
Investigating Techniques for Improving NMT

Systems for Low Resource Languages

Stanford CS224N Custom Project

Alex Lee Pranay Vaid
Department of Computer Science Department of Computer Science

Stanford University Stanford University
leealex@stanford.edu pvaid@stanford.edu

Abstract

Neural Machine Translation (NMT) has become the standard for Machine Trans-

lation tasks, however, they encounter many technical challenges when training in
low resource language pairs. In this paper, we investigate how different subword
and word representations, as well as different data augmentation techniques can
improve NMT performance on low resource languages. For our baseline, we train
an encoder-decoder based seq2seq NMT model on a scarce Nepali-English dataset.
Then, we compare different subword and word representations, such as Byte Pair
Encoding (BPE) and a reduced vocab set. Finally, we augment our training data
with backtranslation of monolingual data, transfer learning from Hindi, and noisy
data. In addition, we propose a new variant of backtranslation for low-resource
NMT that exceeds performance of traditional backtranslation methods. We find
that BPE was the best performing subword representation. For data augmenta-
tion, we find that transfer learning and noisy data gives reliable improvements,
yet back translation requires careful management of noise levels. By utilizing
our novel variant of backtranslation alongside BPE and auxiliary data methods in
combined models, we are able to increase in-domain performance by +4.55 BLEU
and out-of-domain performance by +3.93 BLEU compared to the baseline.

1 Introduction

In recent years, Neural Machine Translation (NMT) has very quickly been established as the dominant
approach for translation tasks, with variants of NMT achieving state-of-the-art results across tasks
in WMT19 [1]. However, the most effective NMT systems are data hungry, requiring a parallel
corpus with tens of millions of sentences in order to perform well. In low resource scenarios with
only tens of thousands of parallel sentences, state-of-the-art NMT systems have drastically lower
performance and adapting NMT system performance in these scenarios is often considered one of the
major challenges in Neural Machine Translation today [2].

Improvement of low resource NMT performance is particularly impactful due to its practical implica-
tions. Most of the 7,000+ languages in the world are considered to be low resource, are spoken by
significant fraction of the world population, and usually belong to underprivileged groups [3]. A third
of languages existing today are endangered with less than 1,000 speakers remaining, and one language
dies every 2 weeks [4]. Improving low resource NMT systems allows for accessible communication
with these languages, offers a method of preserving the myriad of endangered languages for future
generations, and provides underprivileged groups access to advanced NLP technologies.

In this work, we explore improvements that can be made to NMT systems so that they perform better
in low resource settings. We select Nepali, a language with minimal parallel data available, and have
access to just 65k Nepali-English parallel sentences, 150k noisy Nepali-English parallel sentences,
and 334k Nepali monolingual sentences.

Stanford CS224N Natural Language Processing with Deep Learning

In our investigation, we focus on two areas: how to best represent low resource languages to improve
translation performance, and how to most effectively augment low resource languages training data
with monolingual data, data from similar languages and noisy data. We begin by comparing different
vocab representations and tokenization schemes, namely a reduced vocab model and Byte Pair
Encoding (BPE). Then, we apply transfer learning using a model trained on Hindi-English data. We
also perform data augmentation through back translation on monolingual Nepali and English datasets
and a noisy dataset. Finally, we combine successful improvements to create a final complete model
with optimal tokenization and data augmentation.

2 Related Work

Multiple methods have been proposed to tackle low resource NMT in past literature. A common
approach is domain adaption, in which a model is pretrained on high-resource domains and then
finetuned on a new low-resource domain. Transfer learning is one such domain adaptation, in which a
model is trained on a high-resource parent language pair prior to being trained on a low-resource child
language pair, so that the model may apply learnings from the parent language to the child language
[5]. Additionally, some have applied both supervised and unsupervised meta-learning successfully
in low resource situations, an approach where the model utilizes information from a high-resource
domain to learn an optimal parameter initialization for fast adapation to a low-resource domain [6][7].

Source or target side monolingual data is much more common than parallel data, and semi-supervised
and unsupervised methods have been proposed to take advantage of this. Backtranslation is one such
method that has been successful in a wide variety of NMT tasks, in which synthetic source data is
generated from target side monolingual data [6][7]. Self-training is used similarly, instead generating
synthetic target data from source side monolingual data [8][9]. Model based approaches, such as
hyperparameters modifications to adapt models to low-resource situations have also been successfully
used to low-resource boost performance in supervised approaches [10].

Although many methods have been proposed, few of these methods have been comprehensively
applied to low resource languages. Instead, most of the discussed research focus on these methods in
isolation, or only applied to out-of-domain high-resource languages or simulated low-resource lan-
guage scenarios (when high-resource languages are sampled to simulate low-resource environments).
We aim to investigate the effect of tokenization modifications, backtranslation and data augmentation
on training in Nepali-English, a true low resource language pair.

3 Approach

Training difficulties for low resource languages typically manifest in two ways: a limited set of words
in the vocabulary, and a lack of training data. We aim to address both problems through investigating
different word and subword representations and data augmentation techniques, respectively.

3.1 Baseline

For our baseline model, we use an encoder-decoder seq2seq model based on the OpenNMT library
[11], consulting the sample NMT code in the iPythonNotebook Library [12]. For our encoder, we
use a bidirectional LSTM model. When the Nepali word sequence is fed into the encoder, it is first
converted into embedding vectors, then fed through the bidirectional LSTM. For the decoder, we

use a input feed decoder described in [13] with a unidirectional LSTM and global attention. As an
input feed decoder, each attentional vector is fed back into the attention layer as part of the input for
the next attention vector. The attentional layer then uses a softmax function to generate probability
outputs. Figure 3 in A.1 provides a visual of our model.

For tokenization, our baseline model uses a simple word based encoding system. We generated our
vocab set for the baseline model using the training set and validation set for the baseline model. In
particular, we used the validation set in vocab generation to prevent the model from being unable to
validate due to an inability to recognize words and sentences in the validation set.

3.2 Word and Subword Representation

3.2.1 Reduced Vocab Size

We used OpenNMT to construct our vocab set. To reduce the vocab size, we set up a vocab frequency
threshold for the vocab to be included in the final dataset. In particular, we require a word to occur at
least three times in order to be included in the Nepali and English vocabs. This reduces our source

vocab from around 78k tokens to 28k tokens and our target vocab from around 52k tokens to 20k
tokens. We hope that with less tokens, the model will focus on learning more from tokens with higher
frequencies, instead of trying to learn on tokens that only appear once.

3.2.2 Byte Pair Encoding (BPE)

For BPE, we used the OpenNMT tokenizer. As Nepali is a morphologically rich language, we believe
that using a modified vocab can help the model learn better. Also, the lack of training data for low
resource languages means that the vocabulary set generated from available sentence pairs will be very
limited, so subword vocabs would allow the model to generate new words from elements of existing
words and adapt to the open vocabulary of the testing data.

We used an implementation of BPE as according to Sennrich’s original paper [14]. BPE begins by
separating the entire datasets into characters. Then, the BPE algorithm continually merges the most
common subword pairs, starting by merging the characters. The merging stops when the BPE model
reaches the desired amount of subwords, which in our case is 3k tokens. We tokenize our training

and validation data into subword units, and then train our models on this tokenized data. To retrieve

model predictions for evaluation, we detokenize the model translations.

3.3. Transfer Learning

Transfer learning for low resource machine translation has been studied before and we implement a
similar procedure as [5]. We first train our model on a Hindi-English translation task, and use the
model parameters learned during this training as the initialization parameters for training on our
Nepali-English corpus. We do not freeze any parameters, so that all parameters are retrained.

3.4 Data Augmentation

3.4.1 Backtranslation

We implement multiple variants of backtranslation to create synthetic parallel datasets. Our vanilla
backtranslation (V-BT) approach utilizes the method described in [6]: we train a backward English-

Nepali model and use the model to generate synthetic Nepali sentences from a monolingual English
corpus. We then concatenate our synthetic generated parallel corpus with the original parallel corpus,
and use the combined corpus to train our final model. Our iterative-backtranslation (I-BT) approach
utilizes the method described in [7]: we train a forward Nepali-English model and use it to generate
synthetic English sentences from a Nepali monolingual corpus. We then combine this synthetic
corpus with our original corpus, to train a backward English-Nepali model, and use this model to
generate synthetic Nepali sentences from a English monolingual corpus. The outputted synthetic
dataset from this step only is combined with the original parallel corpus, and used to train our final
model. We refer readers to [7] for a visual of this process.

We utilize the above two backtranslation variants with two decoding variants while translating
from the backtranslation models. In vanilla decoding, we generate the output word by selecting
the word with highest probability conditioned on the previously outputted words (equation 1). In
sampling decoding we utilize a decoding scheme presented in [15], where we generate diverse
pseudo-parallel sentences by randomly sampling the output word based on the word probability
distribution, conditioned on the previously outputted words (equation 2).

1 e
Pr(yz|yct, £) He = arg max Pr(y|yct, £) (1) geo ss (2)

ue . Ley Pr(y'lyct, @)*
Vanilla Decoding Sampling Decoding

Ut. Y<t, and x denote the outputted word at time ¢, word sequence history until time ¢, and input
sequence respectively. 7 represents the temperature parameter, used to to control the output diversity.
We use a temperature value of 1.0.

From our experiments, we note that with successive iterations of backtranslation, vanilla decoding
provides asympotically smaller but consistent increases in performance while sampling decoding
provides a large increase in performance followed by a large decrease in performance. We thus
propose and utilize a novel backtranslation variant combining the two decoding methods with
iterative-backtranslation, in which we conduct iterative-backtranslation but use vanilla decoding when
generating synthetic data from the forward English-Nepali model and use sampling decoding when
generating synthetic data from the backward Nepali-English model. We refer to this as diversified

iterative-backtranslation or DI-BT for short, and a visual is pictured in Figure 1. To the best of our
knowledge, this backtranslation variant has not been used before. The intuition behind this is that
vanilla decoding will augment existing patterns in the dataset, helping the model reinforce knowledge
of these, and that sampling decoding inserts diversity and noise into the dataset, so doing this for only
the last step will help the model generalize to new patterns without overfitting to noise. Lastly, we
take inspiration from [15] and generate two synthetic sentences per monolingual sentence during the
DI-BT sampling decoding step, to further insert diversity into the dataset. This method is referred to
as double diversified iterative-backtranslation (double DI-BT).

Perens — Perea Pele aur — Be ia

Monolingual

fyi}

——
back system 1 (ne-en)

a TS
Pea Ue

Welter el vanika. Decode. | peaags Rea
English

Monolingual Serle Decoele Symtene
English

el

Figure 1: The flow of Diversified Iterative-Backtranslation

Parallel Nepali

Monolingual Nepali AS Talamanca) Synthetic Nepali

3.4.2 Utilization of noisy datasets

As discussed in 4.1, we access a noisy GNOME dataset. Many low resource language pairs have
noisy datasets, so we explore the possibilty of cleaning the dataset. We take inspiration from [16],
implementing heuristics to identify high quality sentences, but adapt our filters to patterns we observe
in the GNOME dataset. We rely on the following 4 filters we consider to contribute to noisy data:

1. Non-translated sentences: Filters partially/non-translated Nepali sentences by removing sentence
pairs that contain English characters in the Nepali sentence, since Nepali uses devanagari script.

2. Presence of code: Validates whether a sentence pair contains computer code. We remove sentence

pairs containing any of the following characters in the Nepali translation: "*;%[]/:_".

3. Sentence fragments: Filters segment fragments by removing sentence pairs where the English
translation doesn’t terminate with one of the following punctuation marks: ".?!".

4. Minimum Sentence Length: Identifies sentences most likely to resemble regular Nepali sentences.
We remove any sentences with less than 6 words.

We experiment with augmenting our original dataset with the filtered GNOME dataset, containing
20K sentences, and compare it to performance when augmenting the original dataset with 150K
unfiltered random sentences sampled from the full GNOME dataset. The amount of sentences filtered
out by each of the above filters and examples of these sentences are detailed in Appendix D.

3.4.3 Dictionary

To perform out of domain translation, it is important for the model to learn more vocabulary. By
pretraining our model on a bilingual Nepali-English dictionary, we hope the model will be able to
learn a wide vocabulary from the dictionary, both to understand words from the Nepali input sequence
and to translate Nepali sentences to Engish with the most relevant English word. We experiment with
two variants of a dictionary, one containing pairings of Nepali words with their top English definition
and another containing pairings of Nepali words with all of their possible English definitions.

3.5 Combined Model

After observing the methods with the largest improvements on validation sets, we train final models
combining these methods, to explore whether individual performance improvements can be stacked
together for a large performance improvement in a combined model. We utilize byte pair encoding
(BPE), transfer learning on Hindi-English, the 150K unfiltered sentences from the GNOME dataset,
and diversified-iterative-backtranslation. The flow of the fully combined model is pictured in Figure
2. For some low resource languages, transfer learning is impractical due to possible parent languages
also being low resource, a condition which we simulate in one of our combined models by using just
the combination of DI-BT and the unfiltered GNOME dataset to boost performance.

Parallel Hindi ele mania)

BPE

tokenized

—————
pretrained model (en-hi)

o ae’ ot

—————————
pretrained model (hi-en)

Parallel Nepali relay 4) Tele le ciel m aria) CCTM tif Pele paar)

BRE # ‘ rs Monolingual
tokenized Monolingual Nepali late arc) ua r eee

SSS
2 BPE BPE LT ey a eokentea tokenized

final system (ne-en)

———S—
back system 2 (en-ne)

Mental tel Vanilla Decoding Synthetic gy >
SUF fale) : "

ia Monolingual Sampling Decoding Synthetic

tarsi} Nee

Figure 2: The flow of our fully combined NMT system

4 Experiments

4.1 Data

Dataset Language Pair Format Sentences Task
Bible Nepali-English parallel 61,809 Core Corpus

Penn Tree Bank Nepali-English parallel 4,279 Core Corpus
FLoRes Nepali-English parallel 2,924 Test Set

IIT Bombay Corpus Hindi-English parallel 1,609,682 Transfer Learning
Wikipedia (en) English monolingual 280,162 Backtranslation
Wikipedia (ne) Nepali monolingual 334,487 Backtranslation

GNOME/KDE/Ubuntu = Nepali-English noisy parallel 494,994 Auxiliary Data
Dictionary (all pairs) Nepali-English dictionary 17,885 (word pairs) Auxiliary Data
Dictionary (top pairs) | Nepali-English dictionary 9,865 (word pairs) Auxiliary Data

Table 1: Datasets utilized for experiments

We are using Nepali-English parallel data acquired from various sources, as described in Table 4.1,
to train and evaluate our model on Nepali to English translations. We combine the Bible [17] and
Penn Tree Bank [18] into a combined corpus, and split this corpus randomly to create our training
set with 60K sentences, validation set with 3K sentences, and test set of 3K sentences to evaluate

in-domain performance. We also use the FLoRes dataset [19], drawn from Wikipedia, as a test set
to evaluate our models out-of-domain performance. Our transfer learning experiments utilize 1.5M
sentences from the IIT Bombay corpus [20], with the rest of the corpus used as a validation set. Our
backtranslation experiments utilize monolingual English and Nepali Wikipedia data [21]. These
monolingual corpuses don’t include any sentences from the FLoRes dataset. We also access the
GNOME/KDE/Ubuntu corpus [22], which we consider to be noisy due to the heavy presence of code,
non-translated words, and incomplete sentence fragments. We use this to explore methods of utilizing
noisy datasets to improve model performance. Finally, to explore expansion of model vocabulary
we utilize two Nepali-English dictionaries, extracted from the same source dictionary [23]. The "all

pairs" dictionary includes pairings of Nepali words with all of their possible English definitions,
while the "top pairs" dictionary only utilizes the strongest English definition for each Nepali word.

4.2 Evaluation method

We use the BLEU score as our evaluation metric, because it is simple and effective at understanding
translation quality. Evaluation was done on a test set of 3K parallel Nepali-English sentences on the
FLoRes dataset drawn from Wikipedia to test out-of-domain performance, and 3K parallel Nepali-
English sentences drawn from the Bible and Penn Tree Bank to evaluate in-domain performance.

4.3 Experimental details

We relied on past research to decide on appropriate settings for our encoder-decoder model [2]. We
decided to use a embedding size of 512 and hidden layer size of 1024. For both our encoders and
decoders, we used 2 layers, as according to the paper we reviewed. We used an encoder and decoder
dropout of 0.2 and an attentional dropout of 0.1. We used the Adam optimizer for our model, a

learning rate of 0.01 and a max gradient normalization of 2. We used an early stopping mechanism to
decide when to stop: we evaluate the model every 500 to 1000 iterations and early stopping happens
when accuracy and perplexity doesn’t improve in 2000 iterations.

4.4 Results

4.4.1 Performance of Word and Subword Representation

cite BLEU
Model Number Model Description In Domain Out of Domain

0 Baseline 16.10 0.43
1 0 + Reduced Vocab Size 16.84 0.29
2 0 + Byte Pair Encoding (BPE) 16.89 0.81

Table 2: Performance of models with different word and subword encodings

Reduced vocab size and BPE both achieve some success over the baseline model. For the reduced
vocab size, there was some improvements for the in-domain score, but a decrease for the out-

domain score. This is expected, as a decrease in vocab size would improve learning for the in
domain translation, but would also reduce the words the model understands in the out-of-domain data.

Training on the BPE tokenized training data boosted both in domain and out domain performance. The
out domain performance improvement suggests that BPE tokenization provides a greater vocabulary
set by allowing the model to generate and learn new words. On the other hand, the in-domain
improvement suggests that BPE tokenization allows the model to learn subword tokens across
different words, providing more training data for each subword, as compared to words.

4.4.2 Performance of Data Augmentation methods via Auxiliary Data

_— BLEU
Model Number Model Description Doman Outor Domain

0 Baseline 16.10 0.43
3 0 + Hindi Transfer Learning 18.49 1.04
4 0 + Dictionary (all pair) 13.77 0.41
5 0 + Dictionary (top pairs) 9.00 0.41
6 0 + GNOME (unfiltered) 17.62 0.74
7 0 + GNOME (filtered) 14.88 0.53

Table 3: Performance of models utilizing auxiliary data

Among auxiliary data methods, transfer learning our model with Hindi resulted in the largest in-
domain and out-of-domain scores, which we expected due to the morphological similarity that
Hindi has with Nepali, and the large size of the Hindi-English corpus. We were very surprised that
pretraining our model on both variants of the dictionary degraded performance, and it’s worth noting
that the all pairs dictionary does significantly better than the top pairs dictionary. Training on the
unfiltered GNOME dataset boosted our performance compared to the baseline, while training on the
smaller filtered GNOME dataset surprisingly resulted in a lower performance. This suggests that our
model is resilient to a noisy input, and can extract meaningful insights from it, and also that the filters
we utilized on the GNOME dataset were not good heuristics for identifying high quality sentences.

4.4.3. Performance of Backtranslation

gis BLEU
Model Number Model Description In Domain Out of Domain

0 Baseline 16.10 0.43
8 0+ V-BT w/ vanilla decoding 16.96 0.36
9 0 + I-BT w/ vanilla decoding 17.47 0.34
10 0 + V-BT w/ sampling decoding 18.66 0.31
11 0 + I-BT w/ sampling decoding 16.52 0.37
12 0+ DI-BT 19.14 0.48
13 0 + double DI-BT 18.50 0.26

Table 4: Performance of systems utilizing various backtranslation variants

Backtranslation appears to be a very effective strategy for low resource translation, with all but one of
the variants increasing in-domain scores. However, all but one of the variants degrades performance on
out-of-domain scores, which is unsurprising since backtranslation augments the dataset with synthetic

sentences from the model, which are likely to resemble in-domain sentences. Interestingly, I-BT with
vanilla decoding increases scores compared to V-BT with vanilla decoding, but I-BT with sampling
decoding decreases scores compared to V-BT with sampling decoding. We discuss reasons for this in
the Analysis section. Our proposed DI-BT exceeds both traditional backtranslation methods, with
DI-BT giving us the highest in-domain and out-of-domain score across all backtranslation methods,
and double DI-BT provides results comparable to traditional backtranslation methods. DI-BT also
produces the highest in-domain scores among all of our approaches in this paper, with only model 15,
which still utilizes DI-BT (but in combination with noisy GNOME data), scoring higher.

4.4.4 Performance of Combined Models

sas BLEU
Model Number Model Description In Domain Out of Domain

0 Baseline 16.10 0.43
14 Partially Combined, no DI-BT (0 + 2 +3 + 6) 18.08 3.85
15 DI-BT and GNOME only (0 + 6 + 12) 20.65 0.52
16 Fully Combined (0 +2 +3 +6 + 12) 18.97 4.36

Table 5: Performance of different combined models

All of our combined models produce a significant improvement over the baseline, which was expected.
Its worth noting that models 14 and 16 have a lower performance on in-domain performance than
their best component method, but significantly outperform their component methods on the out-of-
domain set (with the fully combined model performing best). Model 15 significantly outperforms
its component methods on the in-domain test set, but underperforms the best component method on
the out-of-domain test set. This suggests that improvements among individual methods do not stack
cleanly on each other when combined, and the interaction of methods with each other plays a very
significant role. Also, the best combination of methods for low resource translation is dependent on
the target task: in-domain and out-of-domain performance are not correlated.

5 Analysis

5.1 Word and Subword Representations

Inspection of the translated outputs for reduced vocab size and BPE shows us the different levels of
quality and characteristics of each tokenization technique. The BPE sentence in Appendix B provides
a translation that captures some of the meaning of the gold standard, mainly the concepts of "heart",
"you" and "open". However, they are not organized in the same order as the gold standard. Instead of
"our mouth is open", the BPE translation has "our hearts is open". This may be because the same
sentence can have more tokens when represented as subwords than as words, and thus, it can be

more difficult for the model to replicate an entire sequence. Interestingly, BPE generates the word
"Corinthites", as an equivalent translation to "Corinthians". It shows that while BPE translations
are able to generate new words, the new words may not be a valid English word. For the reduced
vocab size example in Appendix B, we can see that the reduced vocab size can easily generate <unk>
(unknown) tokens, as it encounters a Nepali or English word that is not in its vocabulary.

5.2 Data Augmentation via Auxiliary Data Methods

The improvements made by data augmentation method are most evident from observing out-of-
domain translations. As data augmentation methods via auxiliary data provide a new domain of data
besides the core Bible and Penn Tree Bank dataset, out-of-domain translations rely on this auxiliary
data the most. The key towards choosing the right auxiliary data is to find data that has the desired
domain for the translation task. We can observe the difference from the example in Appendix C.

While the dictionary task provides an expanded vocabulary, the fact that each dictionary entry is
just a single word means that it doesn’t help the model to learn the overall structure of a sentence.
Evidently, in the Dict translation example in Appendix C, the sentence is fairly fragmented. The
GNOME dataset has a domain in computer programming, hence, when it encounters a Nepali word
that should translate to report or objective report, it would tend to translate it into "bug report" such
as in the example. Finally, the Hindi dataset is a general domain dataset with a large vocabulary.
The expanded vocabulary from Hindi required us to put a threshold on vocabulary to prevent it from
overloading the embeddings. Thus, we can see that there’s an <unk> token in the translation in
the example. However, beyond the <unk>, the Hindu translation performs the best, being able to

translate the word "report". Furthermore, as a general domain dataset, it also helps in establishing a
basic Nepali/Hindu language model. This is evident in how the model has been able to understand
synonyms by capturing the meaning of "prepare" by using a similar word "plans".

5.3. Backtranslation

Backtranslation was our most effective method explored, with every variant providing an increase
in score compared to the baseline. Synthetic sentences generated by vanilla decoding augment
pre-existing patterns in the dataset, helping the model learn these patterns better. This explains the
consistent increase in score between V-BT and I-BT variants, since further iterations of backtranslation

augment these patterns further and increase model performance. Synthetic sentences generated by
sampling decoding inserts slightly new and diverse patterns into the dataset, by virtue of the random
sampling, which we hypothesize helps the model learn these new patterns and generalize better.

However, random sampling can also result in overly noisy datasets. One way of evaluating the level
of noise is by measuring the number of <unk> tokens in each translation. For the double iteration
backtranslation, repeating sampling decoding twice leads to a lot of nonsensical and noisy sentences
in the dataset: likely because the model has very limited training data to start off with, and so is
unable to generate sentences that make sense after two iterations of randomness in decoding have
been utilized in sequence. In fact, the translation after two iterations of randomness has almost 50%
more <unk> tokens compared to the translation with no iterations of random samples. We believe
DI-BT works so well in this low resource scenario because it is able to create a large synthetic corpus
with existing patterns by utilizing vanilla decoding with back system 1, so that back system 2’s
knowledge of these patterns is reinforced. Back system 2 then is able to generate diverse outputs
utilizing sampling generation that are more sensible due to the reinforced knowledge of correct
patterns, and these diverse outputs help the final model accurately generalize to new patterns while
maintaining accuracy on original patterns. Double DI-BT performs slightly worse because doubling
the amount of sampled sentences results in too much noise, raising the issues mentioned before.

5.4 Combined Model

Each of our combined models is designed for specific real life low resource language scenario. Model
14 corresponds to a low resource language with no monolingual data, model 15 corresponds to a low
resource language whose similar languages are also low resource, and model 16 corresponds to a low
resource language that is has a high resource parent language and monolingual data.

From the results, we learn that, as expected, low resource languages with high resource parent
languages can achieve good out-of-domain performance after pretraining, simply by applying the
model for the high resource language to the low resource language. In the context of our paper,
Hindu and Nepali share the same script and many words. However, for an improvement in in-domain
translation performance, monolingual data for back translation becomes more important in order to
provide more augmented and diversified patterns in the training data.

6 Conclusion

In this paper, we explored multiple improvements that could be applied to low resource Neural
Machine Translation systems. We experiment with multiple approaches to word representations,
data augmentation, backtranslation, and combinations of the aforementioned methods. Additionally,
we propose a new variant of backtranslation to increase model performance and find it to be more
effective on our low resource language pair than traditional backtranslation methods. We find that
BPE, transfer learning, noisy parallel data, and our proposed diversified-iterative-backtranslation
(DI-BT) provide the largest individual improvements. We also find that a system combining of DI-BT
and noisy data provide the largest in-domain improvements, and a system combining BPE, Transfer
Learning, noisy data, and DI-BT provide the largest out-of-domain improvements.

Due to time and compute constraints, we are only able to test our methods in Nepali-English transla-
tion, and further work is required to determine whether improvements found in this paper generalize
to all low resource language pairs. We were also unable to explore many other proposed methods
for low-resource NMT, such as meta-learning, different model structures, or data augmentation with

dictionaries. However, we hope that our initial results provide a good direction for promising areas
that should be explored in future work.

7 Additional Information

¢ In-Class Mentor: John Hewitt

¢ External Mentors: Leah Brickson and Ryan Burke

¢ External Collaborators (if you have any): None

¢ Sharing project: None

References

[1]

[2]

[3]

[4]

[5]

[6]

[7 w
s

[8]

[9]

[10]

[11]

[12]

[13]

Loic Barrault, Ondfej Bojar, Marta R. Costa-jussa, Christian Federmann, Mark Fishel, Yvette
Graham, Barry Haddow, Matthias Huck, Philipp Koehn, Shervin Malmasi, Christof Monz,

Mathias Miiller, Santanu Pal, Matt Post, and Marcos Zampieri. Findings of the 2019 conference

on machine translation (WMT19). In Proceedings of the Fourth Conference on Machine
Translation (Volume 2: Shared Task Papers, Day 1), pages 1-61, Florence, Italy, August 2019.
Association for Computational Linguistics.

Philipp Koehn and Rebecca Knowles. Six challenges for neural machine translation. In
Proceedings of the First Workshop on Neural Machine Translation, pages 28-39, Vancouver,
August 2017. Association for Computational Linguistics.

Surafel M. Lakew, Matteo Negri, and Marco Turchi. Low resource neural machine translation:

A benchmark for five african languages, 2020.

Nina Strochlic. Saving the world’s dying and disappearing languages, Feb 2021.

Barret Zoph, Deniz Yuret, Jonathan May, and Kevin Knight. Transfer learning for low-resource
neural machine translation. In Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, pages 1568-1575, Austin, Texas, November 2016. Association
for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Improving neural machine translation
models with monolingual data. CoRR, abs/1511.06709, 2015.

Vu Cong Duy Hoang, Philipp Koehn, Gholamreza Haffari, and Trevor Cohn. Iterative back-
translation for neural machine translation. In Proceedings of the 2nd Workshop on Neural
Machine Translation and Generation, pages 18-24, Melbourne, Australia, July 2018. Associa-
tion for Computational Linguistics.

Junxian He, Jiatao Gu, Jiajun Shen, and Marc’ Aurelio Ranzato. Revisiting self-training for
neural sequence generation. CoRR, abs/1909.13788, 2019.

Jiajun Zhang and Chengqing Zong. Exploiting source-side monolingual data in neural machine
translation. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing, pages 1535-1545, Austin, Texas, November 2016. Association for Computational
Linguistics.

Rico Sennrich and Biao Zhang. Revisiting low-resource neural machine translation: A case
study. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, 2019.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart, and Alexander Rush. OpenNMT:

Open-source toolkit for neural machine translation. In Proceedings of ACL 2017, System
Demonstrations, pages 67—72, Vancouver, Canada, July 2017. Association for Computational
Linguistics.

Opennmt ipythonnotebook library. https://opennmt .net/OpenNMT-py/examples/
Library .html. Accessed February, 2021.

Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches to attention-
based neural machine translation. 2015.

[14] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare
words with subword units. In Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 1715-1725, Berlin, Germany,
August 2016. Association for Computational Linguistics.

[15] Kenji Imamura, Atsushi Fujita, and Eiichiro Sumita. Enhancement of encoder and attention
using target monolingual corpora in neural machine translation. In Proceedings of the 2nd

Workshop on Neural Machine Translation and Generation, pages 55-63, Melbourne, Australia,
July 2018. Association for Computational Linguistics.

[16] Marcis Pinnis. Tilde’s parallel corpus filtering methods for WMT 2018. In Proceedings of
the Third Conference on Machine Translation: Shared Task Papers, pages 939-945, Belgium,
Brussels, October 2018. Association for Computational Linguistics.

[17] A multilingual parallel corpus created from translations of the bible. https: //github.com/
christos-c/bible-corpus/. Accessed February, 2021.

[18] Penn tree bank in english and nepali. https://d1.fbaipublicfiles.com/fairseq/data/
nepali-penn-treebank.en.patch and https://d1.fbaipublicfiles.com/fairseq/
data/nepali-penn-treebank.ne.patch. Accessed February, 2021.

[19] Francisco Guzman, Peng-Jen Chen, Myle Ott, Juan Pino, Guillaume Lample, Philipp Koehn,

Vishrav Chaudhary, and Marc’ Aurelio Ranzato. The flores evaluation datasets for low-resource
machine translation: Nepali-english and sinhala-english, 2019.

[20] lit bombay english-hindi corpus. https://www.cfilt.iitb.ac.in/~parallelcorp/
iitb_en_hi_parallel/. Accessed March, 2021.

[21] Monolingual english and nepali corpus. https://d1.fbaipublicfiles.com/fairseq/
data/wikipedia.ne_filtered.gz and https://dl.fbaipublicfiles.com/fairseq/
data/wikipedia.en_filtered.gz. Accessed February, 2021.

[22] Gnome/kde/ubuntu handbook from opus. https: //opus.nlpl.eu. Accessed February, 2021.

[23] Nepali english dictionary via tacl data release. http://www.seas.upenn.edu/~nlp/
resources/TACL-data-release/dictionaries.tar.gz. Accessed February, 2021.

A Additional Figures

A.1_ Baseline Model

Input Feed Decoder Unit

Encoder Unit Ty
Embedding size: 512

Embeddings Lookup

Embedding size: 512
Input: Nepali

Word —> | —)
Sequence

Input Feed Decoder

LSTM, layers = 2, hidden size = 1024 —-

Pos. F

n+1

Output: English

Word Sequence
tatoos (Tame lili a

Bidirectional LSTM, layers = 2

hidden size = 1024

Global Attention

Figure 3: Baseline Model

10

B_ Word and Subword Representation Translation Examples

Model Type Prediction Sentence 1

Gold Standard Sentence Our mouth is open to you, Corinthians. Our heart is enlarged.
BPE O ye Corinthites, our heart is with you, and our hearts is open.

Reduced Vocab Size And now we say unto you, We are our <unk> our heart is enlarged.

C Data Augmentation Translation Examples

Model Type Prediction Sentence 2

Gold Standard Sentence It is used to prepare the objective report of the study.
Dict According to the Upjohn’s to use it for a price.

Gnome Let them be given to the bug report to the proud.
Hindi <unk> purpose plans to file the reports.

D Filter statistics and example sentences in GNOME Dataset

350000 4

300000 4

250000 4

200000 4

150000 4

N
u
m
b
e
r

of

S
e
n
t
e
n
c
e
s

100000 +

50000 +

Code characters present Code characters not present

Presence of Code Characters in GNOME/Ubuntu Sentences

Figure 4: Distribution of code characters in GNOME

English Sentence | Nepali Parallel Translation

Move %s onto %s. %s ny %s AT are

Base Card: ~a NT: ~

Add <dir> to the list of directories to search for source files ane ore aor sretactet qerar <dir> ery /

Enter <size>,<assoc>,<line_size>: wae TERT <size>,<assoc>, <line_size>:

Call __libc_freeres() at exit before checking for memory leaks amfeRar wae gelde one Tf STIS? Call __libc_freeres()

Figure 5: Examples of code character sentence pairs in GNOME

11

350000 4

300000 4

250000 4

200000 4

150000 +

N
u
m
b
e
r

of

Ne
pa
li

S
e
n
t
e
n
c
e
s

100000 4

50000 4

English characters present English characters not present

Presence of English Characters in GNOME/Ubuntu Nepali Sentences

Figure 6: Distribution of english characters in Nepali sentences in GNOME

 English Sentence | Nepali Parallel Translation

_Hint weed New" is for the menu item 'Game-> New’, implies "New Game

_New 7al_New Game

_Redo Move arerené Rs TehReset
Waste foundationslot hint

You should have received a copy of the GNU General Public License aarget %s Br AAT eT WERT AAHAP SoTAATTAPY Witenta

along with this program. If not, see . WT RPL BITE ME THAT, FE: Oo AHA WATS, Inc., 51
Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 47 44

Wslot type

Figure 7: Examples of non/semi-translated sentence pairs in GNOME

400000 4

300000 4

200000 4

N
u
m
b
e
r

of

En

gl
is

h
S
e
n
t
e
n
c
e
s

100000 +
Does not end in punctuation Ends in punctuation

Presence of Punctuation at end of GNOME/Ubuntu English Sentences

Figure 8: Distribution of punctuated English sentences in GNOME

 English Sentence Nepali Parallel Translation

Same suit Bor ye Tfery

Will O The Wisp Feet 3 & TAT
When without a stapler, a staple and a ruler will work TU THB) STAT ROUT F ERT BTA TF

Figure 9: Examples of low quality sentences and sentence fragments in GNOME

12

140000 +

120000 4

100000 4

80000 +

60000 4

N
u
m
b
e
r

of

S
e
n
t
e
n
c
e
s

40000 4

20000 + 04

12 3 4 5 6 7 8 9 10 11 12 13 14 15+

Number of Tokens in GNOME/Ubuntu English Sentence

Figure 10: Distribution of English sentence lengths in GNOME

13

