904)
0.836 (0.803, 0.805)
0.859 (0.828, 0.889)
0.863 (0.834, 0.893)

Table 4: Smoking classification micro-F1 scores with 95% confidence interval for best performing
models, best result across class imbalance approaches for each model bolded

micro-F1
BERT-1000 0.865 (0.836, 0.900)
Clinical BERT-600 0.881 (0.850, 0.906)

BlueBERT-600-weighted 0.873 (0.844, 0.902)

2014 challenge, 1st 0.916
2014 challenge, 5th 0.854
2014 challenge, 10th 0.815
Most frequent class (‘unknown’)  0.475

Table 5: F1 scores of highest scoring BERT, Clinical BERT, and BlueBERT models and baselines,
best result bolded

Current Ever Never Past Unknown

Clinical BERT-no extraction 0 0 0 0 1

Clinical BERT-600 0.183 0 0.926 0.859 0.971
Clinical BERT-600-weighted 0.303 0 0.899 0.742 0.955
Clinical BERT-600-oversampled 0.574 0 0.926 0.776  0.950
Clinical BERT-1000 0.210 0 0.841 0.807 0.959
BERT-1000 0.480 0 0.877 0.753 0.976
BlueBERT-600 0 0 0.934 0.858 0.966
BlueBERT-600-weighted 0.092 0 0.934 0.840 0.975
BlueBERT-400 0 0 0.934 0.735 0.983
BlueBERT-400-oversampled 0.424 0 0.866 0.753 0.975

Table 6: Accuracies by class of smoking status, reported for selected models

toward the middle of the clinical record and the order of the sections within a clinical record varies
significantly across records, the part of the clinical record relevant to the classification is often lost to
the model that does not use extraction. Inspecting one straightforward clinical record for which the
BERT, Clinical BERT, and BlueBERT models using the extraction function all correctly determine
that the patient was a past smoker from the phrase “The patient quit smoking 20 years ago but had
smoked 1.5ppd*20yrs (30 pack year)”, the corresponding models without extraction fail to correctly
classify this example simply because the phrase does not occur until almost the 600th token of the
clinical record.

The reason that the models vary in performance depending on the length of the span extracted,
however, is less clear. Table 3 shows the performance of the BERT variant models with the extraction
function applied to the data, with extracts of different lengths in number of characters. Each of
the three models appears to benefit from increasing the number of characters extracted from 400 to
600, but the Clinical BERT and BlueBERT models’ F1 scores decrease slightly when the number of
characters extracted is increased from 600 to 800. This suggests that either there may be a significant
number of phrases that are longer than 400 characters but less than 600 characters long, or that 600



micro-F1 Accuracy: Not Present  Accuracy: Present

BERT-no extraction 0.963 (0.947,0.981) 1 0
BERT-1200 0.963 (0.949,0.979) 1 0
BERT-600 0.965 (0.947,0.981) 0.964 0.108
BERT-600-weighted 0.965 (0.949, 0.979) 0.965 0.052
BERT-600-oversampled 0.963 (0.944,0.979) 1 0
Clinical BERT-600 0.963 (0.947,0.979) 1 0
BlueBERT-600 0.963 (0.946,0.979) 1 0
2014 challenge, 1st 0.981 - -
2014 challenge, 5th 0.963 = -
2014 challenge, 10th 0.949 - 2
Most frequent class (‘not present’)  0.963 1

Table 7: Performance metrics for annotating Family History of CAD, selected models and baselines

characters is enough to capture relevant data that may be missed by the basic extraction heuristic,
that these models benefit from longer spans longer than 400 but may be weakened when adding
characters with additional noise beyond 600 characters. In the case of the base BERT, the models
achieve comparable performance for 600, 800, and 1000 characters. In one patient record, one of
the first sections, “past medical history", contains a mention of ‘smoker’: “past medical history: cad,
history of stemi in 2077, eight stents including lad, at least x 2, biv icd placement , last cath at och
showed multivessel disease, biv icd, ddd st. jude, 05/13/2081, chf, diabetes, hypertension, former
smoker." However, there would not be enough information to determine that the patient was a Past
smoker rather than an Ever smoker until a later sentence a few brief sections after that: “social history:
he is a retired purchasing agent, quit smoking a few years ago, had smoked one pack per day. he
has used no alcohol or illicit drug use, a very supportive family." As a result, this information is
just barely captured in the 600 character extract, and is comfortably contained in the 1000 character
extract, but not present in the 400 character extract. The BERT-600, BERT-800, BERT-1000, and
BERT-1200 models all correctly classify this patient record as Past, but the BERT-0 and BERT-400
do not. Another way to address this issue in future work would be to pass an extract for each keyword
match to the model, rather than only the first time a keyword is found, and to take the maximum or
average of the results on the each of the extracts to classify the document.

To mitigate the class imbalance in the data, we used class weights and oversampling approaches.
However, these approaches did not improve the overall F1 scores of the models, with the possible
exception of BlueBERT, as displayed in Table 4. This can be attributed to the way that the over-
weighting or oversampling — which are conceptually the same approach, to induce less frequent
classes to factor more heavily into the loss function — affects different classes. Looking at Table
6, we see that the weighting and oversampling improves the accuracy of classifying the records
as Current in every case — for Clinical BERT-600, only 18.3% of the Current labels are correctly
extracted but with weighting and oversampling 30.3% and 57.4% of the labels are correctly identified.
Likewise, for BlueBERT-600, weighting increases the accuracy on Current from 0 to 0.092, and for
BlueBERT-400, from 0 to 0.424. The difference in overall performance, however, is shaped by the
tradeoff of accuracy on Current for less accuracy on more common labels. In the case of Clinical
BERT with 600 characters, the shift of emphasis toward correctly classifying Current leads to a
significant decline in performance on the more common classes of Past and a smaller but noticeable
decline in performance on Unknown, the most common class. For BlueBERT, there is a much smaller
decline in performance in the Past and Unknown classes. The reason for this is unclear, but one
possibility is that it is due to BlueBERT having more sources of pretraining data or preserving more
of the BERT parameters and the potentially better generalizability could make the model more robust
to differences in class distributions.

Overall, the highest-scoring Clinical BERT and BlueBERT models outperform the base BERT
model, though within margin of error. This is as expected, since Clinical BERT and BlueBERT
are pretrained specifically for the biomedical domain, and would have better exposure to clinical
syntax and vocabulary. The class accuracies in Table 6 suggest that this may be attributable to BERT
performing particularly poorly on Never and Past classes in comparison to the other models. We
find that in 11 of the 14 cases that BERT-1000 misclassifies a record that should be labeled as Past,



the model misclassifies the record as Ever, and in 15 of the 30 cases that BERT-1000 misclassifies a
record that should be labeled as Never, the record is misclassified as Past. It may be that familiarity
with clinical vocabulary is advantageous for navigating the nuances of these similar labels.

The performance on the family history risk factor is displayed in Table 7 for a selection of models.
Both most of the transformer models and most of the top models in the 2014 challenge achieve only
F1 scores equal to that of predicting ‘not present’ for all cases — these models, even including the
Clinical BERT and BlueBERT models with weights and oversampling, are unable to overcome the
challenge of the significant class imbalance in the data, a sparsity issue compounded by the large
variety of possible descriptions of family history in the clinical records and the complex definition of
the family history annotation as described in the Data section. Since family history is less dependent
on clinical vocabulary and biomedical terms or syntax, Clinical BERT and BlueBERT do not have an
advantage for this risk factor, and the BERT models with 600 characters achieve higher F1 scores by
attaining non-zero accuracy on the Present label.

7 Conclusion

In this project, we fine-tuned recent transformer models — BERT, Clinical BERT, and BlueBERT - to
the task of identifying smoking status and family history of CAD in clinical records, using the dataset
of the 2014 i2b2 challenge. Though the small amount of data, the complexity of the annotation rules,
the length of the documents, and the class imbalance and sparsity of uncommon class labels prove
challenging for the task, and none of the transformer models outperform the highest scoring models
in the 2014 challenge, that these BERT models achieve performance on par with several of the top
scoring models that utilize a combination of hand-written rules, feature extraction, and traditional
classifiers, is promising.

A major limitation of the models developed in this project is that neural models such as transformers
rely on a large amount of data to learn such sparse patterns as the annotation rules for these risk factors,
and the most successful system in the 2014 challenge, in addition to external lexicons, hand-written
rules, and SVMs, relied on additional annotations as well. Future work could improve upon these
models by training using more data — perhaps by annotating the risk factors in and extending to a
larger dataset such as MIMIC, a large set of unlabeled clinical data. Other approaches could extend
our analysis to improve the extraction heuristics, or to try more complex methods for addressing class
imbalance. Ultimately, though transformer models have been little-explored in the biomedical NLP
domain to date, given the findings of this work and the strength of BERT models’ performance with
only a simple extraction function, there is potential for systems and ensembles to leverage BERT for
this task and other challenging tasks in the clinical domain as well.
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