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Abstract 

For this project, we are dealing with building a Question Answering System that 
expected to perform well on SQUAD. We conducted several experiments about 
improving on embedding, modification of attention and application of transformer. 
Even though coattention didn’t perform as well as we anticipated, we obtained 
pretty satisfying results on BiDAF with character-level embedding and Question 
Answering Network models. In this report, we are going to introduce our ap- 
proaches and experiments in depth and give some kind of visualizations to help 
evaluate our results. 

1 Key Information 

¢ Mentor: None 

¢ External Collaborators (if you have any): None 

e Sharing project: None 

2 Introduction 

The task for this project is to build a question answering system that performs well on SQuAD. In 
this task, the input is a context paragraph with a related question and the output is the answer to that 
question. The goal for out models is to answer that question correctly. The following is an example: 

¢ Input 

— Question: Why was Tesla returned to Gospic? 

— Context paragraph: On 24 March 1879, Tesla was returned to Gospic under police 
guard for not having a residence permit. On 17 April 1879, Milutin Tesla died at the 
age of 60 after contracting an unspecified illness (although some sources say that he 
died of a stroke). During that year, Tesla taught a large class of students in his old 
school, Higher Real Gymnasium, in Gospic. 

¢ Output 

— Answer: not having a residence permit 

The task of question answering has gained significant popularity over the past few years, and the use 
of neural attention mechanism successfully enables the system to focus on a targeted area within 
a context paragraph. Typical attention mechanisms in previous works are usually uni-directional, 
wherein the query attends on the context paragraph. In [1], the author introduces the Bi-Directional 
Attention Flow (BiDAF) network, which is a hierarchical multi-stage architecture for modeling the 
representations of the context paragraph at different levels of granularity. BiDAF includes character- 
level, word-level, and contextual embeddings, and uses bi-directional attention flow to obtain a 

query-aware context representation. The given baseline model in this project is based on this original 
BiDAF implementation but without the character level embedding. 
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Our experimental approaches include reproducing the baseline training results, improving default 
baseline model with character-level embedding, working on Dynamic Coattention Networks as well 
as Question Answering Network (QANet), and finally comparing performances of these models with 
that of the baseline model. 

3 Related Work 

¢ BiDAF with character-level embedding [1]: From the original BiDAF model features 
mentioned in the above Introduction section, specifically its character-level embeddings 
allow us to condition on the internal structure of words, which also known as morphology, 
and better handle out-of-vocabulary words. These are advantages compared to lookup-based 
word embeddings. 

BiDAF offers three major improvements to the previously attention paradigms. First, the 
attention is computed for every time step, and the attended vector at each time step, along 
with the representations from previous layers, is allowed to flow through to the subsequent 
modeling layer. This technique reduces the information loss caused by early summarization. 
Second, the author uses a memory-less attention mechanism. While iteratively computing 
attention through time, the attention at each time step is a function of only the query and the 
context paragraph at the current time step and does not directly depend on the attention at 
the previous time step. This simplification amortizes the labor between the attention layer 
and the modeling layer as well as allows the attention at each tine step to be unaffected from 
incorrect attendances at previous time steps. Third, using attention mechanisms in both 
directions, query-to-context and context-to-query provides complimentary information to 
each other. 

¢ Coattention: In [2], several deep learning models have been proposed for question answer- 
ing, but due to their single-pass nature, they have no way to recover from local maxima 
corresponding to incorrect answers. 

To address this problem, the author introduces the Dynamic Coattention Network (DCN), 
which consists of a coattentive encoder that captures the interactions between the question 
and the document, as well as a dynamic pointing decoder that alternates between estimating 
the start and end of the answer span. DCN first fuses co-dependent representations of the 
question and the document in order to focus on relevant parts of both. Then a dynamic 
pointing decoder iterates over potential answer spans, enabling the model to recover from 
initial local maxima corresponding to incorrect answers. 

¢ QANet[3]: QANet adapts ideas from the Transformer[4] to question answering. Previous 
end-to-end machine question answering models are primarily based on recurrent neural 
networks (RNNs) with attention. Despite their success, these models are often slow for 

both training and inference due to the sequential nature of RNNs. The QANéet architecture 
does not require recurrent networks: Its encoder consists exclusively of convolution and 
self-attention, where convolution models local interactions and self-attention models global 

interactions. 

The main component of the QANet model is called an Encoder Block. The Encoder 
Block draws inspiration from the Transformer: they consist of positional encoding, residual 
connections, layer normalization, self-attention, and feed-forward sublayers. The difference 

is that the Transformer uses stacked convolutional sublayers, which use depthwise-separable 
convolution to capture local dependencies in the input sequence. 

4 Approach 

The baseline model is based on Bidirectional Attention Flow (BiDAF) [1] but includes only word- 

level embedding. Our approach focused on training the baseline as well as improving embedding, 
modifying attention and adding adapting transformer. 

A. Baseline (provided): BiDAF [1] without character-level embedding with coattention[2]- 

like attention layer is a hierarchical multi-stage process and consists of four layers:



(1) Embedding Layer maps each word to a vector space using a pre-trained word embedding 
model. 

(2) Contextual Embedding Layer utilizes contextual cues from surrounding words via a Re- 
current Neural Network to refine the embedding of the words. 

(3) Attention Flow Layer couples the query and context vectors and produces a set of query- 
aware feature vectors for each word in the context. 

(4) Modeling and Output Layer employs a Recurrent Neural Network to scan the context and 
provides an answer to the query. 

B. Improvement on embedding: Character-Level Word Embedding conditions on the inter- 
nal structure of words, and better handles out-of-vocabulary words. We added “Charac- 
ter_Embedding" layer which maps each word to a vector space using character-level CNNs; 
we renamed the given “Embedding” layer to “Word_Embedding" layer; and did some tweaks 
in both “Word_Embedding" and “HighwayEncoder" layers such as getting rid of the highway 
network originally applied purely on the word embedding, for the purpose of applying highway 
on the concatenation of character embedding and word embedding.So that inputs into highway 
now become character embedding and word embedding, and then after the highway, the output 
is in the shape of (batch_size, seq_len, 2*hidden_size). Besides, we did projections in both 
“Char_Embedding" and “Word_Embedding" layers so that their outputs are in the same shape 
of (batch_size, seq_len, hidden_size). We also created a new Convolutional Neural Network 

(CNN) class used by the character-level embedding following the model details described in the 
handout from an archived cs224n assignment [5]. For the CNN class, we used 1-dimensional 

convolutions, with kernel size of five and number of filters tuned from arguments. 

C. Modification of attention: : The provided baseline already uses the coattention-like implemen- 
tation. We try several variants based on this. 

¢ In [2], the question hidden states are projected via tanh nonlinearity and sentinel vectors are 
added to both the context and question states. These are not done in baseline. 

¢ The similarity matrix is calculated as BiDAF does. The attention weights and attention 
outputs are derived as coattention does. In [2], the matrix is replaced by affinity scores. 

¢ Attention weights and attention outputs are calculated in the same method. 

¢ The attention layer finally feeds a sequence feature through a bidirectional LSTM. Denote 
context hidden states as c, question hidden states as g, C2Q attention outputs as a, Q2C 

attention outputs b, and second-level attention outputs as s. [2] feeds [s; a] and the baseline 
feeds [c; a; c * a; c * s] where [-; -] is the concatenation along the hidden feature dimension 
for the sequence and * is element-wise multiplication. 

D. Alternative RNN can be GRU in place of RNN. 

E. Application of transformer[4]: The idea of transformer is adapted and we call the new thing 
Encoder Block [3]. 

(a) A positional encoding is added to the input at the beginning of each encoder block consisting 
of sin and cos functions at varying wavelengths. 

Position|pos, 2i] = sin(pos/M?#/hidden_size) 

Position[pos, 2i +1] = cos(pos/M?*/hdden_size) 

where I is hardcoded as 1e4, pos is the word position and 7 is the embed index. 

(b) After that, there is a stack of depthwise separable convolutions, each of which is composed 
of two convolution layers: 

¢ Depth-wise convolution: The filter and image are broken into different channels and 
each filter channel is applied only at one input channel. 

¢ Point-wise convolution: The layer behaves as usual along depth and the kernel size is 
1x1. 

(c) In the following self-attention layer, we adopt the multi-head attention mechanism [4] by 
taking the input as query, key and value. 

(d) The final is the feed-forward-layer made up of two fully-connected layers and a relu 
activation layer between them.



Consider each of (a) the convolution layers in the stack, (b) the self-attention-layer, and (c) the 

feed-forward layer as a functional operation f with input x, the output is f(layernorm(x)) + x 
to establish residual connections. 

Our best model still consists of four layers, the same as the baseline [A], but with some modifications 

[from B, C, D]: 

(1) Embedding Layer [A+B] The combination of word- and char-level embedding uses the pre- 
trained word embedding model to map the input into vector space. 

(2) Contextual Embedding Layer [A+E] 

The Encoder Block utilizes contextual cues from surrounding words to refine the embedding of 
the words 

(3) Attention Flow Layer [A] 

The coattention-like implementation produces a set of query-aware feature vectors for each word 
in the context. 

(4) Modeling and Output Layer [A+E] 

A stack of Encoder Blocks with fully-connected layers are used to scan the context and provide 
an answer to the query. 

5 Experiments 

5.1 Dataset 

The SQuAD dataset [6] contains many (context, question, answer) triples. Each context is an excerpt 
from Wikipedia. The question is the question to be answered based on the context. The answer is 
a span from the context. The official SQUAD 2.0 dataset has three splits: train, dev and test. We 
will use the train split and the dev split provided by the course to train, tune and evaluate the models 
respectively. Here, the dev split is a subset of the official dev split. The details for the splits here: 

¢ train (129,941 examples): exactly the official SQUAD 2.0 train set 

e dev (6,078 examples): from the official dev set 

* test (5,915 examples): from the official dev set, plus hand-labeled examples 

5.2 Evaluation method 

Performance is measured via two metrics: Exact Match (EM) score and F1 score. 

¢ Exact Match is a binary measure (i.e. True/False) of whether the system output matches 
the ground truth answer exactly. 

¢ F1 is the harmonic mean of precision and recall, which reflects how much the answer hits 
the ground truth and misses the ground truth respectively. 

Fi= 1 _ 2tp 

~ precision! +recall-!  2tp + fp + fn 
  

In SQuAD, every question has three answers provided — each answer from a different crowd worker. 
When evaluating, we take the maximum F1 and EM scores across the three human-provided answers 
for that question. 

5.3. Experimental details and Results 

Baseline We reproduced the experiment of training the baseline model, with default hyperparameters: 
hidden_size = 100,batch_size = 64, Ir = 0.5, drop_prob = 0.2, ema_decay = 0.999, epoch=3000000. 

We obtained similar results as expected. Over 3 million iterations, the dev AvNA reaches about 67, 

the dev F1 reaches about 60, the dev EM score reaches around 57, and the dev NLL reaches 3.2.



BiDAF with char-level embedding In the original BiDAF paper [1], the author uses 100 1- 
dimensional filters for CNN char embedding. In our experiments, we scaled the number of filters up 
and used 200 and 300 1-dimensional filters respectively as the character embedding dimension, and 
kept other hyperparameters unchanged. The results are shown in Table 1. 

Table 1: The results of comparing char-level embedding 

  

dev test 

Fl EM Fl EM 

Baseline 60.31 57.21 - - 

char embed (200) || 63.24 59.69 - - 

char embed (300) || 63.72 60.39 | 64.32 60.34 

model   

  

  

          
  

Over 3 million iterations of training the model with 200-dimension char-level embedding, the dev 
AvNA reaches about 69 and the dev NLL reaches about 3.1; for the 300-dimension, the dev AVNA 

reaches about 70 and the dev NLL reaches about 3.1. 

Alternative RNN is replaceing all the LSTMs with GRUs in the baseline. The corresponding results 
are in Table 2. 

Table 2: The results of comparing RNNs 
  

dev 

Fl EM 

LSTM || 60.31 57.21 

GRU 60.83 57.57 

model   

    

          

Ablation study of coattention keeps all implementation and hyperparameters the same except for 
the Attention Flow Layer, which involves the following elements: 

* pre: some preprocess operations at the beginning 

— No: No related operations are use 

— Yes: The question hidden states are projected via tanh nonlinearity and sentinel vectors 
are added to both the context and question state. 

* score: the matrix reflecting the context-question relation used later to apply softmax 
operation 

— sim: It is the same in BiDAF. 

— aff: It uses the affinity scores. 

¢ 1stm: the sequence passed as input to the final bidirectional LSTM 

— x2: It feeds [s; a]. 

— x4: It feeds [c; a; c * a;c * 5]. 

We study some different versions of the attention as shown in Table 3. Based on the experiments, the 
implementation in the provided baseline is already very good. 

Table 3: The results of ablation study of coattention. (* is the Baseline.) 

  

model dev 

pre score lstm Fl EM 

No __ aff x2 53.64 51.65 

Yes aff x2 53.67 51.62 
Yes aff x4 59.44 56.02 

*« No sim x4 60.31 57.21 

Yes sim x4 59.93 57.30 

  

  

  

        
 



Trial of QANet is run for only once and turns out to be our best model. It uses the hyperparameters 
in the [3], the following are different from the baseline: 

- hidden_size = 128 which should be divisible by num_head later 

- batch_size = 16 due to limited CUDA memory 

- lr = 0.5 optimized cross entropy loss instead of negative log likelihood loss 

- drop_prob = 0.1 

Embedding Layer uses pre-trained embedding model. The modification with respect to the baseline 
applies the idea of Encoder Block to Contextual Embedding Layer and Modeling and Output Layer. 

¢ Contextual Embedding Layer is an Encoder Block with the following hyprtparameters: 
in the convolution stack, conv_num=4 convolutions with kernel_size=7; in self-attention, 

num_head=8. 

¢ Modeling and Output Layer is step by step as following: 

— A fully-connected layer model the attention outputs by mapping the hidden dimension 
from hidden_size * 4tohidden_size = 128. 

— There is a stack of Encoder Blocks with: num_block=7; in the convolution stack, 

conv_num=2 convolutions with kernel_size=5; in self-attention, num_head=8. 

Passing through the Encoder Block Stack sequentially thrice, the outputs are denoted 
as Mo, M: 1> Mo. 

- The final prediction logits of the starting and ending position are modeled as 
Wstart|Mo; Mi] and Wena[Mo; M2] where Wstart, Wena are trainable parameters. 

The results are compared with the baseline Table 4. 

Table 4: The results of comparing our best model compare with the baseline 
  

  

    

        

madal dev test 

Fl EM Fl EM 

Baseline 60.31 57.21 - - 

w/ char embed |} 63.72 60.39 | 64.32 60.34 

Best model 68.41 64.95 | 66.43 62.45     

6 Analysis 

¢ The re-implementation of BiDAF with character-level embedding performs relatively better 
than the baseline does. This is expected because the addition of character-level embedding 
increases model’s learning capability from the perspective of morphology. Specifically, by 
scaling up the dimension of character embedding, we kept getting slightly higher results 
but we think this might gradually reach to a ceiling because on the one hand, the model 
will be too heavy to train and on the other hand, the amount of benefits getting from larger 
embedding dimension will reach to a bottleneck. 

After experimenting with character-level embedding, we have learnt several lessons. For 
examples, for polysynthetic language which characterized by complex words consisting of 
several morphemes, it’s better to split a word into sub-characters for the semantic analysis 
purpose. Further, using character-level embedding avoids the out-of-vocabulary problem, 
makes it possible to encode words that were not in the training set, and gives manageable 
vocabulary sizes as well as mitigates the data sparsity. 

¢ For the attention flow layer, the provided baseline implementation already involves a second- 
level attention computation. Compared with the implementation in the original paper of 
coattention [2], there are some differences. With the variable-control ablation study, we see 

that the baseline’s choice of the context-question scores and the sequence concatenation 
passing into Bi-LSTM already reaches the level of the best performance. Also, the post- 
processing of question state projection and sentinel vectors does not make big difference.



The main contribution to the performance difference is what to pass to the final LSTM 
to fuse information. Compared with feeding [s; a] in [2], we feed [c; a; c x a;c * 5]. This 
seems reasonable since the concatenation with the double hidden size is likely to carry more 
information. One more thing we can see is that this choice pay much more attention to the 
context hidden state c input into the attention layer. 

¢ When replacing LSTM with GRU, the performance is at the same level. The main difference 
is that GRU converges at almost double the speed of LSTM. In this project, the dataset size 
is kind of small and thus GRU, which is less complex because of less number of gates, may 
be more helpful than RNN. 

¢ At the trial of QANet, the experiment time is very limited. We can only show that the 
introduction of Encoder Block inspired by Transformer to the architecture can improve 
the performance obviously. The model are much larger and takes much longer to learn. 
One interesting finding is that the performances on dev and test splits vary quite a little. It 
seems that it might be overfitting to some part of the data. There is expected to be some 
improvement after tuning based on this version of the architecture. 

The advance made by this model is similar to the benefit of a transformer over an LSTM. 
Using convolutional neural networks instead of recurrent neural networks, the Encoder 
Block processes sentences as a whole rather than word by word, which helps relieve the 
suffer from long dependency issues. Meanwhile, the multi-head attention and positional 
encoder both provide information about the relationship between different words. 

7 Conclusion 

Although at the beginning of this project we only planed to implement BiDAF with character-level 
embedding and Dynamic Coattention Network, during the experiments and per TA’s suggestion, 
we finally decided to focus on a new architecture called Question Answering Network given the 
unsatisfying results of our work on coattention model. Fortunately, both BiDAF (with character-level 
embedding) and QANet (inspired by transformer) achieved fairly satisfying results compared to the 
baseline performance. 
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