
CloneBot: Personalized Dialogue-Response
Predictions

March 22, 2021

Tyler Weitzman
Department of Computer Science

Department of Mathematics
Stanford University

tylerw@cs.stanford.edu

Hoon Pyo (Tim) Jeon
Graduate School of Business

Stanford University
hpjeon@stanford.edu

Abstract

Our project task was to create a model that, given a speaker ID, chat history, and
an utterance query, can predict the response utterance in a conversation. The
model is personalized for each speaker. This task can be a useful tool for building
speech bots that talk in a human-like manner in a live conversation. Further, we
succeeded at using dense-vector encoding clustering to be able to retrieve relevant
historical dialogue context, a useful strategy for overcoming the input limitations
of neural-based models when predictions require longer-term references from the
dialogue history. In this paper, we have implemented a state-of-the-art model using
pre-training and fine-tuning techniques built on transformer architecture and multi-
headed attention blocks for the Switchboard corpus. We also show how efficient
vector clustering algorithms can be used for real-time utterance predictions that
require no training and therefore work on offline and encrypted message histories.

• Mentor: Dilara Soylu, CS224N 2021 TA
• Custom project: Tyler is sharing this project between CS224S and CS224N.

1 Introduction

We introduce CloneBot, a set of deep-learning based algorithms for building dialogue-response
models capable of adopting a real human’s persona and identity in a conversation.

Recent advances in text to speech synthesis have made it possible to clone a human speaker’s voice
given a sample of just a few seconds of audio[4]. This breakthrough in speech synthesis begs the
question: What would it take to build an underlying NLG dialogue-response system to generate
the textual utterances this speaker might actually say? A speaker, for this problem, is characterized
by the language they speak, the phrases they commonly use, the factual knowledge they possess
about themselves and about others, and their standard reactions to various common statements and
questions (do they say I love you back?). The latter trait is of course dependent on whom they are
speaking to, and so part of CloneBot’s job is to further account for the cross-pair interactions between
speakers, or, in the case of a group conversation, to account for all speakers involved.

This task is of importance because user-personalized NLG models are able to provide significant
productivity increases to the end-users of any communication platform. Gmail’s Smart Compose
feature, for example, which autocompletes word suggestions during email composition, reportedly
saves Gmail users from typing over 1 billion characters each week[1]. CloneBot’s primary application
is not to autonomously replace a speaker, but rather, to predict entire utterances that a user could
choose to send either edited or unedited. However, an autonomous conversation with CloneBot is a
great tool for testing its abilities. Unlike Gmail Smart Compose, CloneBot is trained on utterances
rather than on email, and, with the growing trend of both messaging and voice applications, including
Clubhouse, Discord, Speechify, and Sonic.app, it is presumable that a user’s end-to-end response

Stanford CS224N Natural Language Processing with Deep Learning

(including voice synthesis) could be entirely automated with CloneBot when its predictions are
accurate.

Building a system like CloneBot is inherently difficult because the hypothetical one hundred percent
accuracy model would require being able to exactly predict how the real user would respond. However,
users may respond differently depending on the time they have available, their mood, and other
random factors, not to mention that the data available to CloneBot is always going to be limited.
In fact, access to good data is a primary challenge in building a system like CloneBot. CloneBot
requires a far vaster amount of data and knowledge on the speaker than a few seconds of audio.
Moreover, CloneBot regularly needs new data in order to be able to predict utterances by the present
speaker (rather than predicting what or how they may have said it a year ago). The largest such
datasets available about most users is their historical, stored communication from apps like Gmail,
iMessage, WhatsApp, etc. This data is incredibly sensitive, private, and, in many cases, encrypted.
The best version of CloneBot would work offline on the user’s device, such that there is no need to
expose private data to a centralized server. Doing so is challenging due to (1) lack of access to proper
machine learning GPU hardware on consumer devices (2) limited storage space (3) the question of
how to integrate, or transfer, all the stored knowledge into the bot. CloneBot improves on Gmail’s
Smart Compose predictions in that the personalization piece of Gmail’s Compose is a basic n-gram
language model which gets combined in a weighted average with their neural-based language model
[1]. While such a model is trivial to train, it does not integrate or memorize knowledge well, nor does
it generally benefit from all the benefits provided by deep-learning transformer architecture and by
large pre-trained models.

The current state of the art for a chat bot holding a consistent personality is TransferTransfo[9], a chat
bot trained on Facebook’s PersonaChat dataset where each speaker is defined by a few sentences
such as "I have a dog. I have four children." CloneBot expands the challenge to personifying a chat
bot based on real user data, and based on a far vaster amount of it, without relying on a manually
labeled data-set like PersonaChat. Moreover, CloneBot’s ideal version also has the ability to train on
a user’s consumer device, a feat that we explore achieving through dense-vector clustering on a CPU.

Our approach for this paper was primarily experimentation. Our aim was to experiment heavily with
various datasets, various pre-trained models, and various techniques and libraries, to learn what is
possible and with what efficiency. We propose several methods we’ve used for achieving CloneBot
functionality, along with their results, pros and cons observed, as well as our ideas for future research
direction and experiments.

In total, we ran experiments across eight subsets of four datasets. Of these four datasets, three were
private datasets, entirely collected for this paper. The authors used their own messaging history
from iMessage, KakaoTalk, and Sonic.app to collect these datasets. Additionally, three different
large pre-trained models were used across these experiments (DialoGPT, KoGPT, BERT), each
pre-trained on separate datasets. Two different efficient similarity search and clustering of dense
vectors algorithm libraries were used (faiss, nmslib) for CloneBot solutions that did not require any
GPU training. The CloneBots built in this paper were trained and tested in both English and in
Korean.

Each of the approaches had their own benefits and limitations: Some for example, required GPU-
training and a preset dataset of speaker conversations, while others relied on inference and on dense
vector clustering alone.

2 Related Works

DialoGPT [11] is a large-scale pretrained dialogue response generation model for multiturn conversa-
tions. It’s built on the same architecture as GPT-2, using transformer architecture with multi-headed
attention blocks. It’s trained on 147M Reddit conversations, so its domain is public Reddit chats. It is
quite relevant for us because unlike traditional GPT, in order to capture the nature of conversations, it
is trained specifically on pairs or sessions of statements: "the joint distribution of P(Target, Source)"
[11], using end of string tokens to separate each statement. Therefore, it is the primary model we
chose to fine-tune for most of our experiments.

Meanwhile, the EmpTransfo [10] and TransferTransfo [9] papers explore methods for creating more
personable dialogue systems, which is highly relevant. Both use multi-headed outputs, with one

2

head for language modeling and another for multi-classification. EmpTransfo’s classifier predicts
emotions associated with messages, and TransferTransfo predicts which among 17 possible candidate
responses is the gold truth reply. Furthermore, in EmpTransfo input embeddings are created for
each category of words, emotions, actions, and these embedded vectors are added together to form
the input. Likewise in TransferTransfo, input embeddings are created to represent "dialog state
embedding" of which speaker is talking, which we think is the most relevant for this paper as we are
trying to better distinguish and personalize between speakers. We did adopt the input layer embedding
architecture in this paper, however we were limited in our ability to adopt the multi-headed approach,
however, since this technique requires supervised labeled features for the inputs of either emotion or
distractors, as described in these papers, and we used our own private messaging data rather than
pre-labeled sets.

TransferTransfo [9] [3] introduced the state of the art model for training on the PersonaChat dataset
using their dialog state emeddings, and we had high hopes for this technique in distinguishing between
more than two speakers. Also, the primary finding in TransferTransfo was that GPT works quite well
for dialogue-response using fine-tuning, and we are excited to be one of the first to use this model to
fine-tune the Switchboard corpus, detailed later in the paper.

3 Approach

Our approaches can be divided roughly into three categories below.

3.1 Fine-tuning less data between fewer speakers

Our initial experiments approached the problem by fine-tuning DialoGPT/KoGPT for English and
Korean respectively on input sequences of utterances, personalizing for the speaker solely based
on the data exposed during training. For example, by exposing DialoGPT only to a conversation
between Tyler and his brother, we are able to fine-tune the model to predict dialogue between these
two speakers quite well.

Since DialoGPT is predicting every token based on all previously generated tokens, we condition
it by teacher forcing, starting predictions with a prefix input that provides the context for what it
is predicting. Our prefixed input is formatted as follows: {sn, < EOS >, ..., s7, < EOS >, s6, <
EOS >, ..., s1, < EOS >} where si is the speech utterance spoken in the conversation i turns
ago, and we are next predicting s0. EOS is an end-of-string token. Every si is further encoded into
subwords by our tokenizer so that s1 = {w1, w2, ..., w|subwords|}. Since GPT does not simply use
whole word embeddings, we can teach the model where to place punctuation as well as words, which
is especially important so that a speech synthesis layer could then speak the utterance with realistic
human-like pauses (as opposed to just grammatically correct pauses) if we later chose to add a speech
synthesis layer following word sampler decoding. Note that the value of n represents the max number
of recent utterances to include in each input. It is the max number not only because some inputs begin
the conversation, but also because we may not always fit as much history as we’d like depending on
the length of the messages, as we are limited by the 1024 max token sequence length of DialoGPT’s
input transformer.

3.2 Fine-tuning lots of data between many speakers

In this approach, instead of fine-tuning each pair of speakers with their own separate dataset and
model, we fine-tune the model on the entire set of conversations between all speakers, including
even group conversations with multiple speakers, and try to help our model to learn to distinguish
between each person. We performed experiments with three different such architectures: In the
first architecture, we included which speaker is next to respond in the initial position of the input as
an encoded string: {speakerID, sn, < EOS >, ..., s1, < EOS >} . In the second approach, we
included the associated speaker id for each si before si:

{speakerIDn, sn, < EOS >, speakerIDn−1, sn−1, < EOS >, ..., speakerID1, < EOS >}

And in the final approach, we expanded upon the idea introduced in TransferTransfo [9] wherein new
"dialog state embeddings" are created in the input level to be summed with the position and subword
embeddings. Instead of creating just two new special tokens for <speaker1> and <speaker2> as in

3

their source code, we instead create a new special token and speaker embedding for each individual
person that appears in our dataset. We then set the inputs to

{< speakerIDn >, sn, < EOS >,< speakerIDn−1 >, sn−1, < EOS >, ..., < speakerID1 >,< EOS >}

where each speakerID is now a new token with its own embedding, and we create a new token
type layer identifying each input embedding to the speaker token embedding it is associated with, as
shown in the figure 1 in the Appendix.

3.3 Dense vector clustering only

In this third category, inspired by a recent paper on Dense Passage Retrieval for Open-Domain
Question Answering [5], we do not use GPT or fine-tuning techniques at all. Instead, we use BERT-
based SentenceTransformers to encode vectors of past messages. Then we use these stored vectors
to compute the semantic similarity between a query utterance and the sentence that is semantically
the closest to the query sentence. To be specific, let q be a query sentence, BERT (q) the encoding
output from a pre-trained BERT model, and knn(q) the sentence in the chat history that is the closest
in meaning to the context to q. Our idea is that we can think of knn(q) as a reference to q, since we
are trying to predict the next utterance prediction for q, we therefore simply return the associated
utterance value following knn(q). There are two caveats in this approach: (1) knn(q) 6= q because
we do not know the gold truth response yet (this is entirely unsupervised even during training). (2)
Our knn(q, targetSpeakerID) method actually takes the target speaker as a parameter. Since we
are trying to clone targetSpeakerID, we only want to return answers that have been said in the
past by targetSpeakerID, not by somebody else. Note then that targetSpeakerID is actually
associated with the value that is associated with the k-nearest context (see figure 2 in the Appendix).
This is our own contribution.

4 Experiments

4.1 Data

We conducted experiments with four very different datasets that address various aspects of real-world
human dialogue in the wild. We describe each dataset below. Some datasets were broken down
further into subsets.

4.1.1 Switchboard Dialog Act (SwDA) Corpus

The first dataset we used to start our experiments was the Switchboard Dialog Act (SwDA) Corpus[2]
containing 260 hours of 2,400 two-sided telephone conversations among 543 speakers. Although
this dataset was originally collected to develop audio processing technology, it provides high-quality
transcripts that were put together by expert transcribers, which we leverage for utterance prediction.
We used metadata provided to divide utterances between speakers in order to personalize them. We
used the subsets SwDA-1047 and SwDA-1043 which were the two longest conversations in the
corpus.[8] 3 in the Appendix.

4.1.2 Personal Chat History Data from KakaoTalk (Korean)

The second dataset we used was Tim’s personal chat history data collected on KakaoTalk to compare
performances across multilingual context, in this case English and Korean. One of the challenges
was determining how to properly separate out Korean text from the dialogue as the chat contained
both Korean and English. The resulting dataset contains 1,152 two-sided utterances with average
length of 18.6 Korean characters. One challenge we faced while working on personal chat histories
was that of privacy; although there is no issue in using our own chat history for the purpose of this
paper, we note that large-scale training of private data could lead to unexpected privacy issues. A
sample of the dataset can be found in figure 4 in the Appendix.

4.1.3 Personal Chat History Data from iMessage (English)

The third dataset we used was Tyler’s personal chat history collected on iMessage. Tyler extracted
all 195,331 text utterances across six years of iMessage communication. Importantly, Tyler was

4

successful to extract not only the text content, but also the metadata associated with each message
including which phone number sent it, when it was sent, and what chat id it belonged to (many
numbers overlapped across multiple chats due to group conversations).

This data set was re-processed several times across various experiments with different filters and
configurations. We divided it into the subsets shown in table 1 in the Appendix. In some cases we
collapsed repeat messages, meaning if someone sends "Hey" and then "How’s it going?" for example,
this collapses to the single utterance "Hey? How’s it going?" We split the test set chronologically
ordered by message date so as not to remove test messages in the middle of the conversation. We also
ensured that every speaker in the test set was represented in the train set.

In total there were 2, 601 phone numbers, or speakers, represented in this dataset. A sample of the
dataset can be found in figure 5 in the Appendix.

4.1.4 Personal Chat History between Tim and Tyler on Sonic

Throughout the research of this paper the authors of this paper collaborated in communication using
the Sonic app beta, founded by Tyler. We did in fact end up using our own messages to each other on
Sonic to train some of the models we experimented with.

4.2 Evaluation method

We started with our human eye to review coherence and structure of outputs, building unit test queries
that we could feed into the model automatically and inspect. We used perplexity for automated
evaluation. While we used perplexity as our primary automated metric for our GPT models based on
loss, we used the BLEU scoring metric as automated evaluation for our dense vector clustering bot
[7].

Finally, in order to push the bot to its limits on new human input, we built an iMessage bot that let our
model directly interact with a dozen real people via iMessage. Running on Tyler’s Macbook pro, a
node.js listener was built to hook into the private iMessage system files to read incoming messages in
real-time, parse them, send them on to a python3 instance, and finally passes the decoded logits from
the model back via an apple script to reply in iMessage. Our bot kept track of as much contextual
history as our model could handle and successfully referenced several messages back in ongoing
chats.

4.3 Experimental details

4.3.1 Fine-Tuning on Pre-Trained DialoGPT-Small

Fine-tuning the smallest version of DialoGPT on the longest Switchboard conversation took 15-20
minutes on a single K80 GPU. Similar time was needed for other single speaker-pair conversations.
Fine-tuning the larger iMessage dataset with roughly 77,000 messages took two hours per epoch
on two Tesla V100 GPUs. We used an Adam optimizer with a learning rate of 5e-5, no weight
decay, an Adam epsilon of 1e-8, and a block size of 512. Finally, we decode by sampling with
topp = 0.7, temperature = 0.8, which has a more human feel than beam search decoding.

4.3.2 Fine-Tuning on Pre-Trained KoGPT2 for Korean chats

We used KoGPT2[6], a large-scale model pre-trained on 20GB of Korean text data by SK Telecom
(AT&T of Korea). The model architecture is the same as the smallest version of GPT-2 (117MB).
We adopted a similar methodology as in our fine-tuning with DialoGPT; it was interesting to see
that the model pipeline is robust even for such a drastic language change from English to Korean,
which is one of the most distant language pairs. We note that KoGPT2 was only partially trained on
conversational data, a point which we revisit in the results section. We used the pre-trained tokenizer
from the model, an Adam optimizer with a linear warmup learning rate scheduler, no weight decay,
an Adam epsilon of 1e-8, and a block size of 512. We trained the model for a total of 3 epochs with a
batch size of 4. For sampling, we use: topk = 70, topp = 0.5, temp = 1.2, which are the suggested
‘medium-level’ parameters from Hugging Face’s Conversational AI demo.

5

4.3.3 Using FAISS (and NMSLIB) for Sentence Similarity

In order to implement the dense vector clustering bot, we used BERT-based SentenceTransformers
in order to map sentences to their respective sentence vectors. The dimension for the sentence
embeddings was set to be 1024. For English we used ‘paraphrase-distilroberta-base-v1’ For Korean
language we used ‘xlm-r-large-en-ko-nli-ststb’ which achieved Korean semantic textual similarity
(STS) SOTA benchmark of 84.05. After applying this mapping, we used FAISS for fast vector
computation to get distances. We also tried NMSLIB library and found that it also could work well
for our purposes. The two distance metrics used were L2-norm and cosine similarity using dot
product (which requires vector scaling to get norm of 1).

4.4 Results

4.4.1 Model-Generated Text

We first present some examples of the machine-generated text that our models outputted for each of
the datasets we experimented with. We show interactions for the first 5-6 conversations where we
mix up both questions and statements to feed to each model and examine their robustness. Please
refer to figures 5, 6 and 7 in the Appendix.

4.4.2 Evaluation: Human-Centric Metrics

Both English and Korean speakers who reviewed output texts agreed that although not perfect, these
messages were highly credible to pass as written by actual human beings. Since Tyler’s iMessage bot
was always responding, we got feedback like "I don’t know if this is you or the bot now" or "Thanks
Tyler Bot :)" or, a few times, they didn’t realize it was a bot at all until we told them. The models did
surprisingly well in capturing the context of the conversation and in adopting the style of speech used
by the speakers in the dataset.

There were a few experiments that failed, however. When Tyler started using GPT CloneBot for his
friends to talk to themselves (i.e setting the targetSpeakerID to them rather than to Tyler), the bot
gave answers that were clearly not representative of how they talked. While the FAISS-based bot
correctly gave answers that were only associated with the targetSpeaker, it was clear that the GPT
architecture used was not successful at this task. First, most messages regardless of the targetSpeaker
were over-representative of Tyler, who was the majority, over-represented speaker in the dataset.
Second, in the model that had a special token layer for each speaker, while Tyler clearly did start
becoming less represented, the model would still sometimes output things like "Your verification code
for TikTok is 138834" even when predicting a message that was supposed to come from someone
other than TikTok. However, it was quite clear that the model not only memorized quite a bit, but it
did learn the structure of a conversation: Even when we did not prefix inputs for generation with a
particular speaker, it would gravitate towards picking 2 real phone numbers and switching back and
forth between utterances from each of them, adding the prefix for their speakerID tokens by itself.

The GPT models fine-tuned on a small dataset were quite successful, in comparison, to mimick
particular speakers, because they had majority representation of those speakers.

4.4.3 Evaluation: Automatic Metrics

We present a summary table of perplexity scores achieved by different models that we experimented
with. We show scores for two subsets of the SwDA corpus (namely SwDA-1043 and SwDA-1074,
which are the two longest conversations in the corpus) and KakaoTalk. We tried using varying context
lengths in order to see how model performance changes with how much context information the
model is aware of. Please refer to tables 3, 4, 5, 6 for detailed figures.

Our dense vector clustering bot, which was evaluated on BLEU, scored 0.37 of 1, which was a
remarkable score given that this takes essentially no GPU training. It was incredibly fast. And, it
was the only model that successfully sounded like any targetSpeaker we gave with just one run (as
opposed to having to fine-tune a different model per speaker). We found that NMSLIB ran inference
faster but FAISS can create an index faster; ultimately FAISS was faster since we had to make a
separate index for each target speaker. We also created a parallel text dataset now using this bot,
which could be used in a future paper to build a hybrid FAISS + GPT model.

6

Our test perplexity scores were quite better than expected on Switchboard conversations. With a best
test perplexity of 23.05 this is a very strong score, and the model-generated utterances back it up. As
far as we are aware, there has been little done with applying pre-trained models to a spoken utterance
set like Switchboard, and this paper may have set a baseline to do so.

The iMessage and KaKao perplexity scores performed somewhat poorly in perplexity in comparison.
We think this is because they are higher-entropy. While Switchboard participants were asked to talk
with each other about a specific topic, our personal iMessage and Kakao Talk history bounce all
over the place. One text we’re talking about one topic and another we switch to something else. Our
model did in fact learn to randomly switch topics sometimes— you would be talking with it about
pizza and then it would say "I’m in the lobby," or "Just got in the Uber," or "I’m so proud of you <3"
which is in fact how real humans tend to text but not at all the sort of behavior shown in Switchboard.
Switchboard utterances are likely just more predictable.

5 Analysis

We were able to find that fine-tuning on large-scale pre-trained models like DialoGPT and KoGPT2
works surprisingly well in context-based response generation task. We discuss the qualitative findings
below:

5.1 Ability to Capture the Dialogue-Specific Characteristics

Real-world human dialogues have their own specific characteristics: stutters, fillers, repeated words,
seemingly incoherent sentences. For the models trained on SwDA dataset, we found that the trained
models successfully capture these linguistic features as seen in our examples in the appendix. In
addition, the models worked well in imitating a certain speaker’s style of colloquial expression. We
also found that the models are able to learn the features of personal styles from the chat history
dataset. Another interesting observation was that despite the size differences in the pre-training and
fine-tuning datasets, the fine-tuned models did not spit out random utterances using the pre-trained
language model but stuck close to the conversations in the fine-tuning dataset. This hints at a welcome
possibility that our CloneBot can be actually deployed in real-world products to reasonably clone the
users of messaging products.

5.2 Sensitivity to Decoding Parameters

The text generated by these models can vary significantly depending on the parameters we chose
for sampling: top_p, top_k and temperature. This is because the larger the value for top_k,
for example, more possible word choices are considered, meaning that the model’s generation can
have higher variance. Also, the temperature parameter controls the randomness of predictions by
scaling logits that are then fed into a softmax function. By controlling this probability distribution, the
temperature parameter can change how "conservative" the output would be. In practice, we have
found that adopting a "medium-level" parameter used by Hugging Face’s ConvAI demo (top_p=0.5,
temp=1.2) strikes a right balance between outputs that are too far-fetched and those that are too simple
and unimaginative. Although we experimented by tweaking the dials by ourselves, we could in the
future adopt a systematic approach to find the optimal parameters for decoding by optimizing for
an automatic metric like BLEU. This optimization process would also have to take into account the
pre-training dataset; to illustrate, our model fine-tuned on KakaoTalk data was more likely to ramble
on about something that was not mentioned in the training dataset or would output a non-dialogue
passage from the training dataset like a newspaper article. This is because unlike DialoGPT that is
trained on conversational data, KoGPT2 was only partially trained on dialogue data. Therefore, it
seems like more large-scale pre-trained datasets like DialoGPT could be very useful for further work
in this direction.

5.3 Limitations of Our Approach

Despite our success in implementing the CloneBot idea using various datasets, there are clearly
limitations with our approach. One of the empirical limitations that we ran into was the model’s
difficulty with longer chat histories. Although we imposed a maximum length of previous chat history
that the model can refer to, the models would sometimes not work well when the chat histories got

7

longer, spitting out random, unintelligible tokens. This phenomenon could be due to the length of
context utterances we trained the model on, and is something we could look into more. Also we found
that our model’s output could be almost exactly the same as one of the utterances in the training set,
as if the model simply memorized what a speaker said and returned the same expression as output.
Sometimes it would be partially memorized and partially generated. This question of whether the
model is memorizing or understanding the context is an important question in the research community
as well, and we expect this issue to be increasingly important as the general public demands higher
transparency and explain-ability of AI models. It certainly made us scared to publish checkpoints of
our models, since it scarily memorized some of our private chat history.

Overall, our models fine-tuned on one conversation performed significantly better against the human
evaluators— they had a more consistent personality, they seemed to respond more directly to
queries—where as the models trained on 40,000 and more messages and on multiple speakers were
a little noisier. They would write a whole paragraph about their planned meeting with the editor
of forbes next week, or they would sign a text message "Sincerely", or they would even send us
verification codes. Essentially, our approach for tokenizing different speakers missed a core feature
we would add in future experiments: Penalizing the bot for saying something that someone else
would have said who is not the target speaker for the prediction. It could work well to attempt a
multi-headed approach. We shyed away from such an approach due to our dataset not already having
built-in distractors, but we could conceivably dynamically sample distractors from other speakers in
the set at random and let the model pick which one it thinks belonged to the target speaker.

6 Conclusion

In this paper, we explored how to implement CloneBot using known state of the art pre-training
and fine-tuning techniques built on transformer architecture and multi-headed attention blocks. We
showed that GPT can fine-tune quite well to a particular set of speakers to provide personlized
outputs, and that efficient dense vector clustering is a promising alternative for being able to provide
mass-scalable systems that can personalize thousands of speakers at once without the need for heavy
GPU training.

We think the hybrid of the two is a promising research avenue for future work, for example, placing
FAISS predictions inside of the input of a GPT model. Our multi-pronged experimentation in this
paper led us to think about many such exciting research questions for future work. One such open
question is if and how we could train a bilingual conversational bot, as people often use different
languages when composing messages. If the training data involves a mix of different languages,
would we be able to train the model to not only recognize this fact, but also learn about the context
and successfully generate in a similar multilingual style mimicking that of the user?

Another interesting question is about how to deal with the differences in context in training and
validation sets. Chat histories are often collected over a lengthy period of time and contexts in which
users message each other often change over time. How could the model effectively detect and update
stale information?

References
[1] Mia Xu Chen et al. “Gmail Smart Compose: Real-Time Assisted Writing”. In:

arXiv:1906.00080 [cs] (May 17, 2019). arXiv: 1906.00080. URL: http://arxiv.org/
abs/1906.00080 (visited on 03/19/2021).

[2] Computational Pragmatics | The Switchboard Dialog Act Corpus. URL: http://compprag.
christopherpotts.net/swda.html#setup (visited on 03/05/2021).

[3] Sergey Golovanov et al. “Large-Scale Transfer Learning for Natural Language Generation”. In:
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. ACL
2019. Florence, Italy: Association for Computational Linguistics, July 2019, pp. 6053–6058.
DOI: 10.18653/v1/P19-1608. URL: https://www.aclweb.org/anthology/P19-1608
(visited on 03/19/2021).

[4] Ye Jia et al. “Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech
Synthesis”. In: arXiv:1806.04558 [cs, eess] (Jan. 2, 2019). arXiv: 1806.04558. URL: http:
//arxiv.org/abs/1806.04558 (visited on 03/19/2021).

8

https://arxiv.org/abs/1906.00080
http://arxiv.org/abs/1906.00080
http://arxiv.org/abs/1906.00080
http://compprag.christopherpotts.net/swda.html#setup
http://compprag.christopherpotts.net/swda.html#setup
https://doi.org/10.18653/v1/P19-1608
https://www.aclweb.org/anthology/P19-1608
https://arxiv.org/abs/1806.04558
http://arxiv.org/abs/1806.04558
http://arxiv.org/abs/1806.04558

[5] Vladimir Karpukhin et al. “Dense Passage Retrieval for Open-Domain Question Answering”.
In: arXiv:2004.04906 [cs] (Sept. 30, 2020). arXiv: 2004.04906. URL: http://arxiv.org/
abs/2004.04906 (visited on 03/19/2021).

[6] KoGPT2 on Huggingface Transformers. URL: https://huggingface.co/taeminlee/
kogpt2 (visited on 03/19/2021).

[7] Matt Post. “A Call for Clarity in Reporting BLEU Scores”. In: Proceedings of the Third
Conference on Machine Translation: Research Papers. Belgium, Brussels: Association for
Computational Linguistics, Oct. 2018, pp. 186–191. URL: https://www.aclweb.org/
anthology/W18-6319.

[8] Simplified Switchboard Corpus. Seeking Wisdom. Apr. 11, 2016. URL: http : / /
sanjaymeena . io / tech / nlp / Simplified - Switchboard - Corpus/ (visited on
03/05/2021).

[9] Thomas Wolf et al. “TransferTransfo: A Transfer Learning Approach for Neural Network
Based Conversational Agents”. In: arXiv:1901.08149 [cs] (Feb. 4, 2019). arXiv: 1901.08149.
URL: http://arxiv.org/abs/1901.08149 (visited on 03/19/2021).

[10] Rohola Zandie and Mohammad H. Mahoor. “EmpTransfo: A Multi-head Transformer Archi-
tecture for Creating Empathetic Dialog Systems”. In: arXiv:2003.02958 [cs] (Mar. 5, 2020).
arXiv: 2003.02958. URL: http://arxiv.org/abs/2003.02958 (visited on 03/20/2021).

[11] Yizhe Zhang et al. “DialoGPT: Large-Scale Generative Pre-training for Conversational Re-
sponse Generation”. In: arXiv:1911.00536 [cs] (May 2, 2020). arXiv: 1911.00536. URL:
http://arxiv.org/abs/1911.00536 (visited on 03/05/2021).

9

https://arxiv.org/abs/2004.04906
http://arxiv.org/abs/2004.04906
http://arxiv.org/abs/2004.04906
https://huggingface.co/taeminlee/kogpt2
https://huggingface.co/taeminlee/kogpt2
https://www.aclweb.org/anthology/W18-6319
https://www.aclweb.org/anthology/W18-6319
http://sanjaymeena.io/tech/nlp/Simplified-Switchboard-Corpus/
http://sanjaymeena.io/tech/nlp/Simplified-Switchboard-Corpus/
https://arxiv.org/abs/1901.08149
http://arxiv.org/abs/1901.08149
https://arxiv.org/abs/2003.02958
http://arxiv.org/abs/2003.02958
https://arxiv.org/abs/1911.00536
http://arxiv.org/abs/1911.00536

A Appendix

A.1 Presentation Videos

• Video Demo 1 Link

• Video Demo 2 Link FAISS bot demo

A.2 Transformer Decoder

Figure 1: Transformer decoder input is the sum of all three layers

A.3 FAISS/NMSLIB for KNN

Figure 2: Using FAISS/NMSLIB for KNN

A.4 Data

Figure 3: Switchboard Dialog Act Corpus

10

https://drive.google.com/drive/u/0/folders/1nkuzjhIn-OO_gOwXslRl4GbGVGXMLlWW
https://www.loom.com/share/ad121a9e562b4beda155187baf972df4

Figure 4: KakaoTalk Chat History Data

Figure 5: Real iMessage Chat History Data, Blurred for Privacy

Subset Description Length

iMessageAll All Utterances 195,331
iMessagePairs Pair utterances only (no group messages) 170,488

iMessageBrother Messages with Tyler’s Brother 9,261
iMessageDates Sample of "Dating" or Boyfriend-Girlfriend Messages 3,526

Table 1: iMessage History Subsets

Subset Description Length

iMessage_TRAIN Collapsed Training Utterances 77,973
iMessage_TEST Collapsed Testing Utterances 16,168

Table 2: iMessage History Subsets 2

A.5 Model-Generated Text Samples

A.6 Metrics

11

Figure 6: Example of Korean Text Generated by KakaoTalk-trained Model

Figure 7: Example of English Text Generated by SwDA-trained Model

Figure 8: Example of Real Conversation with iMessage-trained Model (Bot on the right, they had no
idea)

Context Length SwDA-1043 SwDA-1074 Kakao

5 23.81 23.05 111.08
7 63.12 30.80 150.52
10 101.46 44.93 189.07

Table 3: SwDA, Kakao Test Perplexity Scores

12

Data Trained / Data Evaluated Brother Dates All Train TEST #1 TEST #2
Dates x3 (n=7) 192.49 2.68*
Dates x3 (n=15) 214.68
Brother x3 6.4166* 88.006
All (Unprefixed, Uncollapsed) x1 10.2373*
All (Prefixed @0, Uncollapsed) x1 8.7556*
All (Prefixed @0, Collapsed) x1 6.7576* 3.7666* 4.764*
All (Prefixed/msg, Collapsed) x1 4.7484*
TRAIN 40,000/77,958 messages 14.7165* 66.6131
TRAIN 77,958/77,958 messages 11.4929* 87.5308
TRAIN 77,958/77,958 x3 3.7838* 69.4467 84.1496

Table 4: Perplexity scores for DialoGPT models trained on iMessage Subsets. Table shows how
the model was trained on the left and how it performed against various datasets. Values with a *
are training scores. "Prefixed @0" are models in which the speaker ID was prefixed as a natural
language string in the input at the first position, whereas "Prefixed/msg" prefixed the speaker ID at
the beginning of each utterance. The last three rows used a multi-layer input embedding with 2,086
new special tokens (one per speaker in the dataset). "xN" represents how many repeat training epochs
of the dataset occured before testing.

SwDA-1047 Tim-Tyler Kakao
SwDA-1047 15-prefixed 1.73*
DialoGPT Switchboard 1047 7-prefixed 2.5873*
DialoGPT-small Untuned 1188
DialoGPT-large Untuned 1144
DialoGPT Tim-Tyler Project Chat 2.18*
KoGPT Kakao Messages (1200 messages) 8.3155*

Table 5: Other perplexity scores. Values with * are training perplexity.

Model BLEU

FAISS-only bot iMessage 0.3747

Table 6: FAISS-only iMessage Bot

13

	Introduction
	Related Works
	Approach
	Fine-tuning less data between fewer speakers
	Fine-tuning lots of data between many speakers
	Dense vector clustering only

	Experiments
	Data
	Switchboard Dialog Act (SwDA) Corpus
	Personal Chat History Data from KakaoTalk (Korean)
	Personal Chat History Data from iMessage (English)
	Personal Chat History between Tim and Tyler on Sonic

	Evaluation method
	Experimental details
	Fine-Tuning on Pre-Trained DialoGPT-Small
	Fine-Tuning on Pre-Trained KoGPT2 for Korean chats
	Using FAISS (and NMSLIB) for Sentence Similarity

	Results
	Model-Generated Text
	Evaluation: Human-Centric Metrics
	Evaluation: Automatic Metrics

	Analysis
	Ability to Capture the Dialogue-Specific Characteristics
	Sensitivity to Decoding Parameters
	Limitations of Our Approach

	Conclusion
	Appendix
	Presentation Videos
	Transformer Decoder
	FAISS/NMSLIB for KNN
	Data
	Model-Generated Text Samples
	Metrics

