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Abstract

Although many applications based-on mining clinical free text have been developed,
the state-of-the-art transformer-based models have not been applied in clinical
NLP. We aim to address the long-range dependencies in clinical free text caused
by different sections with the latest Transformer-XL model by fine-tuning it on
MIMIC-III clinical text. Having requested and cleaned the MIMIC-III clinical
text based on self-developed rules, we prepared the data for training classifiers
on diagnostic code prediction of 8 common cardiovascular diseases. We used
huggingface API to fine-tune and evaluate Transformer-XL model on MIMIC-III
dataset and compared the results with baseline methods including bag-of-words
and TF-IDF. And the Transformer-XL outperformed the Bag-of-Words and TF-
IDF on 3 of 6 tasks, on which we have already got the results. Furthermore, the
Transformer-XL was only fine-tuned for 1 epoch, and therefore we believe there is
a promising potential for a better fine-tuned Transformer-XL to better predict the
diagnostic codes accurately. The better accuracy of diagnostic codes aids in the
structuring of free-text clinical notes, which can be better and easier for downstream
machine learning tasks, such as survival predictions and multi-modality data fusion,
because, the structured diagnostic codes can be fed into machine learning models
than the unstructured data.

1 Key Information to include

• External collaborators (if you have any): NA
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2 Introduction

Over the past years, natural language processing (NLP) has been used in many clinical data mining
applications such as correcting erroneous diagnostic codes [1], predicting cancer staging information
[2], which has benefited the healthcare system [3, 4]. The characteristics of clinical free-text notes such
as infrequent clinical terms, acronyms and abbreviations can lead the conventional NLP techniques,
which are generally based on general English corpus, hard to be immediately and directly transplanted
to clinical applications. To cope with this issue, adaptations of general natural language processing
have been developed by many researchers. For instance, a biomedical word2vec word-embedding
model has been trained on a corpus of PubMed and MIMIC-III notes [5]; a doc2vec model has been
trained on a corpus of cardiovascular outpatient progress notes [1]. However, the development of
models able to successfully capture extra long dependencies in clinical text is still a challenge. In
the previous study of clinical text mining, such methods as continuous bag-of-words with average
pooling directly used the averaged word2vec embeddings as the text-level embeddings can lose the
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sequence information. While LSTM models can capture sequence information in the text, they are
also relatively hard to capture long-range dependencies which are frequent in clinical notes as the
notes usually contain personal medical history, family medical history and prescriptions in different
sections. Recently, researchers have applied pre-trained transformers such as BERT on clinical notes
and showed good performances on clinical NLP challenges but the long-range dependency and the
cutting of long clinical notes in transformer fine-tuning still leaves space for improvement.

To be more specific, the vanilla transformers, including BERT, suffered from a drawback related to
fixed-length input. By segmenting the input sentences into fixed-length chunks, and then modeling
each chunk independently, the model assumes that each segments are independent. And the model
provides no information interaction between the boundaries of each segment of the text chunks. This
limitation may lead to two issues: first, token at the beginning of each segment do not have sufficient
context for proper optimization; and secondly, the model is limited by fix-length context and have no
ability to capture information across an extra-long sentence.

In this study, we aimed to develop a fine-tuned Transformer-XL model situated in the clinical note
text mining field with an aim to capture extra-long dependencies for variable lengths for better clinical
text mining performance in the tasks of diagnostic code predictions. More experiments including
language modeling and name entity recognition were designed but due to extreme challenges of
experimental failures with the Transformer-XL models. Therefore, we have analyzed the failures
and challenges we encountered in great details in the discussion session for further work to better
improve the project.

3 Related Work

Many of the previous studies on clinical NLP tasks have been based on context-independent word
embeddings and vectorization such as word2vec[5], TF-IDF[1], etc. But they are insufficient to
capture the sequential information in the clinical free text. Particularly, there are lots of long range
dependencies in clinical text. Different sections can have varying lengths and there can be long range
dependencies between sections (e.g. personal medical history and clinical symptom descriptions)
which can be separated by other sections. LSTM deals with long range dependencies in a stochastic
manner, which could also suffer from gradient vanishing or explosion problems. Vanilla transformer
models also may not capture long range dependencies due to the blocking of documents. Therefore
we aim to adopt the newly developed Transformer-XL[6] model to capture extra-long dependencies
in clinical text.

The research of Transformer-XL[6] proposed a novel architecture, Transformer-XL, which managed
to address the limitations of vanilla transformers mentioned above. Transformer-XL consists two
key novel ideas: first, it involves segment-level recurrence, which cached and reused hidden states
from last batch and therefore allows information to flow over the boundaries of text chunks; second,
it keeps the sequence information coherent by a novel positional encoding scheme because directly
including segment-level recurrence may lead the position encoding to fail. With these two novelties,
Transformer-XL benefited from the key advantages of both Recurrent Neural Network (RNN) and
transformers with both recurrence and attention mechanisms. As a result, Transformer-XL learns
dependency that is 80% longer than RNNs and 450% longer than vanilla Transformers. And it has
achieved better performance in language modeling tasks with a bpc/perplexity of 0.99 on en-wiki8,
1.08 on text8, 18.3 on WikiText-103, 21.8 on One Billion Word, and 54.5 on Penn Treebank (without
fine-tuning). Furthermore, this algorithm is up to 1800+ times faster than vanilla transformers.

4 Approach

In this work we fine-tuned the pre-trained Transformer-XL model on clinical free text in MIMIC-
III dataset[7] in sentence classification tasks based on eight diagnostic codes related to common
cardiovascular diseases. In addition, we intended to firstly fine-tune the Transformer-XL model on
causal language modeling and evaluate the perplexity on the causal language modeling task against a
baseline given by distilGPT2 but the experiments failed due to GPU RAM explosion and the time
expenditure of over 90 hours to train for one epoch. Finally, the Transformer-XL model was directly
fine-tuned on the diagnostic code prediction tasks.
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5 Experiments

5.1 Data

In this study, we used the MIMIC-III dataset[7] (Medical Information Mart for Intensive Care III) data
set of de-identified health-related data of 40,000 intensive care unit stays at Beth Israel Deaconess
Medical Center. The MIMIC-III data set has been regarded as the benchmark data set for many NLP
tasks including time-of-stay prediction, diagnostic code prediction, etc. [8, 9, 10]. In order to request
data from the MIMIC-III public dataset, we have firstly passed the required courses of personal health
information (PHI), on The Collaborative Institutional Training Initiative (CITI).

5.2 Evaluation method

In the evaluation of diagnostic code prediction, the following metrics were calculated and com-
pared:accuracy (rate of correct prediction in all predictions), AUROC (area under the receiver
operating curve) and AUPRC (area under the precision recall curve). AUROC is the area under
the curve with the x-axis denoting the false positive rate and y-axis denoting the true positive rate
(TPR). AUPRC is the area under the curve with the x-axis denoting the recall and y-axis denoting the
precision (precision: rate of true positive predictions in all positive predictions), recall: rate of true
positive predictions in all positive cases). AUROC has been a widely used metric in evaluating binary
classifiers without dependence on the decision threshold on predicted class probability. The AUPRC
was also used in this study because it is more sensitive to prevalence and can better reflect model
performance in a imbalanced data set [11].

The baseline models we developed in this study involved bag-of-words (BOW) and term frequency-
inverse document frequency (TF-IDF). Bag-of-words (BOW) [12] is a word-count based word
vectorization algorithm which is commonly used in document classification. The method counts
the frequency of each term in the text and uses the frequency of individual term as the feature. The
number of features is the same as the number of all distinct terms in the training set and the feature
values are proportional to the occurrences of the distinct terms.TF-IDF [13] is an algorithm with
normalized BOW word vectors to emphasize the different importance of terms. The feature in TF-IDF
is the ratio of term frequency (TF) and inverse document frequency (IDF). The value of a word vector
increases proportionally to the term frequency but is offset by the number of texts that contain the
term. The feature dimensionality of TF-IDF was the same as that of BOW.

5.3 Experimental details

As soon as we got the datasets, we found out that the clinical free text documented in MIMIC-III
was filled with unexpected special tokens, characters and structures. We firstly cleaned the dataset by
designing several rules: 1. Detection and removal of personal health information (PHI) with unknown
charactor ‘unk‘; 2.Deletion of repetitive section names, such as "admission date", "discharge date"; 3.
Lower casing of the entire corpus; 4. Detection and removal of special characters; 5. Deletion of
sentences shorter than 10 words; 6. Replacement of repetitive new line token with a single space.

To prepare for the diagnostic code classification tasks, we extracted all of the discharge summaries
from the MIMIC-III dataset. Because diagnostic codes are related to encounters, we only extracted the
discharge summaries (59,652 notes; 41,127 patients) related to their associated encounters. We split
the train/val/test based on patients IDs to prevent information leakage across train/val/test. Finally,
we got 32,901/4,113/4,113 notes in the train/val/test sets. We focused on 8 common cardiovascular
diseases and formulated 8 binary classification tasks to test the Transformer-XL. The ICD-9 diagnostic
codes and diseases and their prevalence in train/val/test sets were shown in the Table. 1. These eight
codes represent a large variance of prevalence, with the largest prevalence ( 28.8%) approximately
twenty times the smallest prevalence ( 1.4%).

5.4 Results

The results of the classification of eight diagnostic codes were shown in Table 2 (the pending cells
were due to still-running programs, as it took 8 hours for fine-tuning the pre-trained Transformer-XL
for one epoch). According to the results (we focus on AUPRC since the data was highly imbalanced),
on the prediction of diagnostic code – 425, 427, 416 – Transformer-XL outperformed the BOW and
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Table 1: The prevalence of eight common cardiovascular diseases and ICD-9 codes in the training,
validation and test sets of the MIMIC-III dataset.

Code Description Training Validation Test

410 Acute myocardial infarction 8.85% 9.08% 8.98%
414 Chronic ischemic heart disease 23.41% 24.22% 24.43%
416 Pulmonary heart disease 4.37% 4.53% 4.66%
425 Cardiomyopathy 3.46% 3.62% 3.12%
427 Atrial fibrillation flutter 27.97% 28.81% 28.55%
428 Heart failure 22.30% 22.72% 22.23%
440 Atherosclerosis 3.07% 2.94% 2.97%
456 Esophageal Varices 1.67% 1.59% 1.40%

Table 2: The prevalence of eight common cardiovascular diseases and ICD-9 codes in the training,
validation and test sets of the MIMIC-III dataset.

Code Disease Method Accuracy AUROC AUPRC

410 Acute myocardial infarction BOW 0.903 0.526 0.094
TF-IDF 0.910 0.550 0.099

Transformer-XL 0.910 0.452 0.054
414 Chronic ischemic heart disease BOW 0.731 0.541 0.264

TF-IDF 0.756 0.548 0.263
Transformer-XL 0.790 0.501 0.194

416 Pulmonary heart disease BOW 0.944 0.513 0.048
TF-IDF 0.953 0.563 0.053

Transformer-XL 0.955 0.500 0.523
425 Cardiomyopathy BOW 0.962 0.491 0.029

TF-IDF 0.969 0.537 0.031
Transformer-XL 0.969 0.500 0.516

427 Atrial fibrillation flutter BOW 0.688 0.542 0.307
TF-IDF 0.714 0.547 0.309

Transformer-XL 0.714 0.503 0.626
428 Heart failure BOW 0.754 0.525 0.233

TF-IDF 0.778 0.540 0.235
Transformer-XL 0.778 0.459 0.193

440 Atherosclerosis BOW 0.962 0.518 0.034
TF-IDF 0.970 0.567 0.040

Transformer-XL (Pending) (Pending) (Pending)
456 Esophageal Varices BOW 0.978 0.458 0.014

TF-IDF 0.986 0.536 0.014
Transformer-XL (Pending) (Pending) (Pending)

TF-IDF baselines. However, on certain other tasks (task code: 410, 414, 428), the Transformer-XL
fine-tuned for 1 epoch on the diagnostic code was not performing better than the BOW/TF-IDF
baseline with logistic regression. On these tasks, AUPRC was very low, which indicated that the
model was very reluctant to make positive predictions. We assume that it may be because the dataset
is extremely imbalanced, which is very detrimental for training. As the most of the time, the model
is only learning the negative cases. And we only fine-tuned the Transformer-XL for 1 epoch due
to the fact that each epoch of fine-tuning took 8 hours and there were eight prediction tasks in this
project. In the future, more epochs of fine-tuning of the pre-trained Transformer-XL may lead to
better results.

6 Discussion

In this project, we fine-tuned Transformer-XL on the predictions of 8 diagnostic codes on MIMIC-III
dataset, and the Transformer-XL outperformed the Bag-of-Words and TF-IDF on 3 of 6 tasks, on
which we have already got the results. Furthermore, the Transformer-XL was only fine-tuned for 1
epoch, and therefore we believe there is a promising potential for a better fine-tuned Transformer-XL
to better predict the diagnostic codes accurately. The better accuracy of diagnostic codes aids in
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the structuring of free-text clinical notes, which can be better and easier for downstream machine
learning tasks, such as survival predictions and multi-modality data fusion, because the structured
diagnostic codes can be fed into machine learning models than the unstructured data.

During the experiment, we have encountered lots of failures and challenges and based on these
failures, we discuss the limitations of the current work and what can be addressed by further studies
in the future.

Firstly, the Transformer-XL model lacks transparency and publicly available resources at present.
Although the original developers discuss the potential to expand the scope of utility of Transformer-
XL, no pre-trained models or detailed tutorials on fine-tuning the Transformer-XL models are given
by the developers, which kind of hinders the development of the community.

Secondly, as we fine-tuned the Transformer-XL on the classification of eight CVD diagnostic codes
independently, the fine-tuned models may not generalize well to other tasks such as extrapolation to
other symptom codes (R-codes in ICD10). Therefore, it may be worthwhile for future researchers to
fine-tune the Transformer-XL with multiple heads in a round-robin manner. For instance, in the study
proposed by Mulyar et al[14], the BERT model could be trained with multiple heads involving not
only the sentence classification heads, but also the name entity recognition heads and the language
modeling heads. Via multi-task learning in a similar manner, the Transformer-XL model can be better
fine-tuned to be able to adapt to multiple different types of clinical NLP tasks.

Thirdly, in this finalized version of this study, we only fine-tuned the Transformer-XL model based
on eight diagnostic code classification tasks. We initially aimed to apply causal language modeling
as the fine-tuning process on the clinical free-text notes but there wasn’t any tutorial of fine-tuning
Transformer-XL on custom datasets. Although we managed to transfer the fine-tuning protocols
designed for distilGPT2 to Transformer-XL, the intrinsic difference between these two types of
models led to failure of training because many of the trainer and trainer argument settings for
distilGPT2 were incompatible to Transformer-XL while the instructions on huggingface lack details
of fine-tuning. In the future, as time allows us to debug all the errors, the Transformer-XL can be
fine-tuned on language modeling tasks with much more notes than the discharge summaries, which
may be able to further boost the power of clinically fine-tuned Transformer-XL models.

Fourthly, as we were to train the distilGPT2 in causal language modeling to form a baseline (the pre-
trained distilGPT2 model reached a perplexity of 211.5 on the MIMIC-III data), the time expenditure
was enormous (fine-tuning for 1 epoch took 90 hours) and even the evaluation of the distilGPT2 took
2 hours on the 10% MIMIC-III dataset. In the future, it is worthwhile for researchers to seek for
simpler models with less complexity and fewer parameters to accelerate the training, fine-tuning and
evaluation via further knowledge distillation, for instance. More powerful GPU with more RAM
and stronger computational power could also be adopted to further the work of fine-tuning large
pre-trained language models.

Fifthly, during the project, we applied huggingface package and found that it easily and implicitly
uses up the cache storage on the virtual machine, which leads the training/fine-tuning and even the
connection of IDE to the virtual machine to fail. In the future, it may be worthwhile for the developers
to add in better instructions on the cache usage and how users may be able to adapt the cache using
strategies and manage the space on disk.

Sixthly, it is also worthwhile for researchers to develop Transformer-XL models for clinical appli-
cations from scratch because the power of fine-tuning can still be limited by the Transformer-XL
tokenizer. Because in the clinical text, there are usually many unique terms and abbreviations such as
"hx" for history, "afib" for atrial fibrillation, "hf" for heart failure, etc. To develop a completely new
and clinically adaptive tokenizer based on clinical text may help design a better pre-trained model for
clinical NLP applications.

Finally, as the majority of the issues we encountered in this project are related to the limitation of
GPU RAM and/or disk memory, this leads us to ponder over the current trend in NLP to go more
complicated and the preference for more complicated model structures and more parameters. We
believe that it may also be necessary for researchers to develop simpler structures and models for
those developers who do not have access to expensive and strong computational resources. The state-
of-the-art complicated large pre-trained language models such as GPT3 can be too overwhelming and
even intimidating for many research groups and developers to use for any further fine-tuning tasks
and application development. As Leonardo Da Vinci puts it, simplicity is the ultimate sophistication.
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The multiple failures during this project really motivates us to seek for simple, fast, interpretable and
readily understandable NLP models which works for a specific problem. For instance, in a latest
publication of international conference on machine learning (ICML 2021)[15], the researchers from
IBM Watson borrowed the inspiration of adapting a biological neural network of fruit fly brains to
develop word vectors for language modeling and the results turned out to be pretty well. Although the
performance was not the best when compared with other deep-neural-net-based models (Spearman
rank correlation on SCWS dataset: 49.1 given by fruit-fly-model vs 56.8 given by BERT; accuracy
on WiC dataset: 57.7 given by fruit-fly-model vs 61.2 given by BERT; accuracy for document
classification task on TREC-6 dataset: 90.4 given by fruit-fly-model vs 94.0 given by BERT), the
simplicity and speed of the model seems extremely attractive for researchers as it abandons millions
of model parameters. In another study, Zhan et al[1] compared the conventional word vectorization
method such as BOW and TF-IDF and new neural-net-based embeddings including word2vec and
doc2vec by building simple logistic regression (LR) models to classify ICD-10 diagnostic codes and
found the fully interpretable model TF-IDF/LR showed the highest AUROC and AUPRC. Therefore,
it is also of great interest for further work to emphasize on simpler, smaller and faster models in NLP
tasks.

7 Conclusion

We fine-tuned and evaluated a newly developed NLP model Transformer-XL on MIMIC-III dataset.
For the task of predicting CVD symptoms, we compared the model’s performance with baseline
models including bag-of-words and TF-IDF. fine-tuned Transformer-XL could not outperform the
baseline models, due to training obstacles of dataset imbalance and computational resource limitations.
Use either down-sampling negative samples or up-sampling positive samples, or larger GPU memories
and multiple GPUs to train Transformer-XL would be potential strategies for better performance, as
future plan.
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