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Abstract 

There is a significant performance gap in ASR systems between black and white 
speakers, which is attributed to insufficient audio data from black speakers available 
for models to train on. We aim to close this gap by using a CycleGAN based voice 
converter to generate African American Vernacular English utterances from generic 
American English utterances as a data augmentation strategy. By using a two-step 
adversarial loss and a self-supervised frame filling task, we were able to noticeably 
improve the qualitative performance of our CycleGAN based voice conversion 
pipeline. In spite of this, we could not establish the method of CycleGAN based 
voice conversion as a reliable method for data augmentation. While this project 
was challenging, it was especially rewarding to conduct this line of research which 
has the ultimate goal of ensuring that marginalized voices are heard. All code is 
publicly available at our Github repository. 

1 Introduction 

Millions of people around the world use Automated Speech Recognition (ASR) systems to transcribe 
their speech through applications like virtual assistants on mobile devices, captioning technology, and 
speech interfaces in cars. However, as with other applications of machine learning, there is increasing 
concern that speech recognition suffers from harmful biases. A recent paper by Koenecke et al. (2020) 
showed that commercial ASR systems from companies like Amazon, Google, and Apple made twice 
as many errors transcribing audio from black speakers as audio from white speakers [1]. The authors 
hypothesize that this disparity can be traced back to a performance gap in acoustic models in ASR 
systems due to insufficient audio data from black speakers when training the models. 

Koenecke et al. suggest that ASR systems can be made more inclusive through better data collection 
for nonstandard varieties of English, such as regional accents or nonnative-English accents. However, 
ensuring that this is achieved for all subgroups of the population is challenging. We evaluate speech 
recognition performance on a small speech dataset from an underrepresented subgroup, in our case 
African American Vernacular English (AAVE) speakers, when augmented using a CycleGAN-based 
voice converter combined with audio from a dataset of more commonly represented speakers, in our 
case white Californian speakers. Thus, we propose a computational method to overcome some of the 
challenges of limited data. Such methods are important because they can be used to improve ASR 
systems for underrepresented groups and make it easier for them to experience the broad benefits 
of speech recognition technology, from virtual assistants to hands-free computing for the physically 
impaired. 

2 Related Work 

Data augmentation is the task of synthetically modifying data to increase the amount and diversity 
of the dataset. One method of conducting data augmentation for ASR is voice conversion (VC). 
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Voice conversion involves modifying the speaker characteristics of a given utterance while preserving 
linguistic information. Traditionally voice conversion methods have required the use of a large parallel 
training corpus, allowing training to be formulated as a regression problem. For example, Tanaka 
et al.’s work on sequence-to-sequence voice conversion using attention and context preservation 
mechanisms trains a converter between the source and target domain using parallel utterances in a 
supervised manner [2]. Similar works using full convolutional sequence-to-sequence networks have 
also relied on parallel training data [3]. The disadvantage of using a parallel corpus is that they are 
expensive to obtain and require time alignment preprocessing which can be difficult when there is 
a large acoustic gap between the source and target speech [4]. Obtaining a parallel corpus can be 
infeasible when working with low resource datasets. 

Some works have explored training voice conversion systems on unpaired data. Sun et al. utilizes 
unpaired phonetic posteriorgrams (PPGs), to train a BILSTM-RNN voice conversion model and Saito 
et al. proposed a VAE based framework for non-parallel conversion [5][6]. 

While VAEs and PPG frameworks have shown promise, CycleGAN based methods have widely been 
accepted as state-of-the-art approaches for non-parallel voice conversion [7]. Through adversarial 
training, CycleGAN learns a mapping from the source to target and the corresponding inverse 
mapping while being constrained by a cycle consistency loss term [8]. CycleGAN-VC, CycleGAN- 
VC2, and StarGAN-VCs have all demonstrated the ability to convert between source and target 
speakers [4][9][10]. Moreover, StarGAN-VCs are able perform many-to-many voice conversion by 

adding an encoding of the source and target speaker information at each layer [4]. However, these 
methods are constrained to conversions between Mel-frequency cepstrums (MFCCs) due to their 
limited ability to preserve time-frequency information between conversions [7]. 

To enable CycleGAN to capture time-frequency information, Kaneko et al. proposes CycleGAN-VC3 
which incorporates a time-frequency adaptive normalization (TFAN) module. Using this module, 
they saw marked improvements in conversions between Mel-spectrograms. To reduce the number of 
parameters introduced by the TFAN module, Kaneko et al. instead proposed MaskCycleGAN-VC 
which masks out frames in the input Mel-spectrogram and trains the model on an auxiliary task to fill 
in the masked frames [7]. 

GAN-based data augmentation to improve downstream ASR systems is severely understudied. One of 
few studies in this domain utilizes CycleGAN to convert between child and adult speakers to address 
the paucity of publicly available child speech datasets [11]. Another study by Shahnawazuddin et 
al., demonstrate that augmenting with converted audio can improve ASR systems in a limited data 
scenario [11]. Gudepu et al. use a similar approach to convert between normal speech and whispered 
speech for data augmentation [12]. 

Our work has strong parallels to Shahnawazuddin et al. and Gudepu et al.’s publications. However, 
our work converts between generic American English and AAVE. Additionally, our work utilizes 
state-of-the-art MaskCycleGAN-VC to preserve time-frequency information. 

3 Approach 

To mitigate the performance gap of ASR systems trained on limited datasets of underrepresented 
speakers, our task in this project is to explore the effectiveness of GAN-based data augmentation 
to improve performance. In particular, we are focusing on improving the performance of an ASR 
system on the CoRAAL dataset [13] of African American speakers. In addition to being limited in 
size compared to other speech datasets, the CORAAL dataset poses several key challenges that we 
attempt to mitigate in our approach. 

AAVE speech in CORAAL sounds distinctly different from larger datasets with generic American 
English speech. To address this, we use a GAN-based voice conversion model to convert speech from 
generic American English to AAVE, providing a proof-of-concept data augmentation method for low 
resource speech datasets. Additionally, there is some data imbalance between speakers (Appendix 
C Figure 6) in the CoORAAL dataset. To mitigate this imbalance, we augmented speakers with the 
least number of utterances to improve dataset diversity. To that end, we implemented and trained 
a CycleGAN-based voice conversion model to convert speech from 7 white speakers from VoC to 
match the style of the 7 African American speakers in CoORAAL with the least data.



3.1 CycleGAN-VC 

3.1.1 Baseline 

Voice conversion is the task of modifying the speaker characteristics of a given speech while pre- 
serving linguistic information. While current methods require expensive, large parallel training data, 
cycle-consistent generative adversarial networks (CycleGAN) are the state-of-the-art method in voice 
conversion that does not require a parallel corpus. CycleGAN is composed of four deep neural 
networks: two generators (G.4—+g and G g_ 4) and two discriminators (D4 and Dg). The generator 

G 4—+8 is trained to convert input x from source domain A to target domain B. The outputs from the 
generator G 4+ (x) and real samples y from the target domain B are passed to the discriminator 
Dz. The discriminator Dp is trained to classify whether the input is real or fake. This adversarial 
objective allows the generator to learn to convert inputs from domain A to domain B in a realistic 
manner that fools the discriminator. More concretely, the adversarial loss function is defined as 
follows: 

Laav(G, D) = Ey [log D(y)] + Ee[log(1 — D(G(2))] (1) 
The aforementioned adversarial loss is defined for both generators G4—+ 3 and G g—s 4, which are 

jointly trained to convert between domain A and domain B. The inputs of our generator are 2D 
images known as Mel-spectrograms, which are generated during a preprocessing step from the raw 
wave file speech data (See section 4.1 for more details). In order to ensure that CycleGAN preserves 
linguistic information, a cycle consistency loss is added, which is defined as: 

Leycte(Ga>B,Gp—a) = Ez|||Ga4(Gaea(2)) —2|1] +E, [||Ga>a(Gaaly))—ylli] 2 

To ensure that the generator does not modify input speech if it is already in the target speaker’s voice, 
an additional identity loss is added: 

Lidentity(Ga+B,Gpoa) = Ez|||Ga5a(x) — 2|l1] + Ey[||Gaoea(y) — yl] (3) 

3.1.2 Two step adversarial loss 

While the baseline CycleGAN uses an L1 reconstruction loss between the real and reconstructed 
inputs, we follow the work of [9] to instead use a two step adversarial loss. The L1 reconstruction 
loss leads to a degradation in output quality due to statistical averaging, which is mitigated by using 
the two step adversarial loss. As such, we introduced two new discriminators D 4, and Dz, to add an 

adversarial loss between the real and reconstructed inputs. 

Putting it all together, the combined training loss objective is defined as: 

LeycteGan-ve = Ladv(Ga>es,Dp) + Lav(Gaa, Da) 

+ AcycleL cycle (Ga B, Gpoa) 
(4) 

+ Xidentity Lidentity (Gas B,GB—a) 

+ Ladiv(Ga>p—a, Da’) + Laav(Geaoa es, Dp’) 

3.1.3 Model 

The generator model, shown in figure 1, is composed of downsampling, residual and upsampling 
layers, following the model architecture proposed by [9]. We utilized a downsampling-upsampling 
architecture in order to lower the computational complexity. Furthermore, residual layers are an 
important component to combat the problem of vanishing gradients. In addition, our generator 
follows a 2-1-1D CNN architecture where the downsampling and upsampling blocks perform 2D 
convolutions, while the residual blocks perform 1D convolutions. Prior work [10] has shown that 

such an architecture would allow the model to effectively capture wide-range structures and features 
without degradation in performance. 

Downsample (2D) 2D71D 6 ResBlocks (1D) 1D72D Upsample (2D) 
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Figure 1: CycleGAN-VC Generator model



The discriminator model, shown in figure 2, is a fully convolutional PatchGAN architecture [14] that 

provides a real/fake prediction for each patch of the input Mel-spectrogram. 
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Figure 2: CycleGAN-VC Discriminator model 

Inspired by existing implementations [15], we implemented the full CycleGAN-VC model along 
with its associated training, evaluation, logging and visualization scripts. Since most existing 

implementations of the CycleGAN-VC model had considerable bugs and limitations, we made 
significant contributions to rewrite and refactor extensive portions of prior implementations to fix 
correctness, improve clarity and adaptability. 

3.1.4 Input Masking 

To allow the CycleGAN model to grasp time-frequency structures of input Mel-spectrograms, we 
explored the use of an auxiliary self-supervised task as proposed in MaskCycleGAN-VC [7]. As 
shown in figure 3, a temporal mask is applied to the input Mel-spectrograms to encourage the 
generator to fill in missing frames using learned features from the surrounding frames. As such, this 
self-supervised task encourages the CycleGAN-VC model to learn the time-frequency structure of the 
input spectrograms without any additional learned parameters. Since the authors of [7] did not release 
their code, our repository has the first publicly available implementation of MaskCycleGAN-VC. 

Cycle-consistency loss 

Real A Fake B Reconstructed A 

  

     
Figure 3: MaskCycleGAN-VC and its masked inputs 

3.22 ASR 

3.2.1 Model 
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Figure 4: DeepSpeech2 ASR model architecture



We trained downstream ASR models to evaluate the utility of our converted samples for data 
augmentation. We utilized a DeepSpeech2 model architecture as shown in figure 4. The model 
consists of 3 residual CNN layers which utilize skip connections to stabilize gradient updates. The 
model is also comprised of 5 Bidirectional GRU layers which were selected over LSTM layers 
to reduce computational expenses. We significantly refactored AssemblyAI’s implementation of 
DeepSpeech?2 to incorporate it into our training pipeline [16]. 

3.2.2 Loss 

We use a connectionist temporal classification (CTC) loss term to train our ASR model [17]. CTC loss 

computes the sum of probabilities over all possible alignments between the ASR model’s prediction 
X and the ground truth label Y [18]. 

The softmax layer of the ASR model outputs probabilities for each time step which defines the 
distribution over output sequences p;(a|X) where t is the time step and a is a single alignment 
between X and Y. Valid output sequences which correspond to Y are obtained from a single alignment 
a by merging repeat characters, then removing € tokens which are blank tokens [18]. Equation (5) 
describes the full CTC objective where for a training set D, the model tries to minimize the negative 
log likelihood of each (X Y) pair. 

Lerco= > —logp(¥|X) (6) 
(X,Y)eD 

Since the number of possible alignments represent such a large search space, the CTC conditional 
probability is estimated for each (X,, Y) pair by using beam search to sum over the probabilities of 
the most probable valid alignments across time steps. 

TE 

PAY|X)= So [[ pelailX) (6) 
AG Ax y t=1 

4 Experiments 

4.1 Data 

We use two distinct corpora of conversational speech. The first, called The Corpus of Regional African 
American Language (CoRAAL) [13], is a publicly available corpus of socio-linguistic interviews 
consisting of long-form, socio-linguistic interviews with black speakers from a variety of geographic 
areas. 

The second corpus we use is called Voices of California (VoC) [19], which is similarly composed of 

socio-linguistic interviews, documenting variations in ways of speaking across different regions of 
California. We sampled 37 white speakers from the VoC dataset. 

We preprocessed the audio from both datasets to splice out interviewers and created wave files of up 
to 20 seconds. For the ASR task, we normalized the transcripts according to Koenecke et al [1]. We 
split our CORAAL data into train, validation and test sets by speaker, selecting 6 speakers of each 
gender (~15% of the total participants) at random for both the validation and test sets. Due to the 
variation in the quantity of data per speaker, we end up with a train set of 36.8 hours, a validation set 
of 6.8 hours and a test set of 7.3 hours. We used our entire VoC dataset, consisting of 37.0 hours of 
speech, for training. 

During training, the input wave files were downsampled to 22.05 kHz. We extract 80-dimensional 
Mel-spectrograms with Lyindow = 1024, Lnop = 256. 

4.2 Evaluation Method 

Downstream ASR performance: We evaluate the performance of our downstream ASR model 
(DeepSpeech2) on the CoORAAL validation and test set using WER (Word Error Rate) and character- 

level Levenshtein distance (CER). We evaluate the effectiveness of our voice conversion data-



augmentation by its impact on performance (WER, CER) of the ASR model on the CoRAAL dataset. 
Previous works on voice conversion have evaluated voice conversion using Mel-cepstral distortion 
and modulation-spectra distance, which requires paired utterances between speakers, which were 
unavailable between CORAAL and VoC. Therefore we rely primarily on the performance of the 
downstream ASR task to evaluate the quality of our voice conversion. 

Qualitative Measures: We used a pre-trained MelGAN vocoder [20] to convert Mel-spectrograms 
to wave forms, allowing us to validate the quality of the voice conversion. 

4.3 Experimental Details 

4.3.1 CycleGAN-VC 

We experimented with three different versions of CycleGAN: CycleGAN-VC2, CycleGAN-VC3, 
and MaskCycleGAN-VC. For each version we trained three CycleGAN models to learn one-to-one 
mappings between three pairs of VoC and CoRAAL speakers. We decoded the converted Mel- 
spectrograms to waveform using a pre-trained MelGAN vocoder to evaluate the rendered audio. After 
determining the best model architecture, we trained 7 models to learn a mapping between 7 pairs 
of VoC and CoRAAL speakers to generate Mel-spectrograms for data augmentation. We carefully 
selected pairs of speakers to account for gender and age balance as well as clarity of audio. 

For each speaker, we normalized the Mel-spectrograms using the mean and variance of the training 
set. During training, we randomly cropped 64 frames (~ 0.75 s) of the input Mel-spectrogram. We 
trained the model for 6172 epoch using an Adam optimizer, or until convergence, with a batch size of 
1 on one Nvidia V100 Tensor Core GPU. The learning rates were set to 0.0002 for the generators 
and 0.0001 for the discriminators, with momentum terms 3; = 0.05, 82 = 0.999. Additionally, 
we used Acycie = 10, identity = 5. After 10k steps, we decayed the learning rates linearly and 

removed the identity loss from the objective function so as not to over-constrain the generator. Our 
MaskCycleGAN-VC model randomly masked between 0 and 25 continuous frames. 

4.3.2 ASR 

We finetuned DeepSpeech2 ASR models which were pre-trained on 360 hours of "clean" speech from 
the LibriSpeech ASR corpus [21]. We utilized this finetuning approach as DeepSpeech2 struggled to 
learn from both CoRAAL and VoC datasets from scratch. 

We trained each model for 100 epochs with a batch size of 10 on 2 Nvidia V100 Tensor Core GPUs. 
Each model took approximately 72 GPU hours to train. We utilized spectral augmentation [22] to 
increase the effective size of the dataset. We utilized an AdamW optimizer and a one cycle scheduler 
with a max learning rate of 0.0005 for training. We use greedy decoding to obtain our transcriptions. 

4.4 Results 

4.4.1 CycleGAN-VC 

The outputs of the CycleGAN-VC model with two-step adversarial losses were qualitatively poor and 
choppy. Next we implemented MaskCycleGAN-VC by incorporating the auxiliary task of filling in 
masked frames. The outputs of MaskCycleGAN-VC were far superior to our prior models in terms 
of naturalness and similarity to the target speaker. As such, MaskCycleGAN-VC was selected as 
the architecture for the voice conversion task. We trained 7 MaskCycleGAN-VC models to learn a 
mapping between 7 pairs of VoC and CORAAL speakers. 

4.4.2 ASR 

For our baselines, we trained our ASR model on the CoRAAL dataset (1), the unconverted VoC 

dataset (2) and the combination of the two datasets (3). Condition (2) acts as a proxy for traditional 

ASR models trained on generic American English. 

For our first experiment with the converted data, we trained our ASR model with the CORAAL dataset, 

the converted data from the 7 VoC speakers on which we trained our CycleGANs, and the unconverted 
VoC data from the remaining 29 speakers (4). Our model trained on this data performed worse than
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Table 1: DeepSpeech2 model performance on experimental conditions. We generated a one to one 
mapping between 7 VoC speakers and 7 CoORAAL speakers. We trained our CycleGAN models to 
convert the audio between these 7 VoC speakers and the 7 CoORAAL speakers. We then evaluated the 
ASR performance of our model trained on the listed combinations of our converted and unconverted 
data. 

the model trained on CoRAAL and the unconverted VoC data (3). For our second experiment with the 

converted data, we trained our ASR model with the CoORAAL data and 7 unconverted VoC speakers 
as the control (5). As a comparison, we trained our ASR model with the CoORAAL data and audio 

from 7 VoC speakers converted using CycleGAN (6). This model saw a marked decrease across 
both metrics from the control (5). Finally, we train our ASR model on the CoRAAL data, all of the 

unconverted VoC data, and the converted VoC data from the selected 7 speakers (7). Despite training 
on the most data, this model performed worse than the baseline (3). 

5 Analysis 

5.1 Qualitative CycleGAN-VC results: 

We converted spectrograms to waveforms using a pre-trained MelGAN vocoder to evaluate the quality 
of our voice conversion model. MaskCycleGAN-VC qualitatively produced the best voice conversion 
results across all testing speakers. In particular, it performed best when converting between two 
female speakers, and saw the worst results when converted cross-gender. This result is expected since 
the task of cross-gender voice conversion is inherently more difficult due to the larger difference in 
source and target domains. 

Impact on ASR performance: As seen through our ablation studies in table 1, our method of 
CycleGAN voice conversion did not reliably improve the WER and CER of the ASR system on 
the validation set. When the number of utterances from VoC used for augmentation is fixed, ASR 
models trained on voice converted spectrograms were outperformed by their unconverted counterparts. 
This observation is seen across multiple parallel runs ((3)&(4) and (5)&(6)). This indicates that 

unconverted VoC spectrograms helped the model learn better than converted VoC spectrograms, 
and that improvements over the baseline when using converted spectrograms is a result of a larger 
dataset size. Experiment (7) further supports this observation, which demonstrates that the voice 
converted VoC spectrograms do not provide any additional information to improve ASR performance 
over the original unconverted spectrograms. This is a surprising result since the unconverted VoC 
spectrograms are from a very different distribution than the CoRAAL spectrograms that the model is 
being evaluated on. One possible explanation is that voice conversion reduces the diversity of the 
dataset by decreasing the number of total speakers in the dataset while generating more utterances for 
a fraction of CORAAL speakers. Another possible explanation is that the converted audio quality 
is not as good as the unconverted audio. At times, we have noticed that the converted audio can be 
imperceptible and this may be leading to misalignment between audio samples and transcriptions, 
degrading model performance. 

Transcriptions: Inspection of some transcriptions (see Appendix A) generated by the different 
models also provide some additional insights into the performance disparity between the models. 
The transcription generated by the model trained on the VoC dataset alone (3) only successfully 
transcribed the word "jump", exemplifying the vastly different distributions between the VoC and 
CoRAAL datasets. All other models were able to successfully transcribe the first five words "i 
don’t know how to" although the model trained on CORAAL and unconverted VoC (5) was uniquely



unable to distinguish "know" and "how" as separate words. We can also observe that the model 
trained on CORAAL and converted VoC produces transcriptions that more closely resemble English 
words, despite having a higher CER and WER. Since the CER and WER metrics do not account for 
semantics of transcriptions, it is worth exploring an alternative metric that uses a language model for 
future work to better understand the impact of voice conversion augmentation. 

Loss curves: As seen in Appendix B figure 5, our ASR models consistently began to overfit the 
training data after approximately 30 to 40 epochs. Despite an increasing validation loss, both CER 
and WER continued to decrease throughout training. To understand why this happens, we first note 
that CTC loss measures the probability across all valid alignments for a given target transcription. If 
our ASR model emphasizes a particular valid path, while penalizing other valid paths by making them 
less likely, it would result in an increase in the CTC loss. However, since the model is emphasizing a 
valid alignment that collapses to the correct transcription, the WER and CER metrics would decrease. 
This explains why there is a divergent behavior observed between the validation WER, CER and 
CTC loss. 

Discrepancies in prior works: While CycleGAN is able to change the voice of speakers, it 
is unable to alter unique linguistic features of speech. Prior works which have found success 
conducting data augmentation through voice conversion, such as conversion between normal speech 
and whispered speech, have addressed data scarcity by converting speech between domains that differ 
more superficially. However, the CORAAL and VoC datasets differ significantly in both voice and 
content due to fundamental linguistic differences between AAVE and generic American English. 
This suggests the need for an intermediate step to translate between generic American English and 
AAVE before conducting voice conversion. Given that no such parallel corpus exists, we would have 
to rely on unsupervised machine translation for this task. 

6 Conclusion 

6.1 Main Findings 

Our main finding was that using Voice Conversion as a data augmentation technique did not improve 
the performance of our ASR model due to the large linguistic and contextual discrepancy between 
the CoRAAL and VoC datasets. One of the main highlights of our project was developing the first 
publicly available implementation of CycleGAN-VC3 and MaskCycleGAN-VC which holds true to 
the original paper. One of the limitations of our work was that we only conducted voice conversion 
among a subset of the CoORAAL and VoC dataset. If time and compute permits, it would be highly 
rewarding to learn mappings between each speaker in both datasets to investigate what factors make 
converted audio useful for data augmentation to develop an optimal curriculum. While this project 
was challenging, it was especially rewarding to conduct this line of research which has the ultimate 
goal of ensuring that marginalized voices are heard. 

6.2 Future Work 

For future work, we could experiment with training CycleGAN to convert between CoRAAL speakers. 
This would enable internal augmentation and would help rebalance the dataset. Converting between 
CoRAAL speakers would ensure that the converted utterances maintain linguistic and semantic 
contexts characteristic of the CORAAL dataset. Additionally, we could train a many-to-many voice 
conversion model as done by Kameoke et al., as our single voice conversion model. While this model 
may take longer to train, it would considerably streamline our data augmentation pipeline which 
currently relies on training one model for every pair of speakers. 

A method that could be used to improve the transcriptions from our model is to use beam search 
decoding with a language model. The language model could be trained on the CoRAAL dataset, or 
could also be pre-trained on a larger corpus. We expect that incorporating a language model would 
immediately improve WER and CER for each of our models.
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A Sample Generated Transcriptions from ASR Models 

  

  

  

Data Transcription 

Ground Truth i don’t know how to double dutch i know how to hopscotch and jump regular rope 

1. CORAAL i don’t know how to snumle dudche i Ino how a hope scotch and jump breula road   
2. Unconverted VoC | atta glot as a wit this a’m not o has spatch an jump regu lerolte 
  

3. CoRAAL + un- | i don’t knowhow to nobleh thosh 1 notw to hopscotch an jump bregula road 
converted VoC   
4. CoRAAL + 7 | idon’t know how to numble o dos i now how to hape scotch and jump bregularo 
converted VoC + 29 
unconverted VoC   
5. CoRAAL + 7 un- | i don’t know how to nem be doudch i no how to hop scotch and jump breular road 
converted VoC 
  

6. CoRAAL + 7 | idon’t know how to numble doch i’m low how to hope schotch and jump regular role 
converted VoC   
7. CoRAAL + un- | i don’t know how to no wi dos i now how to hap schotch and jump regula roop 
converted VoC + 7 
converted VoC         

Table 2: DeepSpeech model transcriptions on CORAAL and Combined data 

B_ Training Loss 

cer wer 

tag: test/cer tag: test/wer 

loss loss 
tag: test/loss tag: train/loss 

1.2M 1.6M 2M C 400k 800k 1.2M 1.6M 2M 

Figure 5: ASR Model learning curves: CER, WER, Train Loss, and Validation Loss 
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C_ Data Distribution 
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Figure 6: Distribution of total duration for speakers from the CoORAAL dataset 
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Figure 7: Distribution of total duration for speakers from the VoC dataset


