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Abstract 

In recent years, question-answering (QA) models have vastly improved and 
achieved superhuman standards in several benchmarks. Yet, these same superhu- 
man models often do not perform well on out-of-distribution (OOD) datasets or 

tasks. In contrast, humans appear to easily and quickly generalize to new unseen 
domains. In this project, we aim to train a QA model that is able to perform well 
across different datasets, especially on OOD datasets. Specifically, we experiment 
with the use of adversarial training applied to a pretrained DistiIBERT model. The 
adversarial training takes the form of a critic model that tries to classify the origin 
domain of the QA embedding. In addition to the regular QA loss, the QA model has 

the additional objective of fooling the critic model. This encourages the QA model 
to learn a domain-agnostic embedding, which we hope to help with generalization 
and robustness to OOD datasets. 

1 Key Information to include 

e Mentor: NA 

e External Collaborators: NA 

e Sharing project: NA 

2 Introduction 

Question-answering (QA) models have achieved superhuman or close-to-human standards in several 

recent datasets and tasks such as SQUAD [1] and NewsQA [2], via works such as ALBERT by Lan et 

al. [3] and SpanBERT by Joshi et al. [4]. 

However, such models often do not perform well on out-of-distribution (OOD) datasets, as seen 

from previous works where authors evaluate trained models on OOD tasks and observe significant 
performance degradation [5, 6, 7, 8]. In contrast, humans appear to easily and quickly generalize to 
new unseen domains, such as the ability to quickly understand and internalize fantasy and science 
fiction settings. 

In light of this problem, recent works have emerged proposing various alternatives to improve 
generalization of QA models. These include better design of QA tasks [6], debiasing of samples used 
during training [9], multitask learning [10, 11] and other works. 

Likewise in this project, we aim to train a QA model that is able to generalize to OOD datasets. 
Specifically, we experiment with the use of adversarial training applied to a pretrained DistiIBERT 
model. The adversarial training takes the form of a critic model that tries to classify the origin domain 
of the QA embedding. In addition to the regular QA loss, the QA model has the additional objective 
of fooling the critic model. This encourages the QA model to learn a domain-agnostic embedding, 
which we hope to help with generalization and robustness to OOD domains. 
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3 Related Work 

Various works have highlighted the poor generalization of supposedly successful QA models [5, 6, 7, 
8]. For example, Talmor and Berant [5], as well as Sen and Saffari [6], both observe that QA models 

tend to overfit to the datasets they were trained on and generalize poorly to new domains, especially 
in the zero-shot setting. In particular, Talmor and Berant also demonstrate that one way to alleviate 
this problem is simply to train on larger and more diverse datasets comprising multiple domains. 

On the other hand, adversarial training has been gaining popularity as a way to improve performance 
of models in different settings. In order to avoid confusion, we will distinguish between two general 
classes of algorithms that have both been termed “adversarial training" but are significantly different. 

The first class of “adversarial training" refers to algorithms that make use of adversarial samples. 
Adversarial samples refer to samples that are intentionally perturbed to trick a trained model into 
generating incorrect outputs. For example Goodfellow et al. demonstrated how image classifiers can 
be tricked into wrongly labeling images with high confidence by adding noise that is imperceptible 
to humans via the fast gradient sign method (FGSM) [12]. Previous works have demonstrated that 

adding these adversarial samples into the training data can help to improve the robustness of models 
against these adversarial samples [13]. Hence the term “adversarial training" here refers to training 
on adversarial samples. 

The second class of “adversarial training" refers to algorithms that typically use two models that 
compete in a minmax fashion. Works in this class often cite Goodfellow et al.’s work on generative 
adversarial networks (GANs) [14]. In the vanilla GAN example, a generator model creates images to 

fool a discriminator model, while the generator tries to distinguish between real and fake images. Both 
models are updated with opposing objectives and hence the “adversarial” nature of the algorithm. 

Our work follows the second class of “adversarial training". In our context, the QA model is similar 
to the generator model, but outputs embeddings rather than images. Similarly, the critic model here is 
trained to classify the embeddings into the correct domain, rather than differentiate “real" and “fake" 
embeddings. This adversarial scheme can help improve generalization of models on OOD domains 
by encouraging the embeddings of the QA model to be domain-agnostic and hence prevent the QA 
model from overfitting onto the training set. 

There are similar works in this setting that also employ adversarial training for improving multi- 
domain performance [15, 16, 17]. Sato et al. had previously applied adversarial training [16] to 
solve for a multilingual parsing task [18]. In their work, Sato et al. demonstrated that adversarial 
training was able to improve the performance of a graph-based parser on the multilingual parsing 
task. Our work is most similar to that of Lee et al., where the authors also applied adversarial training 
to multi-domain QA tasks [17]. Relative to Lee et al., our work goes into greater detail regarding the 
effects of scaling the weight of the adversarial loss term (see Section 4.2). We also adopt DistilBERT 
instead of BERT and show that the effects of adversarial training appears to generalize well to 
DistilBERT as well. 

4 Approach 

4.1 DistiIBERT Basline 

We first adopt the DistiIBERT model as a baseline [19], which is a distilled version of the original 
BERT model [20]. Sanh et al. demonstrated that DistiIBERT is smaller and faster while retaining 

most of the performance of the original BERT when evaluated against the GLUE benchmark [21]. In 
turn, BERT is itself a variation of the original Tranformer architecture [22]. 

Specifically, we use the DistiIBERT QA implementation from the huggingface library [23] and 
perform finetuning on the QA datasets on top of the pretrained DistiIBERT model. See Section 5.1 
for details on the datasets used. 

During finetuning, we optimize the DistiIBERT model to predict the start and end locations of the 
answer span, as per a regular QA task. Hence, the loss function for the finetuning is essentially the 
sum of the cross-entropy losses for the start and end location predictions:



Laa = — log Dstart (2) — log pena(J) 

where Petart(7) and Pena(J) are the predicted probabilities of i being the start location and 7 being 
the end location respectively. 

4.2 DistiIBERT + Critic 

We then apply adversarial training to the pretrained DistiIBERT model via the addition of a critic 
model. 

The critic model comprises three feedforward layers. The first two layers are 1024 dimensions and 
followed by ReLU activation, while the last layer comprise the logits and corresponds to the number 
of domains in the training set - 3 in our case (see Section 5.1). The input to the critic model are the 
embeddings from DistilBERT just before the final output layer. 

At every iteration, we update the critic model to optimize cross-entropy loss and to correct classify 
the correct domains given a batch of DistiIBERT embeddings. We then update the DistiIBERT 
model with the regular QA loss and an additional adversarial loss term. The adversarial loss term is 
essentially the negative of the cross-entropy loss multiplied by a scaling factor a: 

Ladv = log Peritic(d) 

Leotal = Loa — aLgady 

where Pp, itic(d) is the predicted probability of d being the source domain of the given embedding. 

Hence, this builds on top of the previous baseline with the addition of the adversarial loss term. In 
our experiments, we vary the scaling factor a from 0 to 0.5 to better understand the effect of the 
adversarial loss. 

5 Experiments 

5.1 Data 

In this work, we primarily use the datasets stipulated in the RobustQA task. For training, this comprise 
of 3 in-domain datasets (Natural Questions [24], NewsQA [2] and SQUAD [1]) and a small amount of 

training data from 3 out-of-domain datasets (DuoRC [25], RACE [26], RelationExtraction [27]). For 

validation and test, we use the out-of-domain datasets (DuoRC [25], RACE [26], RelationExtraction 

[27]}). 

5.2 Evaluation method 

Our evaluation methods seek to measure the performance of our models on the QA task in a domain- 
agnostic manner that is comparable with current benchmarks. To that end, we will be comparing and 
evaluating the models based on the Exact Match (EM) and F1 scores. 

We will be evaluating the models on three settings. 

1. In-domain validation - this is similar to a regular QA setting 

2. OOD validation - this is akin to a zero-shot QA setting where the model never sees any 
OOD samples during training or finetuning 

3. OOD validation after finetuning on OOD training - this allows the model to learn from 
a small amount of OOD training set 

5.3 Experimental details 

In our experiments, we primarily varied the scaling factor a of the adversarial loss term, in order to 
better understand the effects of adversarial training. The values of a in our experiments varied across



Table 1: Performance on in-domain and OOD validation datasets with varying a. 
  

  a In-Domain EM In-DomainFl1 OODEM OOD F1 

0 (baseline) 54.71 70.79 31.94 48.13 
0.01 54.80 70.71 31.41 48.11 

0.05 54.96 70.92 30.10 46.78 
0.1 54.88 70.61 32.20 47.50 
0.5 54.38 70.23 32.46 49.05   

Table 2: Performance on OOD validation datasets after finetuning on small OOD training set. 
  

  a OODEM OODFI 

0 (baseline) 31.41 48.44 
0.01 31.15 47.32 
0.05 32.98 49.17 
0.1 32.98 47.84 
0.5 32.46 49.18   

(0, 0.01, 0.05, 0.1, 0.5]. The setting at a = 0 is essentially the baseline setting with no adversarial 
loss. 

Aside from varying a, we kept all other parameters constant. The critic model is detailed in Section 
4.2. In all experiments, we train with a batch size of 16 and a learning rate of 3e-5 with the AdamW 
optimizer [28]. We train for 6 epochs while evaluating on the in-domain validation set every 5000 
iterations. We keep the model with the highest validation score on the in-domain validation set. 

Finally, we further finetune the trained model on the much smaller OOD training set. We finetune 
on the OOD training set for 10 epochs and retain the model with the highest validation score on the 
OOD validation set. 

We report results both before and after finetuning on the smaller OOD training set. The results prior 
to finetuning on the OOD training set can also be seen as zero-shot performance on the OOD task. 

5.4 Results 

Table 1 shows the performance of the models on in-domain and out-of-distribution (OOD) validation 

sets, where the models are trained with varying levels of the scaling factor a, prior to finetuning on 
the OOD training set. Table 2 shows the performance on OOD validation sets after finetuning on the 
OOD training set. 

As expected, we observe that finetuning on the OOD training set helps with performance on the OOD 
task. Furthermore, of interest to this work, we see that finetuning on the OOD training set appears to 
have a larger effect on the models that were trained with adversarial loss. This suggests that training 
with adversarial loss does help with generalization to unseen domains and improves the ability of 
pretrained models to perform transfer learning with limited data. 

In addition, we also see that adversarial training does not harm the models’ performance on the 
in-domain validation set. We can see in the first two columns of Table | that in-domain performance 
is preserved even with adversarial training. In some cases (e.g. a = 0.05), adversarial training 
even helps improve performance on the in-domain validation set. Intuitively, adversarial training 
encourages the QA model to generate domain-agnostic representations. This may also serve to 
prevent overfitting on the training set and hence improve performance on the in-domain validation 
set. 

Our final results on the test set leaderboard used the model trained with a = 0.05 after finetuning on 
the OOD training set and achieved EM of 41.743 and F1 of 59.899.
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(a) Without adversarial training (@ = 0). 
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(b) With adversarial training (a = 0.01). 
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(e) With adversarial training (a = 0.5). 

Figure 1: PCA visualization of DistiIBERT embeddings of question-context pairs, color-coded by 
their F1 values. Circles represent in-distribution samples and triangles represent OOD samples. 
In-domain versus OOD clustering is clearly observed in the case of no adversarial training where 
a = 0. Some clustering is also observed when a is small at a = 0.01. 

6 Analysis 

Next, we perform analysis of the samples via PCA visualization of DistiIBERT embeddings of 
question-context pairs. Figure 1 plots the embeddings color-coded by their F1 values, where circles 
represent in-distribution samples and triangles represent OOD samples. 

Specifically, we randomly sample 16 question-context pairs each, from the NewsQA validation 

dataset for in-domain and RelationExtraction validation dataset for OOD. We then use PCA to project 
the DistiIBERT embeddings of the question-context pairs onto a 2D space for visualization. We do



this for all the models with varying a from 0 to 0.5. In all cases, we use the models prior to finetuning 
on the OOD training set. 

In Figure 1a, we see that without adversarial training, there is obvious clustering of the OOD samples 
(triangles) on the left and in-domain samples (circles) on the right. Furthermore, we see that the OOD 

samples closer to the in-domain samples also tend to have higher F1, as shown by the yellow triangles 
in the upper right of the OOD cluster. In contrast, the bottom left triangles in the OOD cluster are 
further away from the in-domain samples and also tend to have much lower F1. This implies that 
the model may have overfitted to the in-domain task and hence unable to generalize well to OOD 
samples that are too different from the in-domain samples. 

On the other hand, Figures 1b to le shows that with adversarial training, the clustering gradually 
disappears with increasing a. Some clustering is still present at a = 0.01 but both OOD samples and 
in-domain samples appear well-mixed as a increases past 0.01. This clearly demonstrates that the 
DistiIBERT QA model is indeed able to learn domain-agnostic representations via the adversarial 
loss term and the critic model, even with scaling factor as small as a = 0.05. 

7 Conclusion 

In this work, we focus on the use of adversarial training for improving generalization of QA models 
to OOD domains. By varying the scaling factor applied to the adversarial loss term, we show that 
adversarial training does improve generalization to OOD domains without degrading performance on 
the in-domain task. 

Furthermore, our analysis in Section 6 shows that there is a trend where the model performs better on 
OOD samples that are closer to the in-domain samples (see Figure la). We also show qualitatively 
that the embeddings learned with adversarial training are more domain-agnostic, with no apparent 
clustering between in-domain versus OOD samples. 

This work is primarily limited by the range of datasets and model architectures. A more comprehen- 
sive work may consider similar experiments on a larger variety of datasets and model architectures. 
Furthermore, future work may look at how adversarial training can complement other forms of 
generalization techniques to improve performance on OOD domains. 

References 

[1] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions 
for machine comprehension of text. arXiv preprint arXiv: 1606.05250, 2016. 

[2] Adam Trischler, Tong Wang, Xingdi Yuan, Justin Harris, Alessandro Sordoni, Philip Bach- 

man, and Kaheer Suleman. Newsqa: A machine comprehension dataset. arXiv preprint 
arXiv: 1611.09830, 2016. 

[3 “
4
 Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu 

Soricut. Albert: A lite bert for self-supervised learning of language representations. arXiv 
preprint arXiv: 1909.11942, 2019. 

[4] Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld, Luke Zettlemoyer, and Omer Levy. 

Spanbert: Improving pre-training by representing and predicting spans. Transactions of the 
Association for Computational Linguistics, 8:64—77, 2020. 

[5] Alon Talmor and Jonathan Berant. MultiQA: An empirical investigation of generalization and 
transfer in reading comprehension. In Proceedings of the 57th Annual Meeting of the Association 
for Computational Linguistics, pages 4911-4921, Florence, Italy, July 2019. Association for 
Computational Linguistics. 

[6] Priyanka Sen and Amir Saffari. What do models learn from question answering datasets? arXiv 
preprint arXiv:2004.03490, 2020. 

[7] Mark Yatskar. A qualitative comparison of CoQA, SQUAD 2.0 and QuAC. In Proceedings 

of the 2019 Conference of the North American Chapter of the Association for Computational 
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 2318-— 
2323, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics.



[8] Adam Fisch, Alon Talmor, Robin Jia, Minjoon Seo, Eunsol Choi, and Dangi Chen. Mrqa 

2019 shared task: Evaluating generalization in reading comprehension. arXiv preprint 
arXiv:1910.09753, 2019. 

[9] Mingzhu Wu, Nafise Sadat Moosavi, Andreas Riicklé, and Iryna Gurevych. Improving qa 
generalization by concurrent modeling of multiple biases. arXiv preprint arXiv:2010.03338, 
2020. 

[10] Dan Su, Yan Xu, Genta Indra Winata, Peng Xu, Hyeondey Kim, Zihan Liu, and Pascale 

Fung. Generalizing question answering system with pre-trained language model fine-tuning. In 
Proceedings of the 2nd Workshop on Machine Reading for Question Answering, pages 203-211, 
2019. 

[11] Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. Multi-task deep neural networks 
for natural language understanding. arXiv preprint arXiv: 1901.11504, 2019. 

[12] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversar- 
ial examples. arXiv preprint arXiv: 1412.6572, 2014. 

[13] Xiaodong Liu, Hao Cheng, Pengcheng He, Weizhu Chen, Yu Wang, Hoifung Poon, and Jianfeng 

Gao. Adversarial training for large neural language models. arXiv preprint arXiv:2004.08994, 
2020. 

[14] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil 
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. arXiv preprint 
arXiv: 1406.2661, 2014. 

[15] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. 
In International conference on machine learning, pages 1180-1189. PMLR, 2015. 

[16] Motoki Sato, Hitoshi Manabe, Hiroshi Noji, and Yuji Matsumoto. Adversarial training for 
cross-domain universal dependency parsing. In Proceedings of the CoNLL 2017 Shared Task: 
Multilingual Parsing from Raw Text to Universal Dependencies, pages 71-79, 2017. 

[17] Seanie Lee, Donggyu Kim, and Jangwon Park. Domain-agnostic question-answering with 
adversarial training. arXiv preprint arXiv: 1910.09342, 2019. 

[18] Daniel Zeman, Martin Popel, Milan Straka, Jan Haji¢, Joakim Nivre, Filip Ginter, Juhani 

Luotolahti, Sampo Pyysalo, Slav Petrov, Martin Potthast, Francis Tyers, Elena Badmaeva, 

Memduh Gokirmak, Anna Nedoluzhko, Silvie Cinkova, Jan Haji¢ jr., Jaroslava Hlavaéova, 

Vaclava Kettnerova, Zdenka UreSova, Jenna Kanerva, Stina Ojala, Anna Missila, Christopher D. 

Manning, Sebastian Schuster, Siva Reddy, Dima Taji, Nizar Habash, Herman Leung, Marie- 

Catherine de Marneffe, Manuela Sanguinetti, Maria Simi, Hiroshi Kanayama, Valeria de Paiva, 

Kira Droganova, Héctor Martinez Alonso, Cagri Coltekin, Umut Sulubacak, Hans Uszkoreit, 
Vivien Macketanz, Aljoscha Burchardt, Kim Harris, Katrin Marheinecke, Georg Rehm, Tolga 
Kayadelen, Mohammed Attia, Ali Elkahky, Zhuoran Yu, Emily Pitler, Saran Lertpradit, Michael 

Mandl, Jesse Kirchner, Hector Fernandez Alcalde, Jana Strnadova, Esha Banerjee, Ruli Manu- 

rung, Antonio Stella, Atsuko Shimada, Sookyoung Kwak, Gustavo Mendonga, Tatiana Lando, 

Rattima Nitisaroj, and Josie Li. CoNLL 2017 shared task: Multilingual parsing from raw text 
to Universal Dependencies. In Proceedings of the CoNLL 2017 Shared Task: Multilingual 
Parsing from Raw Text to Universal Dependencies, pages 1-19, Vancouver, Canada, August 
2017. Association for Computational Linguistics. 

[19] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version 

of bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv: 1910.01108, 2019. 

[20] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of 
deep bidirectional transformers for language understanding. arXiv preprint arXiv: 1810.04805, 
2018. 

[21] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. 
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv 
preprint arXiv: 1804.07461, 2018.



[22] 

[23] 

[24] 

[25] 

[26] 

[27] 

[28] 

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, 

Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. arXiv preprint arXiv: 1706.03762, 
2017. 

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony 

Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, 

Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain 

Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the- 
art natural language processing. In Proceedings of the 2020 Conference on Empirical Methods 
in Natural Language Processing: System Demonstrations, pages 38-45, Online, October 2020. 
Association for Computational Linguistics. 

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris 

Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a 

benchmark for question answering research. Transactions of the Association for Computational 
Linguistics, 7:453-466, 2019. 

Amrita Saha, Rahul Aralikatte, Mitesh M Khapra, and Karthik Sankaranarayanan. Duorc: 

Towards complex language understanding with paraphrased reading comprehension. arXiv 
preprint arXiv: 1804.07927, 2018. 

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. Race: Large-scale 
reading comprehension dataset from examinations. arXiv preprint arXiv: 1704.04683, 2017. 

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettlemoyer. Zero-shot relation extraction 
via reading comprehension. arXiv preprint arXiv: 1706.04115, 2017. 

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint 
arXiv:1711.05101, 2017.


