
Pseudocode to Code Translation Using Transformers

Stanford CS224N Custom Project

Nazli Ugur Koyluoglu, Kaan Ertas, Austin Brotman
Department of Computer Science

Stanford University
{nazli, kertas, abrotman}@stanford.edu

Abstract

Pseudocode to code translation is an open field of research, with work impacting
a variety of disciplines. We approach the problem by employing transformers for
the task of pseudocode-to-C++-code translation, and do a comparative study with
the earlier published results using LSTMs. We employ a pair of architectures,
tokenizers, and make use of pretrained English language models to boost training.
We also explore the impact of different types and amounts of context as input to
our models. Using functional correctness for performance evaluation as opposed to
traditional methods, our results match the performance of previous work closely,
and point towards additional benefit of context in line-by-line translations.

Our project mentor is Lauren Zhu.

1 Introduction

An important nuance in the field of machine translation is that different translation tasks contain
additional subtleties that need to be addressed by the model. Minor mistakes in translation can often
be overlooked in target languages with less structure and rigidity, as the user can still grasp the
semantic content of the sentence ("I going to the supermarket" will not trouble most native English
readers about the sentence’s semantic content). This is not the case for structured languages with
strict rules, where a misplaced (or missing) token can result in the failure of the entire translation. for
(int i=0; i<5; i++) is not equivalent tofor (int i=0; i<5; i+) in the eyes of a compiler.

Therefore, extra care must be taken in learning not only semantic content, but also precise syntax.

If we take English as the source language and a programming language as the target language, we
define a neural machine translation task that falls under the latter category. While the source language
is unstructured, the target language is highly structured; and for compiled languages, there is the
additional benchmark of whether a program compiles at all, let alone whether it succeeds at runtime.
Furthermore, the idea of coreference resolution (identifying all mentions that reference the same
entity) is extremely important for this domain, as variable names need to be preserved across lines in
the same scope so that the expected functionality is produced. The last hurdle is that not only do lines
have to be internally consistent, they have to be able to replicate the functionality that is desired of
the complete program.

This paper investigates pseudocode-to-code translation in the special case of English pseudocode
to C++ code translation. In an attempt to make the translation task more tractable, a natural way of
decomposing the problem is to consider line translations, and then build a program translation from
separate line translations. Admittedly, treating line translations as atomic and independent of other
lines ignores the problem of line incompatibility. The success of a line that increments a variable is
contingent on the success of the line that initialized the variable. However, this can be treated as a
search problem once we have multiple candidate translations for each line. In the interest of time, we
focus on the problem of line translations, and we define our research question as follows: Given a
line of pseudocode, can we produce a line of C++ code that is both compatible with the rest of the
program and can pass test cases on the program level?

Stanford CS224N Natural Language Processing with Deep Learning

2 Related Work

Kulal et al. have released the SPoC dataset, a human-annotated line-by-line pseudocode-to-C++
code translation dataset with program-level test cases[1]. They frame the translation task as a search
on two different levels: the line level and the program level. Line-level translations are performed
through an LSTM encoder-decoder with attention, beam search, and coverage vectors. Taking a
line of pseudocode as input, the model outputs a list of candidate translations produced by beam
search with their accompanying probabilities predicted by the model. Program level translations take
candidate translations for each line, and perform a search until either a certain budget is reached or a
succeeding program has been reached. The search is informed by compilation errors and test case
runs. Since the line that results in the compilation error is not always the first line in the program that
causes the issue, the authors employ different selection methods for the problematic line; while one
method involves the use of an additional LSTM for problematic line prediction, another iterates to
find the first prefix of the generated program that doesn’t compile and continues search from that
point.

The authors also introduce metrics of functional correctness, which deviates from the generally
employed metrics such as BLEU scores. Such metrics are all the more important for coding languages
as opposed to natural languages, since functional incorrectness in C++ will either lead to outright
compilation errors, or failed test cases. The authors highlight that another major challenge regarding
pseudocode to code translation involves translations that are correct on a line-by-line basis being
incompatible in a full program. This is emphasized by their success of 84-87% on individual lines
but only 24.6% on full programs when using direct translation.

The data from this paper will be more closely examined later, as this is the data we use for our
experiments.

3 Approach

3.1 Baseline Approaches

3.1.1 BERT-to-BERT Encoder-Decoder

We used the Huggingface API to build two encoder-decoder models with input defined as a line of
pseudocode and output as a line of c++ code [2]. The API allows for the specification of separate
encoder and decoder model configurations, and adds cross-attention weights along with a language
modeling head for the decoder. The success of BERT has been demonstrated in various downstream
tasks, and is widely used for many applications [3]. Using a model trained exclusively on English
datasets, on a C++ translation task follows the transfer learning success of neural machine translation
models in both zero-shot learning contexts and finetuning tasks, especially in the case where one
language is low resource [4][5][6].

For the first model, we used a pretrained, uncased BERT model as our encoder, with default BERT

input tokenization. For the decoder, we used a BERT decoder with a language modeling head, with
random weight initialization. We did not use a pretrained decoder for this problem, since we wanted
to experiment with custom C++ tokenization, as explored in Kulal et al[1]. The authors used a clang
parser to tokenize the C++ code, and released their tokenized data for the training, validation and
test sets. This allowed us to train a custom C++ tokenizer directly on tokenized training dataset. The
model was trained end to end on the SPoC dataset on the training split. This meant that effectively,
the encoder was finetuned while the decoder was trained directly on the supervised task.

For the second model, we used a pretrained, uncased BERT model as our encoder and as our decoder,

with default BERT input tokenization for both the input and output. We hypothesized that this would
allow us to employ the model’s learned representations for language structure, allowing us to finetune
on pseudocode (English) to code (C++) translation.

3.1.2 BART

We explore the use of a fully pretrained encoder-decoder model based on prior work establishing
performance improvements over LSTMs for sequence generation tasks [7]. To do so, we use the Hug-
gingface API [2] to access a BART base model (12-layer, 768-hidden, 16-heads, 139M parameters)

based on BART’s documented success on sequence generation and machine translation [8]. As a
baseline, we train a model to take one like of pseudocode as input and output the corresponding line
of pseudocode. For example, the input declare integer i would correctly output int i;.

Our use of this model serves dual purposes. First, it evaluates the performance of the Transformer
architecture on the task of pseudocode-to-code translation on a line level. We finetune our BART
model for the same task Kulal et al perform using an LSTM [1]. This allows us to isolate and quantify
the performance impact of the Transformer architecture. Given that work using Transformers for the
pseudocode-to-code translation has not, to the best of our knowledge, been reported, this result is
meaningful in its own right. Second, it serves as a baseline for modifications we propose.

3.2 Context Awareness

A key challenges facing program-level correctness in pseudocode-to-code translation is that two lines
of code that are functionally correct in isolation may be incorrect when paired together. This problem
is similar to that of long distance dependencies in general natural language processing work: correct
translation of an individual line may rely on context as far back as the beginning of the program. We
focus on an approach that makes use of the Transformer’s ability to model long range dependencies
better than LSTMs [9]. We examine the effect of providing additional context to the model during
training and testing.

Initially, we hoped to feed entire input programs to the model. This has a notable limitation: the
Transformer architecture places a limit on the limited number of positional embedings available to an
input. This prevents an arbitrarily long input length and prevents longer code examples. The limit was
exceeded by examples in our dataset and any practical application is likely to do the same. A second
consideration was that the compute required to train longer input lengths would have prevented
multiple trials. Finally, using the addition of our prefix to translate one pseudocode line to one C++
line allows us to compare our performance with our baseline.

To accomplish this, we format the problem as a general text-to-text problem based on prior success
of other models using general text-to-text formatting to translate one line at a time [10]. To translate
line 1; of pseudocode into candidate translation t, we use an input format providing a prefix of n lines
P1,--+3Pn followed by 1;. p1,..., Dn are preceded by a [PRE] token and concatenated with [ENDL]
tokens, and / is preceded by a [PRED] token. The [PRE] and [PRED] tokens follow a standard
format for text-to-text problems and the [ENDL] tokens preserve the meaning of line breaks, which
is significant in formats like pseudocode [10]. These tokens are added to the model’s vocabulary at
finetune time with randomly initialized weights. Based on this input the model predicts ¢ the C++
translation of /. The advantage of this format is that it allows us to compare prefixes of different
types and lengths to evaluate the effects of the type of prefix content used. The input format we use is
shown for a general prefix in Figure 2.

Before describing our input format approaches, we will note a limitation shared by both. Namely,
they rely on the preceding n lines of pseudocode will contain relevant information for translating
1;. This depends on the size of n and the content of /;_,,...,1;-1. It often occurs that a variable is

declared early on in the function’s scope, for example, and as a result is not available to the model for
consideration during prediction. The average program length in our data set being about 15 lines,
however, convinced us that this would be a meaningful amount of context with respect to our task [1].

3.2.1 Pseudocode Prefix

The first prefix type we consider is n lines of pseudocode. To translate line 1; of the pseudocode into
line t; of C++, we provide J;_»,...,1;-1 aS p1,---;Dn-

Our train, eval, and test datasets draw on the original SPoC datasets, drawing prefix lines p,,..., Dn,
from gold translations l;_,,,...,1;-1. 1; and g; are the same as our baseline.

3.2.2 Code Prefix

The second prefix type we consider is n lines of code. To translate line 1; of the code we provide
Ci—ny+++,Ci-1 AS P1,---,Dn- Ci-n,---,Ci—1 are the n lines of C++ code preceding the candidate

translation ¢;. Though a ; token is syntactically equivalent to our [ENDL] token, we maintain its use
for consistency.

declare integer n int n;

read n cin >> n;

set n to the product of n and c and create integer c = 2 int c = 2;
increment it by one .

for i from 0 to 5 exclusive for (int i=0; i<5; i++)

set n to the product of n and c and set n to the product of n and c and
increment it by one increment it by one

Prefix Pseudocode

Input

NMT Model

n=n*c#1;

Figure 1: Different input types visualized, with prefix length N=4.

 ~

[PRE] p; [ENDL] ... p, [ENDL] [PRED] declare inti Model inti;

Figure 2: Generic prefix format used to provide context for translation. p1,..., P» are lines 1 through
n of the prefix.

Our train, eval, and test datasets draw on the original SPoC datasets, drawing prefix lines p1,..., Dn
from gold translations g;_,,...,9;—1. 1; and g; are the same as our baseline. This is equivalent

to assuming that during the prediction of t;, ti_n,...,t;-1 have been correctly predicted. This
obviously diverges from the realistic case, in which even functionally correct lines may not match
the gold translation. We feel this is justified because meaningful information about the effects of
providing a code prefix is still retrievable from these trials. Seeing an additional benefit of including
code prefixes would point towards confirming the hypothesis that code context is relevant and useful
for making better line translations, and in the process mimics a more holistic approach to program
translation as opposed to isolated line translations.

4 Experiments

4.1 Data

We are using the SPoC pseudocode-to-C++ code dataset published by Kulal et al[1]. The code
portion of the dataset comprises of 18,356 C++ programs, scraped from the solutions to the easiest
competitive programming problems on codeforces.com. The programs are about 15 lines each on
average. The pseudocode was generated by 59 Amazon Mechanical Turk crowdworkers (workers
were tested on programming aptitude), and the pseudocode descriptions of programs are on a line-by-
line basis, meaning that each line in the pseudocode has a corresponding line of code. Furthermore,
the dataset allows for automated checking for functional correctness by providing an average of 39
test cases per program, again scraped from codeforces.com. There were two different test splits. Each
line is provided with the indentations and the scope brackets removed. This allows the model to learn
translations on a line-by-line basis without having to worry about scope issues. There were ~216,000
lines in the entire dataset. The split was approximately 85-9-6% for training-val-test, and the authors
provided two different splits of the data. The first was split on the problem level, to ensure the model
had not seen a version of the program solution in the training set. The second split was on the worker
level, which meant that some solution to 27% of programs were present in both the training and test
sets.

Our tests use the split by worker, as this was the more challenging of the two for an LSTM. For all tests,
we preprocess C++ lines using a clang-based tokenizer. For example, the line “arr. push_back(5) ;"
would appear as “arr . push_back (5) ;". We further preprocess the dataset such that each

example is trained in accordance with the generic input format we specify (Figure 2) and the specifics
outlined in 3.2. If fewer lines are available than the n lines specified by a model’s prefix format, we
use all previously available.

4.2 Evaluation method

The SPoC dataset includes test cases. Comparing the outputs of the candidates generated by our model
with these expected outputs, which evaluates functional correctness, is the basis of our evaluation
metric.

Call a pseudocode program p and its gold translation g. Call the prediction set of cardinality K
for p; (top K candidate translations for p,) C;(’). We first define the "Line Oracle" test at rank K:

Candidate set Ci(’) passes the Line Oracle test if at least one member of C;(/) may be substituted
for g; without loss of correctness on provided test cases on the program level. This metric is calculated
on a line level. We also define the "Program Oracle" test at rank K. A program p passes the "Program
Oracle" test at rank K if for each line g;, when we substitute it with some member of C7 (A) (and keep
the rest of g intact), the program passes all test cases. This metric is calculated on a program level, and
effectively tests if the Line Oracle at rank K passes for all lines in the program. These metrics, also
used by Kulal et al. are better than the BLEU score frequently used for machine translation because,
assuming the pseudocode is a valid solution, a semantically correct translation from pseudocode
to code will produce a program that passes the provided test cases[1]. Of note, success rate on the
Program Oracle metric indicates the number of programs for which success would be theoretically
possible if the outputs were used for a search based method with a the top candidates for each line.

Our goal in translating a line is to maximize the joint probability of the token sequence. Denot-
ing a candidate translation by (¢1, t2,..tn,), where t; is a token, the probability we maximize is

p(t1, te..tr;@) where model parameters are denoted as 6. The decomposition of the probability into
I], p(tilt<i; @) allows us to decode token by token. In order to avoid a greedy decoding method, we
utilized beam search with beam size of 100 for our test predictions. We then report the 100 candidate
translations represented by the beams, in the order of their probabilities assigned by the model.

4.3 Experimental details

4.3.1 BERT Models

The BERT-to-BERT encoder decoder models were trained with stochastic gradient descent on 35,000
lines (approximately 315,000 tokens), which took about 8 hours each on a single GPU on Microsoft
Azure. Both models use default training parameters provided by Huggingface were used for both
experiments unless otherwise noted, with an initial learning rate of 5 - 10~° and an Adam optimizer
with 8 parameters of (0.9,0.999). Furthermore, we used a linear warmup (of 2000 examples) to the

initial learning rate so as to avoid early over-fitting.

4.3.2 BART Models

For every trial using a BART encoder-decoder, we maintained an identical set of initial conditions
and hyperparameters. We recognize that additional hyperparameter tuning may have resulted in more
accurate final models, but we chose to forgo this tuning in favor of analyzing the effects of our input
formats.

We used the pretrained bart-base model (12-layer, 768-hidden, 16-heads, 139M parameters)
available as a PretrainedEncoderDecoder from the Huggingface API. We used default training
parameters provided by Huggingface were used for both experiments unless otherwise noted, with an
initial learning rate of 5 - 10~° and an Adam optimizer with @ parameters of (0.9,0.999). Each of our
trials trained for 6 epochs with a batch size of 40 over 181,990 examples for a maximum of 27300
optimization steps. We evaluated every 3000 steps on our full evaluation set and allowed for early
stopping if 3 evaluations end without improvement over the best eval loss. We save a checkpoint with
each evaluation, totaling a maximum of 5 checkpoints. Training was preformed using a Microsoft
Azure NC12_Promo VM with two Nvidia Tesla K80 GPUs. Finetuning was preformed using a
modified script originally based on a Huggingface training example !.

"https://github.com/huggingface/transformers/tree/master/examples/seq2seq

(a) Number of lines in a program where the top candi- —_(b) Number of lines in a program where no candidate

date is incorrect, i.e. C;(1) fails is correct, i.e. Cy(100) fails.

Baseline 4 o 1 2 3 a+ Baseline 4 0 1 Zee 4+

Pseudo Prefix | 0 1 2 5 4+ Pseudo Prefix | 0 7 Be 4+
=5) =5)

Pseudo Prefix | 0 1 2 3 4+ Pseudo Prefix | 0 7 2 344

(N = 10) (N = 10)
Code Prefix | 0 1 2 3 4+ Code Prefix | 0 1 2 344

(N= 5) (N= 5)

0 20 40 60 80 100 0 20 40 60 80 100

% of programs % of programs

Figure 3: Line Oracle test results per program in percentage of number of programs for the Baseline,
Pseudocode Prefix, and Code Prefix fine-tuned BART models with with beam size 100.

0.95

2 © S

—— Code Prefix (N = 5), %total lines

--- Code Prefix (N = 5), %successful lines —— Code Prefix (N = 5), %total lines

Su
cc

es
s

in
To
p k

Li
ne
s

° & &

Su
cc

es
s

in
To
p

k
Li
ne

s

0.85 --- Code Prefix (N = 5), %successful lines —— Pseudo Prefix (N = 10), %total lines

—— Pseudo Prefix (N = 10), %total lines ~-> Pseudo Prefix (N = 10), %successful lines
=== Pseudo Prefix (N = 10), %successful lines — Pseudo Prefix (N = 5), %total lines

0.80 e
wan — Pseudo Prefix (N = 5), %total lines --- Pseudo Prefix (N = 5), %successful lines

. --- Pseudo Prefix (N = 5), %successful lines — Baseline, %total lines
— Baseline, %total lines ~~~ Baseline, %successful lines

--- Baseline, %successful lines 0.75

0.75 10° 10! 10?
20 40 60 80 100

Line Rank k
Line Rank k

(b) Cumulative success in Ci(4) (top k lines) on
(a) Cumulative success in C7i(k) (top k lines) a loparithmicscale

Figure 4: Line Oracle test results demonstrating cumulative success in C;(’) (top K lines), ratio of
all lines and in percentage of lines with a successful candidate in C;(100), reported for the Baseline,
Pseudocode Prefix, and Code Prefix fine-tuned BART models with beam size 100.

Across our experiments, we vary our input prefix type and length. Our baseline is our BART model
finetuned with no prefix. Using our pseudocode-prefix and code-prefix input formats, we train with
n = 5 for both formats and n = 10 for prefix pseudocode. The actual training time varied by
maximum input length from approximately 8 hours on our baseline with a 96 token maximum input
length to approximately 24 hours form = 10 with a maximum input length of 500 tokens. In practice,
only the baseline model made use of the early stopping. After finetuning, we select the best model
from the available checkpoints for each trial and preform predictions over our test set using beam size
100 and output the top 100 predictions for each line of pseudocode in keeping with the procedure
outlined by Kulal et al. [1].

4.4 Results

4.4.1 BERT-to-BERT Encoder-Decoder

Neither of the models were able to produce syntactically correct code translations, and no functional
correctness metrics were run on these models. This performance can be attributed to two factors.
First, since the cross-attention weights are randomly initialized, it is difficult for the model to learn
the cross-linguistic dependencies such as variable names that are persistent across the two languages.
Second, the models had ~230M parameters, requiring considerable training on a task in other to
generate meaningful results; this was not possible under the time constraints. The model with the
untrained decoder had the additional complication that its decoder was not pretrained on any language
modeling task, making it significantly more difficult to learn language representations on a small
dataset and little training.

Pseudo _— Pseudo Code Pseudo _— Pseudo Code

Rank=K Baseline Prefix Prefix Prefix SPoC* Rank=K __ Baseline Prefix Prefix Prefix SPoC*

N=5 N=10 N=5 N=5 N=10 N=5

1 84.8 79.7 86.1 86.7 84.0 1 23.1 17.1 25.7 26.7 18.2

5 89.8 87.1 90.3 90.7 89.1 5 37.8 29.0 40.1 40.3 N/A

10 90.9 88.7 91.6 91.8 90.0 10 43.6 35.0 45.7 46.0 N/A

100 93.5 92.9 94.1 94.2 92.0 100 55.8 52:5 58.7 60.4 55.2

(a) Line Oracle success (%) at ranks 1, 5, 10, and (b) Program Oracle success (%) at ranks 1, 5, 10,

100, demonstrating the percentage of all lines where and 100, demonstrating the percentage of all pro-

there is a successful candidate in C;(’) (top k can- grams where there is a successful candidate in
didates) C,(K) for each line of the program

Table 1: Line and Program Oracle test results for the Baseline, Pseudocode Prefix, and Code Prefix

fine-tuned BART models with beam size 100. *sPoC results displayed for comparison

4.5 BART

As can be seen in Table 1(a) our baseline achieves a success rate of 84.8% on our Line Oracle

success metric and success rate of 55.8% on our Program Oracle success metric. These are modest
improvements over the 84.0% and 55.2% achieved by the LSTM model used in Kulal et al[1].

4.5.1 Pseudocode Prefix

5 Lines We find that finetuning with a pseudocode prefix of length 5 decreases preformance on all
metrics relative to our baseline. Rank 1 Line Oracle falls to 79.9%. Our Line Oracle metric is 52.5%.
Rank 100 is 92.9%, however, which remains an improvement over SPoC’s 92.0% [1]. These results

show lower accuracy than we expected, possibly because a prefix of length 5 did not offer enough
useful information and instead confused the model’s predictions.

10 Lines Providing a prefix of 10 pseudocode lines improves significantly over 5 lines. Rank | Line
Oracle is 86.1%, rank 1 program oracle is 25.7%. Our rank 100 results for these two metrics are
94.1% and 58.7% respectively. Across all measured metrics (see Table 1), this approach outperforms
the SPoC LSTM and our baseline [1]. Additionally, it offers significant improvement over the
same approach using a shorter prefix, supporting our hypothesis that providing additional context to
aid translation improves performance. Notably, it increases the percentage pf potentially solvable
programs in the test set from 55.2% to 58.7% by providing a correct translation in the top 100
candidates for each line in those programs.

4.5.2 Code Prefix

5 Lines Using a prefix consisting of 5 preceding lines of code outperformed our baseline and
pseudocode prefix approach of either length. Rank | Line Oracle is 86.7%, rank 1 program oracle is
26.7%. Rank 100 results for these two metrics are 94.2% and 60.4% respectively. This was achieved
despite having fewer lines of contextual information that our trial using 10 lines of prefix pseudocode.
Accounting for the simplifying assumption that preceding output lines are correct, these results
support the conclusion that the content of contextual information plays a large role in the model’s
ability to make use of it for prediction. Furthermore, it indicates that knowledge of preceding code is
more useful for predicting the correct translation than preceding pseudocode. More generally, the
content of contextual information has a larger affect than the amount. Intuitively, this makes sense
because the model has access to the syntax it must match to produce a functional line in addition to
the functional goal.

5 Analysis

Qualititive Output Analysis The model output errors often made small and relatively understandable
bugs, outputting lines that seem syntactically correct like if (a [q] == 1) b [count ++
] =a [—Q- 41] ; . Inthe correct version, in the correct version, Q should be lowercase and

count should be pre-decremented. Outputs that often produce functionally equivalent code include
omissions of brackets in single line if statements and for loops.

Baseline

Pseudo Prefix (N = 5)

Pseudo Prefix (N = 10)
0.8 4

Code Prefix (N = 5)

Pr
og

ra
m

Su
cc
es
s

in
To
p

10
0

Li
ne

s

0 5 10 15 20 25 30 35 40 45 50 55 60

Number of Lines in Program

Figure 5: Program Oracle test results demonstrating the ratio of programs within a given length range
where there is a successful candidate in C;(100) (top 100 candidates) for each line of the program,
reported for the Baseline, Pseudocode Prefix, and Code Prefix fine-tuned BART models with beam
size 100.

Figure 4(b) shows that there could be a linear relationship between log(K’) and the success percentage
at rank K. This has an intuitive interpretation in the size of the prediction set: There are diminishing
returns in the additional benefit of including another prediction in the candidate set, and the returns
are inverse proportional to the set size. The additional benefit of going from candidate set size 1 to 10
is approximately equivalent to the added benefit of going from candidate set size 10 to 100. There is
a progressively smaller marginal return for additional candidates using more or higher quality prefix
information. This indicates the additional information allows the model to more accurately evaluate
the relative correctness of the candidates it produces.

Figure 5 shows a relationship between the amount of context provided (in terms of number of prefix
lines) and the relative correctness of the different models on different program lengths. The similarity
of performance on small program lengths is expected since the small number of available prefix lines
prevents context-enhanced models to take full advantage for much of the program. The advantages
of context-aware models are largest between in the 10-20 line range, indicating context is generally
most helpful when it captures a large portion of the program.

6 Conclusion

The task of pseudocode to code translation introduces new challenges in addition to those presented by
natural language translation, and creates new avenues for experimentation. The requirement of syntac-
tic correctness and cross-line dependencies in the translations opens the possibility of experimenting
with different tokenizers, along with providing more demanding and robust performance metrics.
Following in a similar framework to Kulal et al’s work, we were able to match the performance com-
pared to an LSTM on similar metrics[1]. Different input types had varying impacts on performance,
with 5 lines of prefix code performing best but 10 lines of pseudocode prefix performing comparably.
In particular, while code-prefix input is not feasible from an entire-program generation perspective, its
success supports the intuition that cross-line dependencies can be picked up and utilized by a model
for more accurate translations. Based on improvements to the number of programs theoretically
solveable by search methods (measured by Program Oracle) indicate transformers, especially with
prefix based context, can positively contribute to program synthesis. Other avenues for beneficial
future work include prediction using previously generated candidates as code prefix lines, trials
investigating longer prefixes, and investigations of the effectiveness of pretraining on C++ code for
the purposes of code translation.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina Lee, Oded Padon, Alex Aiken, and

Percy Liang. Spoc: Search-based pseudocode to code. CoRR, abs/1906.04908, 2019.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony

Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, and Jamie Brew. Huggingface’s

transformers: State-of-the-art natural language processing. CoRR, abs/1910.03771, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim Krikun, Yonghui Wu, Zhifeng Chen,

Nikhil Thorat, Fernanda B. Viégas, Martin Wattenberg, Greg Corrado, Macduff Hughes, and

Jeffrey Dean. Google’s multilingual neural machine translation system: Enabling zero-shot
translation. CoRR, abs/1611.04558, 2016.

Alexandra Chronopoulou, Dario Stojanovski, and A. Fraser. Reusing a pretrained language
model on languages with limited corpora for unsupervised nmt. ArXiv, abs/2009.07610, 2020.

Shiyue Zhang, Benjamin Frey, and Mohit Bansal. Chren: Cherokee-english machine translation
for endangered language revitalization, 2020.

Sascha Rothe, Shashi Narayan, and Aliaksei Severyn. Leveraging pre-trained checkpoints for
sequence generation tasks. CoRR, abs/1907.12461, 2019.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer

Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART: denoising sequence-to-sequence pre-
training for natural language generation, translation, and comprehension. CoRR, abs/1910.13461,
2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,

Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,

Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. CoRR, abs/1910.10683, 2019.

