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Abstract 

A clinical trial’s eligibility criteria can have a significant impact on the successful 
completion of the study, as they determine essential factors such as the recruitment 
efficiency, patient withdrawal rates, and translational power. Most inclusion and 
exclusion criteria are written in free-text, which makes a systematic review and 
analysis of these criteria prohibitive on a large scale. In this paper, we address 
these issues by learning standardized representations of eligibility criteria using 
transformers. In particular, we pretrain a BERT model on a large unlabeled 
corpus of eligiblity criteria acquired from ClinicalTrials.gov. Using Named Entity 
Recognition (NER) as a proxy for the quality of our representations, we show that 
our pretrained model (ecBERT) outperforms other publicly available biomedical 
BERT models, suggesting the benefit domain-specific representations for eligiblity 
criteria. 
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2 Introduction 

Clinical trials are essential for improving patient care and advancing scientific knowledge, as they are 
the primary mechanism through which drug and device companies can test the efficacy and safety 
of their treatments. Each clinical trial contains a set of eligibility criteria which outline rules for 
selecting clinical trial participants. These criteria are set by the study’s investigators and subsequently 
implemented by coordinators during the recruitment phase. After the completion of a study, these 
criteria are used by physicians to screen for patients who may benefit from such treatment. Therefore, 
eligibility criteria are crucial for the effectiveness of clinical trials as well as downstream patient care. 

In practice, eligibility criteria can contain a variety of shortcomings, such as being unnecessarily 
strict [1] or being unrepresentative of a real-world population [2]. When criteria do not adequately 
represent an intended patient population, the results of trials have limited generalizability to actual 
patient care. However, addressing this issue can be a time-consuming process, as eligibility criteria 
are written as free text, without strong standardization and uniformity [3]. Additionally, the process 
of comparing treatments between trials is similarly difficult given the lack of standard representation. 
Further work has shown that the choice of eligibility criteria can significantly slow down clinical 
trials, as ill-specified criteria require additional protocol amendments [4]. 
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As such, it is crucial to develop strong standard representations of eligibility criteria. These repre- 
sentations can be used to compare the targeted patient populations behind clinical trials, as well as 
address inefficiencies due to ill-specified criteria. 

Eligibility criteria are generally written in free-text format in bullet-point format, and are divided into 
inclusion criteria and exclusion criteria. Below is an selected. example of eligibility criteria used in 
a trial for a treatment for Stage II breast cancer: 

¢ Inclusion Criteria: 

e Women or men with stage II or stage III, early invasive breast cancer according to the UICC 
8th edition for TNM classification 

e Histologically confirmed Estrogen Receptor ER+ (at least 10 % of cells staining positive for 
ER) 

e Age > 70 years 

e Eastern Cooperative Oncology Group (ECOG) Performance status 0-2 

e Patient must have undergone breast +/- axillary surgery with curative intent for the current 
malignancy < 8 weeks before randomization. 

¢ Exclusion Criteria: 

e Previous history of invasive breast cancer 

e Systemic anticancer therapy prior to the breast cancer surgery 

e Prior therapy with any Cyclin-Dependent Kinase (CDK) 4/6 inhibitor 

e Concurrent investigational agent within 28 days of randomization 

3 Related Work 

Previous work has been done in applying NLP-based approaches to eligibility criteria, although they 
predate the recent breakthroughs in NLP [5], using non-transformer based models such as Conditional 
Random Fields (CRFs). While these models are powerful tools for Named Entity Recognition (NER), 

they do not leverage large amounts of unlabeled data, nor do they allow for fine-tuning on a variety 
of other related tasks. 

Furthermore, previous work has been in done in organizing and annotating datasets of eligibility 
criteria [6] [7] [8]. Recently, [9] has released the largest annotated dataset to date, but work has yet to 

be done on how well an NLP model works on this data. 

Our work aims to be the first to use a transformer-based approach to modeling representations of 
eligibility criteria in a way that would allow for other downstream tasks to be learned easily with 
limited annotated data. 

4 Approach and Experiments 

Our approach involves pretraining a BERT model on a large corpus of unlabeled eligibility criteria 
and fine-tuning this model on Named Entity Recognition (NER) Figure 1, which we will call eeBERT 
(eligibility criteria BERT). 

Transformer-based model (BERT): One of the primary aims of our paper is in understanding how 
well transformers can be used for the task of eligibility criteria representations. Whereas previous 
approaches had used deep-learning based approaches to modeling named entities, they predate the 
use of transformers and large-scale pretraining [5]. 

e We start with a standard BERT pretrained model (bert-base-uncased), which we further 

pretrain on Masked Language Modeling (MLM). 

¢ We fine-tune on the largest publicly available dataset of labeled eligibility criteria, Chia [9], 
which contains annotations for 1K studies on the task of Named Entity Recognition (NER). 

¢ We compare the performance of our pretrained model to other popular pretrained models in 
the biomedical space, Clinical-bioBERT [10] and blueBERT [11] in addition to the base 

BERT model [12],
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Figure 1: Process of training our model, from pretraining to finetuning. 
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Figure 2: Distribution of token lengths in our pretraining dataset. A vast majority of texts are less 
than 512 in length. 

Extracting and processing a large corpus of unlabeled data (AACT): Our paper also focuses on 
organizing and cleaning a corpus of over 4.6M eligibility criteria from over 360K clinical trials. This 
is a dataset of unprecedented size that was previously unused due to the lack of annotations. 

4.1 Data 

So 1. Chia[9]: The largest publicly-available dataset of annotated eligibility criteria to date. The data 
contain 1K interventional, Phase IV clinical trials from ClinicalTrials.gov, and includes 12,409 

annotated individual eligibility criteria. In total, there are 30 entity types and 41,487 distinct entities. 
To preprocess the downloaded dataset, we wrote a script with the following procedure: 

¢ Iterate through each annotation and extract annotation indices to produce a label vector that 
associates each word in the reference text to one of 30 possible categories. 

¢ Convert the data to CoNLL format to be used in Huggingface’s NER training script. 

¢ We observed some ambiguous labels in the dataset, for which we developed rules to assign 
labels. For example, certain terms such as ’HIV+’ are assigned labels as a whole, but also 
given sublabels according to ’HIV’, and ’+’. When dealing with such cases, we defaulted to 
labels given to the larger phrases in order to encourage our models to learn more general 
behavior. 

2. Unannotated Eligibility Criteria:



¢ We downloaded Aggregate Content of ClinicalTrials.gov (AACT)[13]’s collection of clinical 
trials to get an up-to-date collection of clinical trials and an extensive feature list (phase, 
therapeutic area, study design, patient withdrawal rates, etc.). 

¢ Convert AACT’s stored datasets to Pandas using PostgreSQL. 

¢ Clean and filter studies that either do not have eligibility criteria or do not specify which are 
inclusion or exclusion criteria. 

¢ Parse and reformat each eligibility criteria into a standardized sentence format and attach a 
special token for inclusion and exclusion criteria ([INCL] and [EXCL]) at the beginning of 

each sentence. 

¢ Notably, we had to decide whether to split documents longer than 512 tokens into separate 
documents. However, given the distribution of token lengths (shown above), we found that 
long documents were a tail end of the distribution, with less than 9% of documents were 
longer than 512 Figure 2. Therefore, we decided to leave truncation into the pretraining 
system. 

¢ Random shuffle the order of each eligibility criteria so the model learns to model each 
criteria independent of order (and for truncation to not affect how the model trains). 

¢ Split the dataset into training and evaluation sets with a 90/10% split. 

4.2 Evaluation method 

1. Masked Language Modeling (MLM) 

For MLM, the loss function is the softmax function over possible word predictions. We monitor the 
loss over a held-out validation set. 

2. Named Entity Recognition (NER) 

Named Entity Recogntion is evaluated using the following metrics: 

¢ Precision: 
True Positives 
  

  

  

Precision = 
True Positives + False Positives 

¢ Recall: 
True Positives 

Recall = oes . True Positives + False Negatives 

¢ Accuracy: 
True Positives + True Negatives 

Accuracy = 
Total 

¢ Fl score: 
Fl=2 ( Precision * Recall ) 

Precision + Recall 

We report these metrics in aggregate across categories, as well as category-specific metrics. 

4.3 Experimental details 

1. Pretraining 

We ran pretraining on top of a base BERT model over 12 epochs and on 2 Nvidia TITAN V GPUs. We 
use a batch size of 8 and a learning rate of 5e-5, with an Adam classifier with default beta parameters. 
We also use the default BERT tokenizer, and tokenize and collate the data for language modeling 
prior to training. In total, our initial run took approximately 5 days. We divide the data into training 
and test sets, using a 90/10% split. 

As Figure 3 indicates, even after 5 days of training, pretraining loss was still dropping. Due to time 
constraints on our project, we were not able to let it run through to convergence. However, we can 
assume that given more time, our model’s performance would increase over time. 

2. Fine-tuning
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Figure 3: Pretraining loss over 12 epochs 
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Figure 4: Fl score on the Chia validation set over 15 epochs, broken down by the choice of pretrained 
model. 

We ran finetuning with a learning rate of le-05, using the Adam optimizer with default beta parameters. 
We trained a total of 750 steps using a batch size of 8. After training, we took the weights saved from 
the highest-performing point (by Fl-score) to run on our test set. We divide our data into a training, 
validation, and test set, using a 70/10/20% split. 

In total, fine-tuning each model took less than one hour on 2 Nvidia TITAN V GPUs. 

4.4 Results 

We report the results of fine-tuning each pretrained model on Chia’s training set, shown in Figure 4. 
While the choice of pretrained model does not change final F1 score significantly, we do observe that 
our model, which was pretrained on eligibility criteria, performs better than other pretrained models. 
Additionally, we see that our model has better precision, recall, and accuracy as well, meaning the 
performance increase does not come at the cost of a certain metric. 

Table 1: Performance on finetuning for Named Entity Recognition (NER) on Chia, with different 
pretrained models 

 



Table 2: Fl score for NER with ecBERT, broken down by named entity. 
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5 Analysis 

Our results suggests that our model, ecBERT, produces a stronger representation than the BERT base 
model, Clinical-bioBERT, and blueBERT. Given that Clinical-bioBERT and blueBERT are pretrained 

on large corpuses of biomedical texts, this indicates that additional pretraining in the sub-domain of 
eligibility texts helps in downstream tasks such as NER. Further, we observe that our ecBERT model 
can still improve in performance given more training time. We expect that pretraining with more 
GPUs with longer alloted GPU allocation can lead to even higher performance increases. 

5.1 Performance breakdown 

We look at the Fl score for each named entity type to better understand the nature of the model. First, 
we observe that more data generally leads to higher predictions, where the lowest performing groups 
with FI score of 0 are just poorly represented in the training dataset. Second, the model has issues 
with ambiguity. Whereas fields like value, measurement, condition, and drug are all entities that can 
be learned and memorized within the training set, other areas that are more ambiguously expressed 
such as mood, grammatical error, and context error are all much lower in performance. Finally, we 

see that the "no label" category has an F1 score of 0.577, indicating that there is still a relatively high 
false positive rate in our performance due to the density of the labels. 

5.2. Analysis of the Chia dataset 

As our report is the first time the Chia dataset has been publicly evaluated, we note the following 
findings:



¢ The Chia dataset is a relatively harder dataset, whereas reference performance for previous 
NER on eligibility criteria report F1 scores of around 0.7 [14]. 

¢ There is still a lot of ambiguity in the labeling of the dataset, as mentioned in the previous 
Data section of our report. This places a theoretical limit on the top performance our model 
can have on the dataset. Further work is required to clean this dataset. 

* Overall, we observe that the Chia dataset is reasonably representative of the larger corpus of 
eligibility criteria, as our pretrained ecBERT performs favorably on it compared to other 
biomedical BERts. 

6 Conclusion 

We show that our pretrained model ecBERT outperforms other pretrained transformer models 
in named entity recognition for eligibility criteria. This illustrates the benefit of learning stronger 
representations of free-text eligibility criteria using transformers. Also, by pretraining on an unlabeled 
dataset of unprecedented size, we capitalize on the previously untapped wealth of unlabeled data. Our 
results indicate that pretraining with transformer based models on niche data helps models learn better 
representations of textual data. Our primary achievement with this project is therefore exemplifying 
the power of transformer based models for learning more comprehensive representations which can 
be used flexibly for downstream tasks. 

6.1 Limitations 

First, our corpus of eligibility criteria is taken from an unfiltered set of clinical trials from ClinicalTri- 
als.gov. We believe that more careful selection of types of criteria (eg. only Phase III studies or only 
certain therapeutic areas) would perhaps learn a distribution that is more specific for our downstream 
task of NER. 

Second, our parsing of the Chia dataset is imperfect, as some labeling is ambiguous. A more deliberate 
and methodological is needed to tap into the dataset’s full list of intended labels. 

Third, we are limited in our compute resources when pretraining ecBERT. A longer runtime for 
training can lead to a stronger representation, which in turn can improve downstream tasks. 

6.2 Next Steps 

Possible next steps include applying ecBERT to other downstream tasks such as relation extraction. 
We are also interested in how the embeddings extracted from our pretrained model can be used for 
self-supervised clustering of studies and measurement of trial similarities. This would allow for 
physicians and medical decision makers to evaluate clinical trials at scale, something that is currently 
time-prohibitive. Ultimately, we envision ecBERT being used for a variety of possible tasks related 
to the efficiency of clinical trials. 
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