
Domain Adversarial Training for QA Systems

Stanford CS224N Default Project

Mentor: Gita Krishna

Danny Schwartz Brynne Hurst Grace Wang

Stanford University Stanford University Stanford University

deschwa2@stanford.edu brynnemh@stanford.edu gracenol@stanford.edu

Abstract

In this project, we examine a QA model trained on SQUAD, NewsQA, and Natural

Questions and augment it to improve its ability to generalize to data from different
domains. We apply a method known as domain adversarial training (as seen in [1])
which involves an adversarial neural network attempting to detect domain-specific
model behavior and discouraging this to produce a more general model. We explore
the efficacy of this technique as well as the scope of what can be considered a
“domain" and how the choice of domains affects the performance of the trained
model. We find that, in our setting, using a clustering algorithm to sort training data
into categories yields a performance benefit for out-of-domain data. We compare
the partitioning method used by Lee et al. and our own unsupervised clustering
method of partitioning and demonstrate a substantial improvement.

1 Introduction

One of the most challenging problems in deep learning is adapting models to out-of-domain data.
(Out-of-domain here meaning data outside the training data distribution, and in-domain meaning
data well-reflected by the training data distribution.) Question Answering (QA) models specifically
do not generalize well to datasets that are significantly different than the data they are trained on.
These models tend to overfit to in-domain data and require additional fine-tuning to achieve similar
performance on other, out-of-domain datasets. We present a potential solution to this overfitting
problem via domain adversarial training, as described in [1] by Lee et al.

Domain adversarial training is a method to modify a model’s training objective to encourage the
model to avoid domain-specific overfitting. As can be seen in Figure 2 (in Appendix A), the model is
broken into two components: a domain discriminator and a QA model. The QA model is trained to
predict answer spans given a training example context and a question. The role of the discriminator is
to predict the domain of a training example from internal features learned by the QA model. The
discriminator acts as a regularizer, pushing the QA model to learn domain-invariant features. After
training, the discriminator can be discarded as it is not used in forward inference.

This method requires practitioners to select a group of domains that the training data belong to and
partition each example into one of these domains. We show that the selection of this group of domains
significantly impacts the effectiveness of this technique. Specifically, we propose an improvement to
the strategy used in [1]. Rather than partition the data based on its original source (e.g., Wikipedia
or CNN), we partition the data by extracting semantic and stylistic features from the text and using
K-means clustering on those features. We show that using this partitioning technique improves
performance on out-of-domain validation sets by a substantial margin when compared to a baseline
model trained without a domain adversarial objective.

Stanford CS224N Natural Language Processing with Deep Learning

2 Related Work

A variety of techniques have been explored in recent NLP research to improve the out-of-domain
performance of question-answering systems.

For instance, in [2], Gururangan et al. investigate the use of multiphase adaptive pretraining by further
pretraining a transformer model with unlabeled data from the domain of a specific task. The authors
present the performance gains from domain-adaptive pretraining alone, an improvement on top of
that by adapting to task-specific unlabeled data, and another approach with task adaptation on an
augmented corpus using simple data selection strategies.

In [3], Ribeiro et al. introduce the actionable semantically equivalent adversarial rules (SEARS) that

are useful in detecting undesirable behavior (i.e., bugs) in black-box models for domains including
machine comprehension and sentiment analysis. These bugs are often instances where replacing a
single word with another that is almost semantically equivalent causes a model’s behavior to change.
Ribeiro et al. posit that certain semantically-similar word pairs that cause these bugs (‘rules’) can be
used to create additional training examples based on existing training data. The authors demonstrate
how to extract a set of rules from a model that can be used to generate semantically similar training
examples that drive the model’s behavior to avoid these kinds of bugs while maintaining accuracy.

The most important paper we encountered in designing this project was [1]. In this paper, Lee et al.
attempt to build a QA model capable of performing well on out-of-domain data by constraining their
model such that it learns domain-agnostic features. The authors begin by assuming the existence of
what they call a performant domain-invariant classifier. This domain-invariant classifier does not have
hidden features that identify question/context pairs as belonging to a specific domain so, theoretically,
it should perform similarly across domains. The authors propose an adversarial network architecture
and a corresponding loss function to optimize a BERT-based question answering model with this
domain-invariance constraint. A QA model attempts to predict an answer, and a discriminator trains
the QA model to learn domain-invariant features.

We chose to model our experiments based on this paper since the adversarial training mechanism is
well-explained, the authors have made the code available on Github, and we are interested in GANs,

which operate using a similar principle. Specifically, the authors do not explore different ways to
select “domains", opting instead for the simplest possible approach: mapping each example to a
domain encompassing all training examples from a particular source (e.g., SQUAD). This results in a
very small set of domains used as the training data for their discriminator model, only 6. This raises
the substantial risk of overfitting to common patterns in the 6 training domains used. We decided
to replicate the approach Lee et al. used and experiment with various ways of partitioning training
examples into domains.

3 Approach

As in [1], we use a 3-layer feed-forward neural network as a discriminator to classify the domain
of training examples using a piece of the QA model’s hidden state, hcys, as input. Their original
model architecture can be seen in Figure 2. We modify the model slightly by using DistilBERT as the
pre-trained language model. We also define “domain" differently, as explained in Section 4.1.

To train the discriminator, we use the following loss function ,

— @) _ (i) g Mt Laseim = — 35 Ya “Yow (de) (l)

where a,” is the discriminator’s predicted probability that training example 7 belongs to domain

k, N is the total number of training examples, and d\? is a one-hot vector that specifies the actual
domain & that example 7 belongs to.

The job of the QA model is to trick the discriminator by learning domain-invariant features. The loss
term for the QA model without the domain-invariance penalty is,

Con = —-2 3 ful? toe (ve) + uf tos (xD), Q)
i=l

where y? is a one-hot vector that specifies the actual starting position s of the answer for example 2,

Ys is the QA model’s vector of predicted probabilities of starting positions for example 7. Similarly

yo? and ye encode the actual ending and predicted ending positions.

The domain-invariance term,

N
1 Ape

bccseuneen s EE S (4)
Linvariance = N = KL(U||d), (3)

for the QA model is the Kullback-Leibler divergence between the uniform distribution U over all
domains and the discriminator’s actual domain predictions. The goal here is to encode the information
in the hidden states in such a way where it’s impossible for the discriminator to distinguish between
domains. This term effectively regularizes the network, making it more difficult to overfit to domain-
specific patterns.

The full loss function for the domain-invariant QA model,

composite = Loa + AL invariance» (4)

is composed with a new hyperparameter, , that emphasizes the relative importance of the invariance
loss term. The authors of [1] recommend using 0.01 as the value of A.

We used stochastic gradient descent with momentum to optimize the discriminator and we used the
AdamW algorithm to optimize the QA model. For each batch of training data, we first compute
composite to perform a parameter update on the QA model and we then compute Lyiscrim on the same

batch to perform a parameter update on the discriminator. We configured our training procedure so
that multiple discriminator updates could be performed for every QA update.

4 Experiments

4.1 Data

We trained our model with three in-domain datasets, and evaluated it with three out-of-domain

datasets.

Dataset | Question Source | Passage Source | _ Train Dev |_ Test

in-domain

SQuAD [4] Crowdsourced Wikipedia 86,558 | 10,507 -

NewsQA [5] Crowdsourced News articles 74,160 4,212 -

Natural Questions [6] | Search logs Wikipedia 104,071 | 12,836 -

out-of-domain

DuoRC [7] Crowdsourced Movie reviews 128 128 | 1,503

RACE [8] Teachers Examinations 128 128 | 1,502

RelationExtraction [9] | Synthetic Wikipedia 128 128 | 1,500

Table 1: Dataset statistics. These numbers indicate the number of passages in each dataset, not the
number of questions.

We used the SQuAD 1.1 dataset, the NewsQA dataset, and the Natural Questions dataset for training,

supplementing them with 128 examples from each of our out-of-domain datasets. Some examples
from each of these datasets were separated for use as validation data. To support the domain
adversarial training, we used the scikit [10] K-means algorithm to cluster the training examples
into domains. To produce input features for clustering, we started by computing TF-IDF features
for each context. TF-IDF is a method to compute how relevant an individual word is to a document
in a collection of documents. Each example in our corpus could have an associated TF-IDF score
for a particular word. Before applying TF-IDF, we cleaned each context by removing stop-words
and lemmatizing each word in the context. After cleaning, we computed the TF-IDF vectors using

scikit’s TfidfVectorizer [10], ignoring terms that occurred in more than 70% or less than
0.01% of the context paragraphs. We then kept the TF-IDF scores of the 300 remaining candidate
terms with the highest document frequency. We found that increasing this number often led to

extremely imbalanced clusters, so we empirically determined 300 to be a reasonably informative
value without causing extreme cluster imbalance that would make training our discriminator difficult.
After extracting the vector of TF-IDF features for each training example, we normalized the TF-IDF
vectors by their L2 norm to have magnitude 1.

In addition, we extracted the following custom features from the raw, uncleaned context for each

training example: average sentence length, maximum sentence length, minimum sentence length,
percentage of adjectives, percentage of coordinating conjunctions, percentage of nouns, percentage
of prepositions, maximum word repetition (maximum number of times one word is repeated in
sequence), number of alphanumeric words, number of commas, average sentence sentiment (as

computed by the NLTK library [11]), and number of unique words used. These custom features were
normalized to have zero mean and unit variance across training examples, then they were scaled to
the average magnitude of the TF-IDF features and multiplied by a tunable constant to modulate their
relative influence in the K-means algorithm. After observing some cluster outputs, we determined

that the best value to use for this constant was 6. We concatenated the scaled custom features and the
TF-IDF features to produce a vector of features for each example. Before clustering, we normalized

each of those vectors by their L2 norm so they would have magnitude 1.

Finally, we ran K-means with K = 20, 30, 40, 50, 60, and 70 to determine the best number of clusters.

As can be seen in Figure 1, the results were well balanced for each run. We chose to test our QA
model with 40 clusters because the 40 cluster set had the smallest difference between the largest
cluster and the smallest cluster. We also chose to train the model with 20 clusters because we had
hypothesized that a high number of clusters would inhibit the discriminator.

3000
3000

2000
2000

1000 1000

Clusters Clusters Clusters

(a) 20 Clusters (b) 30 Clusters (c) 40 Clusters

1750

2000
1500

1250 1500

1000

1000

500 Clusters Clusters Clusters

(d) 50 Clusters (e) 60 Clusters (f) 70 Clusters

Figure 1: K-means Clustering Statistics. Each bar represents a cluster, and the y-axis of each plot is
the number of training examples in the cluster. The 20 cluster set and the 40 cluster set were used
during training.

4.2 Evaluation method

To evaluate performance of our model during training, we were specifically interested in monitoring
the Linvariance ANd Leomposite. We expected to see Leomposite trending downward for both the in-domain

and out-of-domain data. We also expected Linyariance to reach a steady-state equilibrium, indicating

that the discriminator was not able to learn to predict domains and the QA model was learning
domain-invariant features.

To evaluate our output, we looked at the Exact Match (EM) and F1 metrics averaged across the entire

dataset (in-domain was evaluated separately from out-of-domain). Exact Match is a strict metric,

requiring the model output to exactly match the ground truth answer. F1 is more forgiving, and is the
harmonic mean of precision and recall. For questions with more than one ground-truth answer, we
take the max of the EM and F1 scores.

To observe the trend in the described metrics throughout training, see Figure 4 in Appendix A.

4.3 Experimental details

4.3.1 Model Configurations

As a baseline, we used the QA model found in the starter code for the project without the additional
domain adversarial objective. The rest of our experiments concern models that use the domain
adversarial objective with different domain partitioning schemes. We used a domain partitioning
scheme similar to the scheme used in [1] to compare their approach to our K-means-based approach.
This partitioning scheme is denoted in our results table as “Source-Based" and simply maps each
example to the dataset it originally came from (e.g., an example from SQuAD is in the “SQuAD"
domain, etc.). We also evaluated our K-means-based partitioning scheme with a 40-cluster partition
and a 20-cluster partition. Each of these three domain adversarial models used hyperparameters
selected via individual searches as described in Section 4.3.2.

We fine-tuned each model for 3 epochs as that is what we had selected for our baseline. All of our
models seemed to converge by this point. Our experiments would often take about two full days to
train depending on the step multiplier we chose for the discriminator as part of our hyperparameter
search. We used a batch size of 32 because we empirically determined that was the maximum that
the hardware was capable of.

4.3.2 Hyperparameter Search

We used the RayTune [12] library to write a hyperparameter search routine to determine the best
hyperparameters to use during training. We performed separate searches using a subset of our training
data for our source-based clustering model, our 20-cluster model, and our 40-cluster model. Each

search was run for 2 epochs over the data used. Table 2 contains the hyperparameters we selected
to use on the full dataset. We ultimately selected our choice of hyperparameters because the KL
Divergence and the QA model loss were trending down (see Figure 3 for training curves). This
indicates that with these hyperparameters, the QA model was better able to trick the discriminator.

The "adversarial loss weight" hyperparameter is the \ introduced in [1]. The “step multiplier" is how
many parameter updates were performed on the discriminator for every parameter update performed
on the QA model. Increasing the step multiplier dramatically increased the training duration, so we
did not explore values larger than 3.

QA Parameters

Learning Rate | Weight Decay | Adversarial Loss Weight

Source-Based 9.1803E-05 1.6613E-02 1.1364E-02

20-Cluster 5.22044177664971E-05 | 1.0524918464003E-03 0.119641324416047

40-Cluster 8.72772969749864E-05 | 8.55232316497858E-02 8.478 15672455572E-03
Discriminator Parameters

Learning Rate Momentum Step Multiplier

Source-Based 6.2666E-06 0.89467 1

20-Cluster 8.75765078084943E-05 0.912875330349223 3
40-Cluster 1.93834168124229E-05 0.857915590911954 3

Table 2: Hyperparameters Used During Training

4.4 Results

Generally, the best validation performance we obtained was with the 40-cluster partition. Our best
model (using K-means with 40 clusters to define the domains in the training set) obtained an EM

score of 40.528 and an F1 score of 58.408 on the out-of-domain test set. Considering the modest
improvements seen in [1] (about 1.5-2 points higher on both EM and F1), we are fairly surprised
that our clustering scheme was able to get 5 or more points of improvement in both metrics on our
out-of-domain validation sets. Part of the improvement may be because of our inclusion of a small
number of out-of-domain training examples, but this did not make our source-based model better than
our baseline. There is an intuitive argument to be made about the efficacy of our clustering approach;
the source-based approach does not attempt to prevent the QA model from overfitting to categories
of examples within a single data source or across data sources. Our clusters were based on features
that should not be particularly informative to the QA model in determining the answers to questions,
so it makes sense that more broad regularization over these clusters leads to better out-of-domain
performance.

The baseline model we used performed better on the in-domain validation datasets. This is to be
expected, as removing the possibility of overfitting to domain-specific patterns will have an adverse
impact on a model’s performance on examples in that domain. Interestingly, our best-performing
model on the out-of-domain validation sets is the second-best performing model on the in-domain
validation sets. We believe this is at least partially because the strength of the regularization (the
“adversarial loss weight" parameter in Table 2) was greater for our 20-cluster model and source-based
model.

We believe that one reason our 40-cluster results were better than our 20-cluster results on the
out-of-domain data is because the baseline model is overfitting to more than 20 distinct groups of
examples in the training data. The 40-cluster domain adversarial objective is able to more thoroughly
regularize the model over these large groups because 40 clusters can approximate them better than 20
can.

The full set of validation performance metrics that we obtained can be seen in Table 3.

in-domain (results on the validation set)

Model | EM Fl | EM Fl | EM Fl | EM Fl

| SQuAD | News QA | Natural Questions | Average

Baseline 63.33 77.01 | 39.27 57.51 52.8 69.43 54.77 70.51
Source-Based | 59.24 74.36 | 37.94 55.04 50.19 66.9 51.79 67.95
20 Cluster 60.19 74.32 | 37.73 54.72 49.67 66.09 51.88 67.51

40 Cluster 62.82 76.45 | 38.82 56.55 51.77 67.7 54.02 69.35

out-of-domain

Model | EM Fil | EM Fl | EM Fl | EM Fl
| Race | Relation Extraction | DUORC | Average

Baseline 21.09 34.34 | 38.28 63.89 31.75 38.82 31.68 47.12
Source-Based | 18.75 32.03 | 40.62 67.55 27.78 41.07 29.06 46.92

20 Cluster 20.31 33.46 | 48.44 71.76 31.75 40.55 33.51 48.63

40 Cluster 23.44 35.67 | 49.22 71.10 35.71 45.27 36.126 50.706

Table 3: Experimental Results

Interestingly enough, the out-of-domain data we used for validation sets are from the same sources
as some of the data used as out-of-domain validation sets in [1]. Lee et al. use the same validation

metrics as we do, so we can directly compare their performance change to ours (see Table 4).

These three datasets prove to be among the least improved among the out-of-domain validation sets
used in [1]. They aren’t directly comparable to our results because Lee et al. used different training
data and a different BERT architecture, but it is interesting to note that our 40-cluster model is quite a
bit more effective at improving our baseline’s performance on examples from these three datasets
than Lee’s model was at improving their baseline’s performance.

Model | EM Fl [| EM Fl | EM F1

| Race Dataset | Relation Extraction Dataset | DUORC Dataset

BERT-base 28.23 39.51 | 73.33 83.89 42.78 53.32
Domain-adv BERT | 26.50 39.73 | 72.67 83.53 45.97 57.89
Relative Improvement | -1.73 0.22 | -0.66 -0.36 [3.19 4.57

Table 4: Lee et al. results

5 Analysis

We saw the greatest improvement on the RelationExtraction dataset [9], which is not surprising given
that its passages are selected from the same source as SQUAD and Natural Questions, two of our
in-domain datasets. However, on the Race dataset, our Source-Based and 20-cluster models actually

performed worse than our Baseline model (see Table 3). In this case, the Race dataset is the least

similar to our in-domain datasets (it is sourced from English exams rather than an online source like
Wikipedia [8]). Examples from the Race dataset can be seen in Table 5.

Question | Which name may have something to do with “gladness"?

Context (shortened) | “Every year in English-speaking countries, people list the most popular
names...In Britain a parent today might call their little girl Grace, Jessica
or Ruby...In China names have very clear meanings. If a girl is called
Mei, her name means “beautiful”. If a boy is called Wu, his name means
“like a soldier". Names in English-speaking countries are like this too.
The girl’s name Joy is probably partly chosen because the parents wish
their daughter to be joyful and bring joy to others...Another reason why
kids get the names they do is that parents want to name their boy or girl
after someone who is famous, such as an actor, a pop music star or a

sports star."

Model Answer

Baseline Mei, her name means "beautiful". If a boy is called Wu

20-Cluster a parent today might call their little girl Grace, Jessica or Ruby.

40-Cluster name their boy or girl

Question Why did the author decide to help the man?

Context (shortened) | “There is always a man who stands on different comers of the street in our

city, holding a sign that reads ‘Will work for food for my family’... As I
was sharing that feeling with my daughter and her friend, I decided that
I needed to help this man. I wanted to show the girls the importance
of helping others, not about worrying whether he was legitimately
struggling or not...] told the man that the girl wanted to help him because
she was worried about him being cold."

 Model Answer

Baseline because she was worried about him being cold.

20-Cluster she was worried about him being cold.

40-Cluster because she was worried about him being cold.

Table 5: Some validation examples from the Race [8] dataset (on which our 20-Cluster and 40-Cluster

models performed worse than the baseline). Each model received an EM and F1 score of 0.0 for
these answers. Note that the ground-truth answer is in bold.

Portions of each context were cut out for brevity, but these examples illustrate some of the issues our
model encountered with the Race dataset. To answer these questions correctly, our model would have
had to develop effective features for text that is written in a much different style than the majority of
our training data. We believe that it would have been difficult for our model to learn features like

this given the small amount of data it saw from this domain and the dramatic difference between this
distribution and that of our training data, even with the aid of the discriminator (though the 40-cluster
model’s modest improvement on this dataset was likely due to the discriminator’s inclusion). Data
augmentation techniques or additional data gathering to include a wider variety of out-of-domain data
could potentially help improve our models performance with these types of questions and contexts.

6 Conclusion

We demonstrated that a domain adversarial training objective can be enhanced by choosing a finer-
grained domain partitioning scheme than what was used in [1]. Specifically, we describe a method
of partitioning domains using TF-IDF and K-means clustering and demonstrate that it yields a
significant improvement over our baseline and a domain partitioning scheme based on the one used
in [1]. We learned that the choice of domain partitioning scheme makes a significant difference in the
effectiveness of this type of regularization.

There are several limitations of this project. Because fine-tuning took multiple days, we were limited
in the number of experiments we could run within the deadline. We did not have sufficient time
to perform ablation studies on the effects of different features or TF-IDF configurations in our
domain partitioning scheme on the fine-tuned model. Additionally, our hyperparameter searches were
done over a subset about 100 times smaller than our training dataset. We could have theoretically
improved our hyperparameter search with efforts to make this subset a more balanced representation
of examples in the partitioned domains. We also found it difficult to do a decent analysis, partially
because our out-of-domain validation set wasn’t particularly large (less than 400 context paragraphs in
total), so there is less statistical certainty associated with the out-of-domain validation set performance
improvements we found. We also would have liked to observe the average EM and F1 scores for each
of our domain clusters to determine if certain clusters performed better than others. However, we
were unable to categorize the validation set into our K-means clusters due to an error in saving the
K-means parameters.

The method of domain adversarial training, although somewhat complex, seems quite underdeveloped.
If we had more time, we could have explored the implications of using different inputs to the domain
discriminator model (perhaps we could perform some kind of attention over all of the transformer’s
final hidden layer states and use the result as an input to the discriminator), as we still don’t feel that
hcrs is an obviously superior choice. We also recognize that there is potential for multiple different
discriminators (that would be trained for different domain partitions) to be applied in concert, adding
one loss term for each to the QA model’s loss. This would be more expensive at training time, but it
presents an interesting solution to the problem of having to choose a domain partitioning scheme
from multiple candidates—multiple can be chosen at once! If we had more time on this project, this
would definitely be the next thing to try.

We based the feature vectors for our K-means clustering purely on functions of the context paragraphs,
but the questions contain potentially useful information as well. Incorporating the questions for each
example into these feature vectors is another potential improvement that could be explored.

References

[1] Seanie Lee, Donggyu Kim, and Jangwon Park. Domain-agnostic question-answering with
adversarial training. In Proceedings of the 2nd Workshop on Machine Reading for Question
Answering, pages 196-202, Hong Kong, China, November 2019. Association for Computational
Linguistics.

[2] Suchin Gururangan, Ana Marasovi¢, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. Don’t stop pretraining: Adapt language models to domains and tasks.
ArXiv, abs/2004.10964, 2020.

[3] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Semantically equivalent adversarial
rules for debugging nlp models. In ACL, 2018.

[4] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100, 000+
questions for machine comprehension of text. In EMNLP, 2016.

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

Adam Trischler, T. Wang, Xingdi Yuan, J. Harris, Alessandro Sordoni, Philip Bachman, and

Kaheer Suleman. Newsqa: A machine comprehension dataset. In Rep4NLP@ACL, 2017.

T. Kwiatkowski, J. Palomaki, Olivia Redfield, Michael Collins, Ankur P. Parikh, C. Alberti,

D. Epstein, Ilia Polosukhin, J. Devlin, Kenton Lee, Kristina Toutanova, Llion Jones, Matthew

Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Q. Le, and Slav Petrov. Natural

questions: A benchmark for question answering research. Transactions of the Association for
Computational Linguistics, 7:453-466, 2019.

Amrita Saha, Rahul Aralikatte, Mitesh M. Khapra, and K. Sankaranarayanan. Duorc: Towards
complex language understanding with paraphrased reading comprehension. In ACL, 2018.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and E. Hovy. Race: Large-scale reading
comprehension dataset from examinations. In EMNLP, 2017.

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettlemoyer. Zero-shot relation extraction

via reading comprehension. ArXiv, abs/1706.04115, 2017.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,

P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,

M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825-2830, 2011.

Edward Loper and Steven Bird. NItk: The natural language toolkit. In In Proceedings of the ACL
Workshop on Effective Tools and Methodologies for Teaching Natural Language Processing and
Computational Linguistics. Philadelphia: Association for Computational Linguistics, 2002.

Tune: Scalable hyperparameter tuning, 2021.
Documentation available at https://docs.ray.io/en/master/tune/index.html.

A Appendix

 f *) Adversarial az Classification
{ ; {Loss | oss
' Domain { t Answer Span

: Discriminator | i Classifier
\ j v4

[Hes | LHo | [He | ~ [He | [He] LHe | Lee |

Domain 3 (D3) Domain K (Dy)

Domain 1 (D,) Domain 2 (D2)

Figure 2: Overall training procedure for learning domain-invariant features from [1]. Our final model
uses DistiIBERT in place of BERT, and we evaluate several different domain partitioning methods.

KL Divergence In-domain QA Loss Out-of-domain QA Loss
0.0035

0.0030

0.0025

0.0020

0.0015,

0.0010
60 120 180 240 300 360 420 480 S40 560 60 120 180 240 30 360 420 480 S40 560 60 120 180 240 300 360 420 480 S40,

Batch Batch Batch

(a) 20-Cluster Hyperparameter Search Results

KL Divergence In-domain QA Loss Qut-of-domain QA Loss

0.0030

0.0025

0.0020

0.0015

—= 25 0.0010

60 120 180 240 300 360 420 400 540 560 60 120 180 240 300 360 420 480 540 560 60 120 160 240 300 360 420 480 540 560
Batch Batch Batch

(b) 40-Cluster Hyperparameter Search Results

KL Divergence Combined QA Loss
9.00275

0.00250,

0.00225

0.00200

0.00175,

0.00150

0.00125, 9.00100 Sh ie ae we ae awe oe ae ay pe, oe ee ae

(c) Source-Based Hyperparameter Search Results

Figure 3: Hyperparameter Search Results. Each line on each plot indicates an additional run of
our model with a different hyperparameter combination. (We were able to run more trials for the
source-based model.)

10

In-domain KL Divergence

Out-of-domain KL Divergence

0.00200 0.00200
— 20-cluster — 20-cluster

0.00175 4 —— 40-cluster 0.00175 4 —— 40-cluster

— Source-based —— Source-based

0.00150 0.00150

0.00125 + 0.00125 +

0.00100 0.00100

0.00075 + 0.00075 4

0.00050 0.00050

0.00025 + 0.00025 +

0.00000 0.00000
0 5000 10000 15000 20000 0 5000 10000 15000 20000

Batch Batch

(a) KL Divergence Training Curves

In-domain Composite QA Loss Out-of-domain Composite QA Loss

5 — 20-cluster 6.0 — 20-cluster
—— 40-cluster —— 40-cluster

— Source-based 5.5 — Source-based

5

a4

34

24

1
0 5000 10000 15000 20000 0 5000 10000 15000 20000

Batch Batch

(b) Composite QA Loss Training Curves

In-domain EM Out-of-domain EM

50 4

40

30

20

10 |
— 20-cluster 5 — 20-cluster
—— 40-cluster —— 40-cluster

o4 — Source-based o4 —— Source-based

0 5000 10000 15000 20000 0 5000 10000 15000 20000
Batch Batch

(c) Exact Match (EM) Training Curves

In-domain F1 Out-of-domain F1

70 +

604

50 4

40

30 4

204
— 20-cluster — 20-cluster
—— 40-cluster 10 —— 40-cluster

104 — Source-based — Source-based

0 5000 10000 15000 20000 0 5000 10000 15000 20000
Batch Batch

(d) Fl Training Curves

Figure 4: Evaluation Metric trends during training. As can be seen in these plots, our composite QA
Loss improved significantly for all three of our models, but the 40-cluster model performed the best
on both EM and F1.

11

