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Abstract 

Neural Machine Translation (NMT) has become the standard for Machine Trans- 

lation tasks, however, they encounter many technical challenges when training in 
low resource language pairs. In this paper, we investigate how different subword 
and word representations, as well as different data augmentation techniques can 
improve NMT performance on low resource languages. For our baseline, we train 
an encoder-decoder based seq2seq NMT model on a scarce Nepali-English dataset. 
Then, we compare different subword and word representations, such as Byte Pair 
Encoding (BPE) and a reduced vocab set. Finally, we augment our training data 
with backtranslation of monolingual data, transfer learning from Hindi, and noisy 
data. In addition, we propose a new variant of backtranslation for low-resource 
NMT that exceeds performance of traditional backtranslation methods. We find 
that BPE was the best performing subword representation. For data augmenta- 
tion, we find that transfer learning and noisy data gives reliable improvements, 
yet back translation requires careful management of noise levels. By utilizing 
our novel variant of backtranslation alongside BPE and auxiliary data methods in 
combined models, we are able to increase in-domain performance by +4.55 BLEU 
and out-of-domain performance by +3.93 BLEU compared to the baseline. 

1 Introduction 

In recent years, Neural Machine Translation (NMT) has very quickly been established as the dominant 
approach for translation tasks, with variants of NMT achieving state-of-the-art results across tasks 
in WMT19 [1]. However, the most effective NMT systems are data hungry, requiring a parallel 
corpus with tens of millions of sentences in order to perform well. In low resource scenarios with 
only tens of thousands of parallel sentences, state-of-the-art NMT systems have drastically lower 
performance and adapting NMT system performance in these scenarios is often considered one of the 
major challenges in Neural Machine Translation today [2]. 

Improvement of low resource NMT performance is particularly impactful due to its practical implica- 
tions. Most of the 7,000+ languages in the world are considered to be low resource, are spoken by 
significant fraction of the world population, and usually belong to underprivileged groups [3]. A third 
of languages existing today are endangered with less than 1,000 speakers remaining, and one language 
dies every 2 weeks [4]. Improving low resource NMT systems allows for accessible communication 
with these languages, offers a method of preserving the myriad of endangered languages for future 
generations, and provides underprivileged groups access to advanced NLP technologies. 

In this work, we explore improvements that can be made to NMT systems so that they perform better 
in low resource settings. We select Nepali, a language with minimal parallel data available, and have 
access to just 65k Nepali-English parallel sentences, 150k noisy Nepali-English parallel sentences, 
and 334k Nepali monolingual sentences. 
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In our investigation, we focus on two areas: how to best represent low resource languages to improve 
translation performance, and how to most effectively augment low resource languages training data 
with monolingual data, data from similar languages and noisy data. We begin by comparing different 
vocab representations and tokenization schemes, namely a reduced vocab model and Byte Pair 
Encoding (BPE). Then, we apply transfer learning using a model trained on Hindi-English data. We 
also perform data augmentation through back translation on monolingual Nepali and English datasets 
and a noisy dataset. Finally, we combine successful improvements to create a final complete model 
with optimal tokenization and data augmentation. 

2 Related Work 

Multiple methods have been proposed to tackle low resource NMT in past literature. A common 
approach is domain adaption, in which a model is pretrained on high-resource domains and then 
finetuned on a new low-resource domain. Transfer learning is one such domain adaptation, in which a 
model is trained on a high-resource parent language pair prior to being trained on a low-resource child 
language pair, so that the model may apply learnings from the parent language to the child language 
[5]. Additionally, some have applied both supervised and unsupervised meta-learning successfully 
in low resource situations, an approach where the model utilizes information from a high-resource 
domain to learn an optimal parameter initialization for fast adapation to a low-resource domain [6][7]. 

Source or target side monolingual data is much more common than parallel data, and semi-supervised 
and unsupervised methods have been proposed to take advantage of this. Backtranslation is one such 
method that has been successful in a wide variety of NMT tasks, in which synthetic source data is 
generated from target side monolingual data [6][7]. Self-training is used similarly, instead generating 
synthetic target data from source side monolingual data [8][9]. Model based approaches, such as 
hyperparameters modifications to adapt models to low-resource situations have also been successfully 
used to low-resource boost performance in supervised approaches [10]. 

Although many methods have been proposed, few of these methods have been comprehensively 
applied to low resource languages. Instead, most of the discussed research focus on these methods in 
isolation, or only applied to out-of-domain high-resource languages or simulated low-resource lan- 
guage scenarios (when high-resource languages are sampled to simulate low-resource environments). 
We aim to investigate the effect of tokenization modifications, backtranslation and data augmentation 
on training in Nepali-English, a true low resource language pair. 

3 Approach 

Training difficulties for low resource languages typically manifest in two ways: a limited set of words 
in the vocabulary, and a lack of training data. We aim to address both problems through investigating 
different word and subword representations and data augmentation techniques, respectively. 

3.1 Baseline 

For our baseline model, we use an encoder-decoder seq2seq model based on the OpenNMT library 
[11], consulting the sample NMT code in the iPythonNotebook Library [12]. For our encoder, we 
use a bidirectional LSTM model. When the Nepali word sequence is fed into the encoder, it is first 
converted into embedding vectors, then fed through the bidirectional LSTM. For the decoder, we 

use a input feed decoder described in [13] with a unidirectional LSTM and global attention. As an 
input feed decoder, each attentional vector is fed back into the attention layer as part of the input for 
the next attention vector. The attentional layer then uses a softmax function to generate probability 
outputs. Figure 3 in A.1 provides a visual of our model. 

For tokenization, our baseline model uses a simple word based encoding system. We generated our 
vocab set for the baseline model using the training set and validation set for the baseline model. In 
particular, we used the validation set in vocab generation to prevent the model from being unable to 
validate due to an inability to recognize words and sentences in the validation set. 

3.2 Word and Subword Representation 

3.2.1 Reduced Vocab Size 

We used OpenNMT to construct our vocab set. To reduce the vocab size, we set up a vocab frequency 
threshold for the vocab to be included in the final dataset. In particular, we require a word to occur at 
least three times in order to be included in the Nepali and English vocabs. This reduces our source



vocab from around 78k tokens to 28k tokens and our target vocab from around 52k tokens to 20k 
tokens. We hope that with less tokens, the model will focus on learning more from tokens with higher 
frequencies, instead of trying to learn on tokens that only appear once. 

3.2.2 Byte Pair Encoding (BPE) 

For BPE, we used the OpenNMT tokenizer. As Nepali is a morphologically rich language, we believe 
that using a modified vocab can help the model learn better. Also, the lack of training data for low 
resource languages means that the vocabulary set generated from available sentence pairs will be very 
limited, so subword vocabs would allow the model to generate new words from elements of existing 
words and adapt to the open vocabulary of the testing data. 

We used an implementation of BPE as according to Sennrich’s original paper [14]. BPE begins by 
separating the entire datasets into characters. Then, the BPE algorithm continually merges the most 
common subword pairs, starting by merging the characters. The merging stops when the BPE model 
reaches the desired amount of subwords, which in our case is 3k tokens. We tokenize our training 

and validation data into subword units, and then train our models on this tokenized data. To retrieve 

model predictions for evaluation, we detokenize the model translations. 

3.3. Transfer Learning 

Transfer learning for low resource machine translation has been studied before and we implement a 
similar procedure as [5]. We first train our model on a Hindi-English translation task, and use the 
model parameters learned during this training as the initialization parameters for training on our 
Nepali-English corpus. We do not freeze any parameters, so that all parameters are retrained. 

3.4 Data Augmentation 

3.4.1 Backtranslation 

We implement multiple variants of backtranslation to create synthetic parallel datasets. Our vanilla 
backtranslation (V-BT) approach utilizes the method described in [6]: we train a backward English- 

Nepali model and use the model to generate synthetic Nepali sentences from a monolingual English 
corpus. We then concatenate our synthetic generated parallel corpus with the original parallel corpus, 
and use the combined corpus to train our final model. Our iterative-backtranslation (I-BT) approach 
utilizes the method described in [7]: we train a forward Nepali-English model and use it to generate 
synthetic English sentences from a Nepali monolingual corpus. We then combine this synthetic 
corpus with our original corpus, to train a backward English-Nepali model, and use this model to 
generate synthetic Nepali sentences from a English monolingual corpus. The outputted synthetic 
dataset from this step only is combined with the original parallel corpus, and used to train our final 
model. We refer readers to [7] for a visual of this process. 

We utilize the above two backtranslation variants with two decoding variants while translating 
from the backtranslation models. In vanilla decoding, we generate the output word by selecting 
the word with highest probability conditioned on the previously outputted words (equation 1). In 
sampling decoding we utilize a decoding scheme presented in [15], where we generate diverse 
pseudo-parallel sentences by randomly sampling the output word based on the word probability 
distribution, conditioned on the previously outputted words (equation 2). 

1 e 
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ue . Ley Pr(y'lyct, @)* 
Vanilla Decoding Sampling Decoding 

Ut. Y<t, and x denote the outputted word at time ¢, word sequence history until time ¢, and input 
sequence respectively. 7 represents the temperature parameter, used to to control the output diversity. 
We use a temperature value of 1.0. 

From our experiments, we note that with successive iterations of backtranslation, vanilla decoding 
provides asympotically smaller but consistent increases in performance while sampling decoding 
provides a large increase in performance followed by a large decrease in performance. We thus 
propose and utilize a novel backtranslation variant combining the two decoding methods with 
iterative-backtranslation, in which we conduct iterative-backtranslation but use vanilla decoding when 
generating synthetic data from the forward English-Nepali model and use sampling decoding when 
generating synthetic data from the backward Nepali-English model. We refer to this as diversified



iterative-backtranslation or DI-BT for short, and a visual is pictured in Figure 1. To the best of our 
knowledge, this backtranslation variant has not been used before. The intuition behind this is that 
vanilla decoding will augment existing patterns in the dataset, helping the model reinforce knowledge 
of these, and that sampling decoding inserts diversity and noise into the dataset, so doing this for only 
the last step will help the model generalize to new patterns without overfitting to noise. Lastly, we 
take inspiration from [15] and generate two synthetic sentences per monolingual sentence during the 
DI-BT sampling decoding step, to further insert diversity into the dataset. This method is referred to 
as double diversified iterative-backtranslation (double DI-BT). 
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Figure 1: The flow of Diversified Iterative-Backtranslation 
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3.4.2 Utilization of noisy datasets 

As discussed in 4.1, we access a noisy GNOME dataset. Many low resource language pairs have 
noisy datasets, so we explore the possibilty of cleaning the dataset. We take inspiration from [16], 
implementing heuristics to identify high quality sentences, but adapt our filters to patterns we observe 
in the GNOME dataset. We rely on the following 4 filters we consider to contribute to noisy data: 

1. Non-translated sentences: Filters partially/non-translated Nepali sentences by removing sentence 
pairs that contain English characters in the Nepali sentence, since Nepali uses devanagari script. 

2. Presence of code: Validates whether a sentence pair contains computer code. We remove sentence 

pairs containing any of the following characters in the Nepali translation: "*;%[]/:_". 

3. Sentence fragments: Filters segment fragments by removing sentence pairs where the English 
translation doesn’t terminate with one of the following punctuation marks: ".?!". 

4. Minimum Sentence Length: Identifies sentences most likely to resemble regular Nepali sentences. 
We remove any sentences with less than 6 words. 

We experiment with augmenting our original dataset with the filtered GNOME dataset, containing 
20K sentences, and compare it to performance when augmenting the original dataset with 150K 
unfiltered random sentences sampled from the full GNOME dataset. The amount of sentences filtered 
out by each of the above filters and examples of these sentences are detailed in Appendix D. 

3.4.3 Dictionary 

To perform out of domain translation, it is important for the model to learn more vocabulary. By 
pretraining our model on a bilingual Nepali-English dictionary, we hope the model will be able to 
learn a wide vocabulary from the dictionary, both to understand words from the Nepali input sequence 
and to translate Nepali sentences to Engish with the most relevant English word. We experiment with 
two variants of a dictionary, one containing pairings of Nepali words with their top English definition 
and another containing pairings of Nepali words with all of their possible English definitions. 

3.5 Combined Model 

After observing the methods with the largest improvements on validation sets, we train final models 
combining these methods, to explore whether individual performance improvements can be stacked 
together for a large performance improvement in a combined model. We utilize byte pair encoding 
(BPE), transfer learning on Hindi-English, the 150K unfiltered sentences from the GNOME dataset, 
and diversified-iterative-backtranslation. The flow of the fully combined model is pictured in Figure 
2. For some low resource languages, transfer learning is impractical due to possible parent languages 
also being low resource, a condition which we simulate in one of our combined models by using just 
the combination of DI-BT and the unfiltered GNOME dataset to boost performance.
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Figure 2: The flow of our fully combined NMT system 

4 Experiments 

  

  

4.1 Data 

Dataset Language Pair Format Sentences Task 
Bible Nepali-English parallel 61,809 Core Corpus 

Penn Tree Bank Nepali-English parallel 4,279 Core Corpus 
FLoRes Nepali-English parallel 2,924 Test Set 

IIT Bombay Corpus Hindi-English parallel 1,609,682 Transfer Learning 
Wikipedia (en) English monolingual 280,162 Backtranslation 
Wikipedia (ne) Nepali monolingual 334,487 Backtranslation 

GNOME/KDE/Ubuntu = Nepali-English noisy parallel 494,994 Auxiliary Data 
Dictionary (all pairs) Nepali-English dictionary 17,885 (word pairs) Auxiliary Data 
Dictionary (top pairs) | Nepali-English dictionary 9,865 (word pairs) Auxiliary Data 

Table 1: Datasets utilized for experiments 

We are using Nepali-English parallel data acquired from various sources, as described in Table 4.1, 
to train and evaluate our model on Nepali to English translations. We combine the Bible [17] and 
Penn Tree Bank [18] into a combined corpus, and split this corpus randomly to create our training 
set with 60K sentences, validation set with 3K sentences, and test set of 3K sentences to evaluate 

in-domain performance. We also use the FLoRes dataset [19], drawn from Wikipedia, as a test set 
to evaluate our models out-of-domain performance. Our transfer learning experiments utilize 1.5M 
sentences from the IIT Bombay corpus [20], with the rest of the corpus used as a validation set. Our 
backtranslation experiments utilize monolingual English and Nepali Wikipedia data [21]. These 
monolingual corpuses don’t include any sentences from the FLoRes dataset. We also access the 
GNOME/KDE/Ubuntu corpus [22], which we consider to be noisy due to the heavy presence of code, 
non-translated words, and incomplete sentence fragments. We use this to explore methods of utilizing 
noisy datasets to improve model performance. Finally, to explore expansion of model vocabulary 
we utilize two Nepali-English dictionaries, extracted from the same source dictionary [23]. The "all 

pairs" dictionary includes pairings of Nepali words with all of their possible English definitions, 
while the "top pairs" dictionary only utilizes the strongest English definition for each Nepali word. 

4.2 Evaluation method 

We use the BLEU score as our evaluation metric, because it is simple and effective at understanding 
translation quality. Evaluation was done on a test set of 3K parallel Nepali-English sentences on the 
FLoRes dataset drawn from Wikipedia to test out-of-domain performance, and 3K parallel Nepali- 
English sentences drawn from the Bible and Penn Tree Bank to evaluate in-domain performance. 

4.3 Experimental details 

We relied on past research to decide on appropriate settings for our encoder-decoder model [2]. We 
decided to use a embedding size of 512 and hidden layer size of 1024. For both our encoders and 
decoders, we used 2 layers, as according to the paper we reviewed. We used an encoder and decoder 
dropout of 0.2 and an attentional dropout of 0.1. We used the Adam optimizer for our model, a



learning rate of 0.01 and a max gradient normalization of 2. We used an early stopping mechanism to 
decide when to stop: we evaluate the model every 500 to 1000 iterations and early stopping happens 
when accuracy and perplexity doesn’t improve in 2000 iterations. 

4.4 Results 

4.4.1 Performance of Word and Subword Representation 
  

  

  

cite BLEU 
Model Number Model Description In Domain Out of Domain 

0 Baseline 16.10 0.43 
1 0 + Reduced Vocab Size 16.84 0.29 
2 0 + Byte Pair Encoding (BPE) 16.89 0.81 

Table 2: Performance of models with different word and subword encodings 

Reduced vocab size and BPE both achieve some success over the baseline model. For the reduced 
vocab size, there was some improvements for the in-domain score, but a decrease for the out- 

domain score. This is expected, as a decrease in vocab size would improve learning for the in 
domain translation, but would also reduce the words the model understands in the out-of-domain data. 

Training on the BPE tokenized training data boosted both in domain and out domain performance. The 
out domain performance improvement suggests that BPE tokenization provides a greater vocabulary 
set by allowing the model to generate and learn new words. On the other hand, the in-domain 
improvement suggests that BPE tokenization allows the model to learn subword tokens across 
different words, providing more training data for each subword, as compared to words. 

4.4.2 Performance of Data Augmentation methods via Auxiliary Data 
  

  

  

_— BLEU 
Model Number Model Description Doman Outor Domain 

0 Baseline 16.10 0.43 
3 0 + Hindi Transfer Learning 18.49 1.04 
4 0 + Dictionary (all pair) 13.77 0.41 
5 0 + Dictionary (top pairs) 9.00 0.41 
6 0 + GNOME (unfiltered) 17.62 0.74 
7 0 + GNOME (filtered) 14.88 0.53 

Table 3: Performance of models utilizing auxiliary data 

Among auxiliary data methods, transfer learning our model with Hindi resulted in the largest in- 
domain and out-of-domain scores, which we expected due to the morphological similarity that 
Hindi has with Nepali, and the large size of the Hindi-English corpus. We were very surprised that 
pretraining our model on both variants of the dictionary degraded performance, and it’s worth noting 
that the all pairs dictionary does significantly better than the top pairs dictionary. Training on the 
unfiltered GNOME dataset boosted our performance compared to the baseline, while training on the 
smaller filtered GNOME dataset surprisingly resulted in a lower performance. This suggests that our 
model is resilient to a noisy input, and can extract meaningful insights from it, and also that the filters 
we utilized on the GNOME dataset were not good heuristics for identifying high quality sentences. 

4.4.3. Performance of Backtranslation 
  

  

  

gis BLEU 
Model Number Model Description In Domain Out of Domain 

0 Baseline 16.10 0.43 
8 0+ V-BT w/ vanilla decoding 16.96 0.36 
9 0 + I-BT w/ vanilla decoding 17.47 0.34 
10 0 + V-BT w/ sampling decoding 18.66 0.31 
11 0 + I-BT w/ sampling decoding 16.52 0.37 
12 0+ DI-BT 19.14 0.48 
13 0 + double DI-BT 18.50 0.26 

Table 4: Performance of systems utilizing various backtranslation variants 

Backtranslation appears to be a very effective strategy for low resource translation, with all but one of 
the variants increasing in-domain scores. However, all but one of the variants degrades performance on 
out-of-domain scores, which is unsurprising since backtranslation augments the dataset with synthetic



sentences from the model, which are likely to resemble in-domain sentences. Interestingly, I-BT with 
vanilla decoding increases scores compared to V-BT with vanilla decoding, but I-BT with sampling 
decoding decreases scores compared to V-BT with sampling decoding. We discuss reasons for this in 
the Analysis section. Our proposed DI-BT exceeds both traditional backtranslation methods, with 
DI-BT giving us the highest in-domain and out-of-domain score across all backtranslation methods, 
and double DI-BT provides results comparable to traditional backtranslation methods. DI-BT also 
produces the highest in-domain scores among all of our approaches in this paper, with only model 15, 
which still utilizes DI-BT (but in combination with noisy GNOME data), scoring higher. 

4.4.4 Performance of Combined Models 

  

  

  

sas BLEU 
Model Number Model Description In Domain Out of Domain 

0 Baseline 16.10 0.43 
14 Partially Combined, no DI-BT (0 + 2 +3 + 6) 18.08 3.85 
15 DI-BT and GNOME only (0 + 6 + 12) 20.65 0.52 
16 Fully Combined (0 +2 +3 +6 + 12) 18.97 4.36 

Table 5: Performance of different combined models 

All of our combined models produce a significant improvement over the baseline, which was expected. 
Its worth noting that models 14 and 16 have a lower performance on in-domain performance than 
their best component method, but significantly outperform their component methods on the out-of- 
domain set (with the fully combined model performing best). Model 15 significantly outperforms 
its component methods on the in-domain test set, but underperforms the best component method on 
the out-of-domain test set. This suggests that improvements among individual methods do not stack 
cleanly on each other when combined, and the interaction of methods with each other plays a very 
significant role. Also, the best combination of methods for low resource translation is dependent on 
the target task: in-domain and out-of-domain performance are not correlated. 

5 Analysis 

5.1 Word and Subword Representations 

Inspection of the translated outputs for reduced vocab size and BPE shows us the different levels of 
quality and characteristics of each tokenization technique. The BPE sentence in Appendix B provides 
a translation that captures some of the meaning of the gold standard, mainly the concepts of "heart", 
"you" and "open". However, they are not organized in the same order as the gold standard. Instead of 
"our mouth is open", the BPE translation has "our hearts is open". This may be because the same 
sentence can have more tokens when represented as subwords than as words, and thus, it can be 

more difficult for the model to replicate an entire sequence. Interestingly, BPE generates the word 
"Corinthites", as an equivalent translation to "Corinthians". It shows that while BPE translations 
are able to generate new words, the new words may not be a valid English word. For the reduced 
vocab size example in Appendix B, we can see that the reduced vocab size can easily generate <unk> 
(unknown) tokens, as it encounters a Nepali or English word that is not in its vocabulary. 

5.2 Data Augmentation via Auxiliary Data Methods 

The improvements made by data augmentation method are most evident from observing out-of- 
domain translations. As data augmentation methods via auxiliary data provide a new domain of data 
besides the core Bible and Penn Tree Bank dataset, out-of-domain translations rely on this auxiliary 
data the most. The key towards choosing the right auxiliary data is to find data that has the desired 
domain for the translation task. We can observe the difference from the example in Appendix C. 

While the dictionary task provides an expanded vocabulary, the fact that each dictionary entry is 
just a single word means that it doesn’t help the model to learn the overall structure of a sentence. 
Evidently, in the Dict translation example in Appendix C, the sentence is fairly fragmented. The 
GNOME dataset has a domain in computer programming, hence, when it encounters a Nepali word 
that should translate to report or objective report, it would tend to translate it into "bug report" such 
as in the example. Finally, the Hindi dataset is a general domain dataset with a large vocabulary. 
The expanded vocabulary from Hindi required us to put a threshold on vocabulary to prevent it from 
overloading the embeddings. Thus, we can see that there’s an <unk> token in the translation in 
the example. However, beyond the <unk>, the Hindu translation performs the best, being able to



translate the word "report". Furthermore, as a general domain dataset, it also helps in establishing a 
basic Nepali/Hindu language model. This is evident in how the model has been able to understand 
synonyms by capturing the meaning of "prepare" by using a similar word "plans". 

5.3. Backtranslation 

Backtranslation was our most effective method explored, with every variant providing an increase 
in score compared to the baseline. Synthetic sentences generated by vanilla decoding augment 
pre-existing patterns in the dataset, helping the model learn these patterns better. This explains the 
consistent increase in score between V-BT and I-BT variants, since further iterations of backtranslation 

augment these patterns further and increase model performance. Synthetic sentences generated by 
sampling decoding inserts slightly new and diverse patterns into the dataset, by virtue of the random 
sampling, which we hypothesize helps the model learn these new patterns and generalize better. 

However, random sampling can also result in overly noisy datasets. One way of evaluating the level 
of noise is by measuring the number of <unk> tokens in each translation. For the double iteration 
backtranslation, repeating sampling decoding twice leads to a lot of nonsensical and noisy sentences 
in the dataset: likely because the model has very limited training data to start off with, and so is 
unable to generate sentences that make sense after two iterations of randomness in decoding have 
been utilized in sequence. In fact, the translation after two iterations of randomness has almost 50% 
more <unk> tokens compared to the translation with no iterations of random samples. We believe 
DI-BT works so well in this low resource scenario because it is able to create a large synthetic corpus 
with existing patterns by utilizing vanilla decoding with back system 1, so that back system 2’s 
knowledge of these patterns is reinforced. Back system 2 then is able to generate diverse outputs 
utilizing sampling generation that are more sensible due to the reinforced knowledge of correct 
patterns, and these diverse outputs help the final model accurately generalize to new patterns while 
maintaining accuracy on original patterns. Double DI-BT performs slightly worse because doubling 
the amount of sampled sentences results in too much noise, raising the issues mentioned before. 

5.4 Combined Model 

Each of our combined models is designed for specific real life low resource language scenario. Model 
14 corresponds to a low resource language with no monolingual data, model 15 corresponds to a low 
resource language whose similar languages are also low resource, and model 16 corresponds to a low 
resource language that is has a high resource parent language and monolingual data. 

From the results, we learn that, as expected, low resource languages with high resource parent 
languages can achieve good out-of-domain performance after pretraining, simply by applying the 
model for the high resource language to the low resource language. In the context of our paper, 
Hindu and Nepali share the same script and many words. However, for an improvement in in-domain 
translation performance, monolingual data for back translation becomes more important in order to 
provide more augmented and diversified patterns in the training data. 

6 Conclusion 

In this paper, we explored multiple improvements that could be applied to low resource Neural 
Machine Translation systems. We experiment with multiple approaches to word representations, 
data augmentation, backtranslation, and combinations of the aforementioned methods. Additionally, 
we propose a new variant of backtranslation to increase model performance and find it to be more 
effective on our low resource language pair than traditional backtranslation methods. We find that 
BPE, transfer learning, noisy parallel data, and our proposed diversified-iterative-backtranslation 
(DI-BT) provide the largest individual improvements. We also find that a system combining of DI-BT 
and noisy data provide the largest in-domain improvements, and a system combining BPE, Transfer 
Learning, noisy data, and DI-BT provide the largest out-of-domain improvements. 

Due to time and compute constraints, we are only able to test our methods in Nepali-English transla- 
tion, and further work is required to determine whether improvements found in this paper generalize 
to all low resource language pairs. We were also unable to explore many other proposed methods 
for low-resource NMT, such as meta-learning, different model structures, or data augmentation with 

dictionaries. However, we hope that our initial results provide a good direction for promising areas 
that should be explored in future work.
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Figure 3: Baseline Model 
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B_ Word and Subword Representation Translation Examples 

  

Model Type Prediction Sentence 1 

Gold Standard Sentence Our mouth is open to you, Corinthians. Our heart is enlarged. 
BPE O ye Corinthites, our heart is with you, and our hearts is open. 

Reduced Vocab Size And now we say unto you, We are our <unk> our heart is enlarged. 

C Data Augmentation Translation Examples 

  

Model Type Prediction Sentence 2 

Gold Standard Sentence It is used to prepare the objective report of the study. 
Dict According to the Upjohn’s to use it for a price. 

Gnome Let them be given to the bug report to the proud. 
Hindi <unk> purpose plans to file the reports. 

D Filter statistics and example sentences in GNOME Dataset 
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Figure 4: Distribution of code characters in GNOME 

  

English Sentence | Nepali Parallel Translation 
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Figure 5: Examples of code character sentence pairs in GNOME 
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Presence of English Characters in GNOME/Ubuntu Nepali Sentences 

Figure 6: Distribution of english characters in Nepali sentences in GNOME 

  English Sentence | Nepali Parallel Translation 
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Figure 7: Examples of non/semi-translated sentence pairs in GNOME 
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Figure 8: Distribution of punctuated English sentences in GNOME 

  English Sentence Nepali Parallel Translation 
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Figure 9: Examples of low quality sentences and sentence fragments in GNOME 
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Figure 10: Distribution of English sentence lengths in GNOME 
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