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Abstract 

While recent developments in deep learning and natural language understanding 
have produced models that perform very well on question answering tasks, they 
often learn superficial correlations specific to their training data and fail to gener- 
alize to unseen domains. We aim to create a more robust, generalized model by 
forcing it to create domain-invariant representations of the input using an adversar- 
ial discriminator system that attempts to classify the outputs of the QA model by 
domain. Our results show improvements over the baseline on average, although the 
model performed worse on certain datasets. We hypothesize that this is caused by 
differences in the kind of reasoning required for those datasets, differences which 
actually end up being erased by the discriminator. 
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2 Introduction 

Much progress has been made in the past few years in building large language models to perform 
natural language understanding tasks, and in some areas, including reading comprehension question 
answering (QA), these models can reach or surpass human levels of accuracy. However, it is 
still unclear whether those models truly have a good understanding of human language, and many 
examples show that they often learn brittle connections that fail to generalize beyond the scope of their 
training data. For example, McCoy, Pavlick, and Linzen [1] show that these models can learn simple 
heuristics about language that work in common cases but don’t capture the underlying meaning of 
sentences and fail in more complex cases, and Jia and Liang [2] show that just by adversarially adding 
an irrelevant sentence to question-answering passages we can reduce the accuracy of a QA model by 
over half. Along these lines, we demonstrate that a QA model trained on given datasets of questions 
has much reduced performance on outside datasets, and we attempt to build a robust model which 
can perform more effectively on these out-of-domain questions. Such a model would certainly be 
more useful in the real world, where the questions which are being asked of it will rarely always be 
of the same kind that it has been trained on. 

The approach that we take is using adversarial training. Originating in the field of image processing 
with generative adversarial networks (GANSs), the main idea of adversarial training is to simulta- 
neously train two neural networks with opposing goals with the hope that, when faced with an 
adversarial opponent, they will be able to optimize in a way to overcome that challenge. In domain 
adversarial training, one model is a language model which is trained on inputs from various domains. 
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The other is a discriminator which takes in representations output by the first model and attempts to 
classify which domain they came from. The discriminator’s task is to classify these representations 
as accurately as possible, while the first model’s task is, in addition to solving its original language 
problem, to make it as hard as possible for the discriminator to classify its representations. In doing 
so, we hope that the model will produce representations which are void of domain-specific features 
that will generalize better to unseen data. 

We find that while our question answering model has mixed success on confusing its discriminator, it 
does manage to perform better on out-of-domain data on average, scoring about 2 points higher on 
both EM and F1 metrics on an out-of-domain validation set compared to a baseline that does not use 
adversarial training. 

3 Related Work 

Ganin and Lempitsky [3] in 2015 introduce the idea of domain adaptation through adversarial 
classification for general backpropagation neural networks, and they demonstrate its effectiveness on 
the MNIST digit classification dataset and other problems involving reading text from images. Sato 
et al. [4] bring this methodology to the field of natural language understanding, using adversarial 
training to build a model that performs dependency parsing and scores 3 to 6 points higher on 
UAS and LAS scores compared to their baseline. Lee, Kim, and Park [5] also tackle the reading 
comprehension QA problem using a domain classifying discriminator with a pretrained BERT model, 
and their results show scores of 1.5 to 2 points higher on EM and F1 metrics. Our work builds on 
theirs by reproducing their results on a different set of data and by experimenting with the parameters 
of the discriminator. 

There has also been much work outside of adversarial training on improving domain generalization. 
One approach is a mixture-of-experts technique [6], where a separate model is trained for each 
in-domain dataset along with an adaptive gating function. When presented with out-of-domain 
data, the gating function chooses some combination of the outputs of each of the “expert” models, 
allowing each model to focus on learning its own dataset and delegating the adaptation to the gating 
function. More recently, an approach that has become popular is meta-learning [7], where the model 
is pre-trained on a set of multiple tasks in a way such that it can learn new tasks with much fewer 
examples. Li et al. [8] use ideas from meta-learning to develop a method of training any model to be 
more robust to domain changes, rather than just creating a specific model. However, Lee et al. tested 
this method on transformer QA models and found that they were both slower to train and did not 
result in increased performance, so we did not follow this path. 

4 Approach 

Our baseline QA model is a pretrained DistiIBERT model [9] which is finetuned on the question 

answering task using data from three different domains (described in detail in Section 5). This model 
was provided to us as part of the starter code for the Default Project. The discriminator model is a 
3-layer MLP which takes as input h, the QA model’s representation of its input question and answer, 
and outputs a probability distribution specifying which one of the domains it believes its input came 
from. In our case, h is the representation of the [CLS] token at the last layer of the QA model. This 
discriminator model follows ideas from [5] but was completely implemented myself. The structure of 
the full model is presented in Figure 1. 

The main modifications to the baseline that were made are changes to the loss functions. Since the 
QA model wants to successfully answer questions but also confuse the discriminator, we add a term 
Lp to the loss of the original DistiIBERT model Lg, for a total loss of 

L=Loat+rLp 

where ) is a hyperparameter to be tuned. The goal is for the discriminator to be completely unable to 
tell which domain its input came from; i.e. for the discriminator to output the uniform distribution over 
its classes, so £p is calculated as the Kullback-Leibler (KL) divergence between the discriminator’s 

prediction and the uniform distribution.
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Figure 1: Structure of the QA model and discriminator, taken from [5] with modifications 

On the other hand, the discriminator’s goal is to predict the correct domain for its input, so its loss 
function is the cross-entropy loss between its output and the true domain /: 

L = — log Paisc(2) 

For each step of training, we alternate between training the QA model on an input and then the 
discriminator on the model’s embeddings of that input. In both models, loss functions are averaged 
across the batch and optimized using AdamW [10] with a learning rate of 3 x 107°. 

5 Experiments 

5.1 Data and evaluation 

The model was trained on questions from three datasets of different domains: SQUAD [11], Natural 
Questions [12], and NewsQA [13]. These will be referred to as the IID datasets. Each dataset 

in the training data contained 50000 questions along with the passages containing the answers to 
those questions, and the model was tasked to perform reading comprehension on that data. It was 
then evaluated on questions from three separate domain datasets: DuoRC [14], RACE [15], and 
RelationExtraction [16], referred to as the OoD datasets. The model was scored on EM (Exact Match) 
and F1 metrics. 

5.2 Improving the baseline 

For our first experiment, we simply added the discriminator to the QA model while leaving everything 
else the same. The hyperparameters relating to the discriminator follow those used in [5]: the model 
itself is a 3-layer MLP with a hidden layer size of 768, and we use A = 0.01 for the weighting 
parameter in the QA loss. 

The second experiment we performed added small samples (127 questions each) from the three 
out-of-domain datasets to the training data. Though the small number of samples were probably not 
enough for the model to learn too much directly, the discriminator was forced to differentiate between 

six domains instead of three, and likewise the QA model had to create representations that made the 
discriminator predict all 6 classes as equally likely. We hoped that in doing so, the QA model could



learn something about all the classes even when processing training samples in the IID datasets. The 
results are shown in Table 1: 

Model | TrainEM TrainFl EvalEM_ Eval Fl 

Baseline 54.77 70.51 31.68 47.10 

Adversarial IID 54.42 70.58 32.72 49.39 

Adversarial Combined 54.15 70.10 33.51 49.16 

Table 1: Model performance with and without the discriminator 

  

The model achieved comparable performance on the in-domain datasets and managed to outperform 
the baseline on the out-of-domain datasets on both EM and F1 metrics, both when including and 

excluding samples of OoD data. The model that included OoD data performed slightly better in EM 
score and the same in F1. 

5.3. Tuning loss weighting 

In the Adversarial IID case without OoD data, the discriminator accuracy remained high throughout 
most of the training process, so our next experiment was testing how increasing A would affect 
model performance. Recall that \ determines how the QA model weights its own loss and the loss 
arising from the discriminator, so increasing tells the model to put more importance on confusing 
the discriminator. We tested values of 1 = 0.05 and \ = 0.1, and the model performance and 

discriminator performance are shown in Table 2 and Figure 2 respectively. All of our experiments 
attained similar performance on the in-domain datasets, so we omit the train scores from here on out. 

Lambda | EvalEM _ Eval Fl 

(original) 0.01 32.72 49.39 

0.05 31.15 47.25 

0.1 31.15 46.19 

Table 2: Model performance for different values of > 

  

disc 

tag: val/dise 

  A=0.01 

A=0.05 

A=0.1 

  
  

Figure 2: Discriminator accuracy during training for different values of 

The results seem to suggest that while increasing lambda was successful in producing representations 
that were better at confusing the discriminator, they were also worse at performing the original task 
of question answering. 

5.4 Tuning the discriminator size 

In the Adversarial IID + OoD case, the discriminator started off strong but gradually became 
less successful as training continued, suggesting that it had more trouble when asked to perform 
classification over six domains as opposed to three. We decided to experiment with increasing the



Hidden size | EvalEM Eval Fl 

(original) 768 33.51 49.16 
1536 33.51 49.21 

Table 3: Model performance for different discriminator hidden layer sizes 
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Figure 3: Discriminator accuracy during training for different hidden layer sizes 

hidden size of the discriminator when using all six training datasets, hopefully giving it more power. 
The results are shown in Table 3 and Figure 3. 

There seemed to be no significant difference in model performance or discriminator performance 
when increasing the hidden layer size, suggesting that this was not a particularly important factor. 

5.5 Individual dataset performance 

Finally, we investigated the performance of some of our original models from Section 5.2 on the six 
individual datasets. The results are shown in Table 4. 

  

  

  

SQuAD_ Nat. Questions NewsQA DuoRC RACE RelationExtraction 

Baseline EM | 63.33 52.80 39,27 33.33 23.44 38.28 
Baseline F1 77.01 69.43 57.51 40.31 36.76 64.12 

Adv-IID EM | 62.17 52.55 40.72 33.33 22.66 42.19 
Adv-IID F1 76.51 69.50 58.97 43.41 37.32 67.34 

Adv-Comb EM | 62.47 51.94 39.53 34.92 13.28 52.34 
Adv-Comb F1 77.32 69.02 58.05 43.12 29.00 75.25   

Table 4: Model performance on individual datasets 

The adversarial model trained on just IID train data performed neutral or slightly better on all of 
the OoD datasets, while interestingly, the model trained with the combined train data performed 
significantly worse on RACE but significantly better on RelationExtraction. The large degradation on 
RACE is not something we expected, and we will discuss this further in section 6. However, because 
the Adv-Combined model still had the best average EM and F1 score, and because the distribution of 

questions in the test set favored questions from RelationExtraction, we decided to submit that one to 
the test leaderboard. 

Our final test submission is: EM = 42.706, F1 = 60.202. 

6 Analysis 

6.1 Dataset analysis 

The key question to discuss with regard to our results is why our final model performs so well on 
RelationExtraction but loses performance so sharply on RACE. To do this, we took a deep dive into



the kinds of passages and questions that showed up in our training and evaluation datasets. What 
we found was that in our IID datasets, the vast majority of questions focused on extracting details 
within the passage: the formats of the passages varied but the answer could be found just by looking 
at one or two lines of the passage. The model’s job would be to dig through the passage and correctly 
identify which lines to extract. However, many of the questions from RACE required a higher-level 
understanding of the passage, often requiring us to consider the passage as a whole, summarize parts 
of the passage, or compare or count up various different parts of the passage. These RACE questions 
require a slightly different kind of thinking than simple detail extraction. 

We hypothesize that this is why all of our models exhibit reduced performance on RACE, but 
especially the discriminator model which had samples of RACE data during training time. When 
presented with these different kinds of questions, it is unclear what the Adv-IID model should try to 
do, and indeed it doesn’t get great performance. However, the Adv-Combined model had already 
seen these kinds of questions during training, and more importantly needed to convert them into 
representations which were as indistinguishable as possible from the usual detail extraction questions 
seen in other datasets. The issue is that these representations may not have been the best way to 
approach this kind of problem. When faced with further RACE questions, it would also produce 
these less effective representations. 

We can see this occurring in various concrete instances. For example, given a passage about a boy’s 
trip to the ocean, the question asks “Where did the story take place?” The IID model answers the 
correct answer of “by the sea.” However, the Adv-Combined model focuses in on one part of the 
story and answers “beach.” Other examples are shown in Appendix A. 

On the other hand, we believe that the addition of the discriminator does help the model avoid learning 
specific features of the different kinds of passages particular to each dataset, such as the way news 
articles are generally structured for NewsQA. This helps it attain a higher success rate on DuoRC 
and especially RelationExtraction, whose questions are generally detail extraction problems but from 
shorter and differently structured passages. 

6.2 Loss weighting analysis 

We also found it interesting that the model that performed best on question answering had a dis- 
criminator accuracy averaging around 70%, meaning the representations that performed the best on 
OoD data were not particularly domain-independent on IID data. This could suggest that there are 
domain-specific features that the network should learn in order to answer questions well, but that 
these features can transfer over to other datasets. It could also mean that the model simply added 
noise to confuse the discriminator which did not actually help with question answering in any way, 
and with higher A the model just added more noise. It would be interesting to try to discern if either 
of these is the case, though we are unclear on how to do so. 

7 Conclusion 

In this project, we implemented and evaluated an adversarial training system for robust reading 
comprehension question answering on multiple domains. This system improves upon the baseline 
DistilBERT model on both EM and FI scores, and achieves a final test set score of EM = 42.706 

and F1 = 60.202 which is 5th place on the leaderboard at the time of this writing. We experimented 
with different hyperparameters of the adversarial model, including weighting between the original 
loss and adversarial loss and tuning hidden layer size, to find those that gave the best performance. 
However, we found that the system was not perfect, and while it improved performance on average, it 
increased performance sharply in some areas while actually regressing in others. 

Given the results which seem to suggest that perfectly domain-independent representations do not 
perform best, one future avenue of work to look at is partial domain independence. We could 
experiment with only using a part of the QA model’s representation in the discriminator, forcing 
certain features to be independent while allowing it to learn other domain-specific features, or using 
multiple models where one has a discriminator and the other does not, and concatenating their outputs 
to use in question answering.


