
Question Answering with Self-Attention 

Stanford CS224N Default Project 

Georgios Sarmonikas 
Department of Computer Science 

Stanford University 
gs7776@stanford.edu 

Abstract 

Question Answering (QA) is an increasingly important topic in NLP with the 
proliferation of chatbots and virtual assistants. In this project a QA system is 
built by exploring two end-to-end models: a) the Bi-Directional Attention Flow 
network (BiDAF) and b) QANet, a non-recurrent model fully based on convolution 

and self-attention, capable to achieve up to 13x speedup in training and inference 
time. Two major goals were accomplished: Firstly, the baseline BiDAF model 
was improved by adding a character embedding layer, an embeddings attention 
layer, a context-to-context self-attention layer, gated recurrent units and Swish 
activation. Secondly, the QANet model was re-implemented from scratch and 
successfully explored some hyperparameter finetunings to improve performance. 
The improved BiDAF model, SA-BiDAF++, achieved 67.03 EM / 70.1 F1 scores 

on the development set and 65.31 EM / 68.78 F1 scores on the test set of the 
SQuAD 2.0. 

1 Key Information to include 

¢ Mentor: Rui Yan 

¢ External Collaborators (if you have any): None 

e Sharing project: N/A 

2 Introduction 

Machine reading comprehension and Question Answering (QA) systems are two domains of Natural 
Language Processing (NLP) which over the past years have made significant progress. Reading 
comprehension is the ability to process text and understand its meaning, while QA systems aim 
to understand a given context or text passage and predict the correct answer for a corresponding 
query, by extracting a short span of text from a corresponding context paragraph and present it as 
the answer. This is the objective of SQUAD (the Stanford Question Answering Dataset) models [1]. 

In SQuAD 2.0, an additional challenge was introduced: The model has to indicate when a question 
is unanswerable given the corresponding context paragraph. An accurate execution of this task has 
many important and practical applications such as in Search Engines, chat-bots, virtual assistants and 
more, and therefore is an active area of research. 

Recently a variety of neural architectures exceeded human performance in the QA task according to 
the SQUAD leaderboard [2]. These advances can be broadly categorised into a) Pre-trained Contextual 

Embedding (PCE) methods which are usually “off-the-shelf” models such as BERT [3] that could 

be employed for specific tasks, and in many cases using ensemble methods to achieve very high 
performance, and b) Non Pre-trained (Non-PCE) methods, which are not achieving state-of-the-art 

performance but allow for deep learning practitioners to explore different techniques, develop new 
models or enhance model implementations. 

Stanford CS224N Natural Language Processing with Deep Learning



This project focuses on the latter approach using the SQUAD 2.0 dataset and has experimented with 
some of the most successful non-PCE methods like the Bi-Directional Attention Flow (BiDAF) [4] 

model and the QANet model [5], with the overall goal to achieve the highest performance possible 
on the Non-PCE SQuAD 2.0 leaderboard. 

A basic baseline implementation of BiDAF is provided by the course, and so my experiments are 
related to proposing improvements to the architecture to achieve higher performance than the baseline. 
Being inspired by [5] and [6], Self-Attention layers are added to the model structure. Also, a character 
embedding layer is added, changed the recurrent units from LSTM to Gated Recurrent Units (GRU) 
and replaced ReLU with Swish [7] activation functions. The improved BiDAF model added a gain of 
11 EM points and 10 F1 points compared to the basic baseline BiDAF model, when measured on the 
dev set of the given SQUAD 2.0 set. 

In addition, the QANet model is re-implemented in Pytorch and re-evaluated using the SQUAD 2.0 set. 
It adapts ideas from the Transformer [6] by replacing the RNNs with convolutions and self-attention. 
The main component of QANet is the Encoder Block which is similar to the Transformer but differs by 
its use of stacked convolution sublayers which use depthwise-separable convolution to capture local 
dependencies in the input sequence. While it was difficult to reproduce the performance, especially 
the training boost reported in the original paper, a few simple hyperparameter modifications are 
proposed that can improve the performance, as described in the Experiments section. Lastly, the 
model is compared against the baseline BiDAF and the new improved BiDAF model. 

3 Related Work 

Machine question-answering has been an active area of research in the past few years. Datasets like 
SQuAD 2.0 [8] are very popular benchmarks for NLP research, especially for Q&A or NMT tasks. 
This has allowed the development of many models (non-PCE) in the recent years that have achieved 
significant progress in achieving close to human performance. 

The BiDAF [4] model is one such model. It employs both recurrent neural network units such 
as LSTM for capturing the sequential input, and also exploits the use of attention mechanism for 
capturing long-term interactions. Its architecture is based on a hierarchical multi-stage end-to-end 
network which takes inputs such as character, word and phrase to obtain a query-aware context 
representation using memory-less context-to-query (C2Q) and query-to-context (Q2C) attention. This 
representation can then be used for different final tasks, such as question answering. 
In BiDAF, the attention at each time-step is a function of the question and the context and does not 
depend on the attention of the previous time-step. This allows the model to focus on the interaction 
between Query and Context at each time-step. One major disadvantage of this model is that it is 
heavily reliant on RNNs (Recurrent Neural Networks), which are resource intensive and slow in 

training. Also, the sequential nature of RNNs prevent parallel computation, since tokens must be fed 
into the RNNs in order. 

To improve upon these disadvantages, a breakthrough was made by Vaswani et.al in "Attention Is 
All You Need" [6], where the Transformer architecture was proposed. This architecture relies solely 
on attentions and compute representations of its input and output without using sequence-aligned 
recurrent layers nor convolution layers. It achieved great results in neural machine translation, and 
since then has shown advantages over RNNs in many other tasks. 

QANéet [5] was published about a year later, in 2018, which increased the training speed by discarding 
the recurrent architecture. It borrowed ideas proposed in the Transformer [6] architecture and 
exclusively used convolutions and self-attention as the building blocks which encode the question 
and context separately. Standard attentions are used to learn the interactions between context and 
questions and then the final answers are predicted based on RNN-free encoded representations. The 
authors estimated that QANet was training 4.3 times faster than BiDAF, and had 7 times faster 
evaluation, which means a significant advantage as they could use data augmentation techniques to 
increase the number of training examples available, and process more training data than the BiDAF 
model. Prior to PCE methods such as BERT, QANéet had state-of-the-art performance for SQUAD 1.1 

significantly outperforming the previous best model on the official SQUAD leaderboard.



4 Approach 

This project is addressed in two parts: 1) Improving BiDAF model and 2) Re-implementing QANet. 

4.1 BiDAF 

BiDirectional Attention Flow Model (BiDAF) consists of five layers, which are: Embedding layer, 
Encoder layer, Bi-direction Attention layer, Modeling layer and Output layer, as shown in the model 
architecture in Figure 1.A. 

Start End Query2Context 

hy he hr Attention 
Flow 
Layer 

  
Output Layer 

     

    

Modeling Layer 

    
Context2Query 

Attention Flow 
Layer   

  

Phrase 
Embed 
Layer 

  
    

« |aletetiette   
                  Phrase Embed 

Layer     
  Word Embed ee Character/ 

Wor:   
Word Character 

Embedding Embedding 
+ u 5 . 

oe os GLove | | char-cnn Context Guey Eee 

(Character 
Embed Layer     

  

  

  

Embedding 
Layer       

Figure 1: BiDAF architecture: A) original architecture, B) SA-BiDAF++ (with Self-Attention, 
Bi-GRU and Swish Activations) 

4.1.1 Baseline: without character embedding 

The baseline of the BiDAF model is provided by the teaching course, and it only used pretrained 
GloVe word embeddings with 300 dimensions. That is the BiDAF baseline in this project. 

4.1.2 BiDAF with character embedding 

The character-level embedding was not implemented in the above mentioned baseline, as when 
compared to the implementation of the original BiDAF paper. This embedding can be an extra feature 
for the questions and contexts and can be useful for improving the model performance. 

To match therefore the original BiDAF model, a character-level embedding block is added which 
can extract information from the internal structure of words and provide benefit for typos or new 
words. It first embeds with the pretrained 300 dimension GloVe word-embedding for both context 
and questions and then concatenate with 64 dimension character-level embedding. The embedding 
block contains two convolutional networks with kernel sizes 5 and 3 respectively, extracting the 
char-level information. The output, word-character embedding, then follows the original procedure 
for the downstream blocks. 

4.1.3. Embeddings Attention 

Inspired by the use of attention in [6] and how it can improve performance, an extra layer of attention 
is added for the word-character embedding block which summarizes or calculates the "mean" of each 
one of the char and word vectors. Instead of just averaging or using max pooling, a learning function 
learns to compute the weights for each of the character and word vectors before summing them 
together. Weighting the vectors by the value this attention module learns, can be seen as computing 
the expection of the char and word vectors. Each learned attention weight is then appended back 
to the original (char and word) vectors, prior to following the procedure to the RNN Encoder layer. 
That helps the model pay attention to different parts of the char-word vector, further improving the 
performance.



4.1.4 Context to Context Self-Attention 

The baseline model already included the bi-directional attention flow which can capture the context- 
query and query-context attentions. However, to help improve the coreference resolution, as men- 
tioned in [9], an extra layer of self-attention is added which computes the attention scores between 
contexts. This is implemented by taking the BiDAF attention score tensor into a linear layer to change 
its dimensions. Then it passes through non-linear activation function and dropout, then to a RNN 
encoder to encode the scores and finally mix with the original input after computing the similarity 
between the two contexts and normalising them with a masked softmax function. The modified 
architecture, including the C2C Self-Attention is shown in Figure 1.B. 

4.1.5 Fine-tuning 

Several training approaches have also been explored. The modeling layer was changed from using 
LSTM to using GRU and increased the layers to two. That has reduced the time to train the model. 
In addition several non-linear activation functions were explored beyond ReLU; initially used SELU 
[10] and lastly, inspired by [7], used Swish which achieved the best BiDAF performance on the 

SQuAD 2.0 dev set. 

4.2 QANet 

In contrast to BiDAF, which applies the bidirectional Recurrent Neural Networks to capture the 
contextual information, QANet applies the self-attention with convolutions to reach the goal. The 
model consists of 5 main blocks, illustrated in the left part of Figure 2: An input embedding layer, an 
embedding encoding layer, a context-query bi-attention layer, 3 repeated model encoding layers, and 
an output layer. 

Model One Encoder 
Block 

  

    
  

  

Figure 2: QANet model architecture and its Encoder block from the paper by Yu et al [5] 

The input embedding layer is very similar to the one used in the BiDAF implementation. It 
consists of the GloVe embeddings of each word concatenated with the output of a convolutional 
layer that processes the embeddings of each character that makes up a word up to a maximum length 
of 16 characters per word. The only difference is that instead of using the pre-trained character 
embeddings of dimension 64, each character is represented as a trainable vector of dimension 200. 
The concatenated vectors are then passed through a two-layer highway network, similar to BiDAF. 

Then the input is passed through the embedding encoder layer. Each encoder block consists of 
a positional encoding layer, several convolution layers, a self-attention layer, and a feed-forward 
layer. The positional encoding is added, since otherwise the convolutional structure of the network 
would lose track of that information. The rest of this block consists of several depthwise separable 
convolutions, followed by a multi-head self-attention layer and finally a feed-forward layer. The 
idea is that “convolution captures the local structure of the text, while the self-attention learns the 
global interaction between each pair of words.”. The positional encoding sublayer and self-attention 
sublayer are the same as those in the Transformer model [6].



A context-query attention layer is then followed which is the same as the one used by the BiDAF 
model, and was reused from the BiDAF implementation. The attention output is expressed as 
Gs = [C3 A535; 0 a4; OB] E IR®¢ where d is the hidden dimension, C1,+--,€n the context input, 

a1,...,an and by,..., bx the context-to-query and query-to-context attention. 

The output of the attention layer is then fed through the model Encoder layer, which consists 
of several Encoder blocks chained together. The number of convolutions in each block can be 
different from the number we had in the encoder blocks of the embedding encoder layer. This step 
is repeated three times to get three output matrices Mo,M,,M2,in which the weights are shared 
between each repetition. Then these matrices are fed through the output layer, which follow a similar 
strategy as the one used in BiDAF. The probabilitis of starting and ending position are modeled as: 
Dstart = softmaxz(Wi[Mo, Mi]), pena = softmax(W2[|Mo, M2]) and are computed independent 
from one another. 

The original paper also describes a data augmentation process. This was not implemented due to lack 
of time. That may have caused though the implemented model to train slower than the original model 
which claim to have achieved 3x-13x faster training than RNN-based models. 

5 Experiments 

5.1 Data 

For this project we are using the updated Stanford Question Answering Dataset [8], named SQuaD 
2.0, which extends the original dataset with unanswerable questions. It consists of 100k+ examples 
from Wikipedia articles and the questions and answers were crowdsourced using Amazon Mechanical 
Turk. Each question is either unanswerable using the provided paragraph or has an answer that is a 
chunk of text taken directly from the paragraph. This means that the model has to decide whether 
a question is answerable, and if so, select a span of text in the paragraph that answers the question. 
About half of the questions are unanswerable. 

The dataset that is used in this project is a slightly modified version of the SQUAD 2.0 dataset, where 
our training data is identical, but our dev and test sets are drawn from the official dev data. The data 

consists of (context, question, answer) triples, and each paragraph has an average length of around 
250 words and the questions are usually around 15 words. 

The dataset is split into three subsets: train, dev and test examples. The models are trained on the train 
set and the hyperparameters are tuned on the dev set. The test set is used for the evaluation against 
the SQUAD leaderboard. The training set used has 87k query-answer pairs, 10.1K for validation, and 
another 10.1K for testing. 

5.2 Evaluation method 

Evaluation of performance of the QA models is based on a) Exact Match (EM) score, measuring 

whether the answer span matches exactly with the ground truth answer, b) Fl score, computed as the 
harmonic mean of precision and recall, where precision is calculated as the number of correct words 
divided by the length of the predicted answer, and recall is calculated as the number of correct words 
divided by the length of the ground truth answer F'1 = 2 « precision * recall/(precision + recall), 
c) Answer vs. No Answer (AvNA), during the training process, which is the percentage of correct 
predictions of whether or not a question is answerable. 

5.3. Experimental details 

5.3.1 BIDAF experiments 

The BiDAF experiments started with the baseline model. To run the experiments, an Azure VM 
instance with GPU acceleration was used as well as my local machine. Training time was about 
50 minutes per epoch initially. To speed up the development iteration the model was trained for 20 
epochs instead of 30. Also, Google Colab was used with GPU acceleration and that reduced the 
training time to about 25mins per epoch on the baseline model, since the P100 GPU in Colab is better 
than the one in Azure VM. That helped a lot with iterating and testing quickly different ideas and 
experiments.



To increase the model performance a character-level embedding was added to the baseline model. 
One Conv 1D layer was used using kernel size = 3 and ReLU activation. That did not improve the 
performance much (only by 0.5 EM/F1 points) and slowed down the training process. 

The learnable Embeddings attention as described in Section 4.1.3 was added to the embedding layer 
to further boost the performance. To decrease the training time, LSTM was replaced by GRU. That 
has led to simplified training as GRU require to do less calculations than LSTM. Also the training 
process was further reduced to about 15mins when using the GPU-accelerated Google Colab instance. 
In addition and as described in Section 4.1.4, Context-to-Context Self-Attention layer was added to 
the model. This has led to have more total layers and made the model more complicated and training 
time was increased to about 30mins per epoch. 

To further improve the performance, two convolution layers were added in the character embeddings 
layer, one after the other to be able to learn more hidden structure from the embeddings. In the first 
one kernel size = 5 was used and the second used had kernel size = 3. Also, batch normalization 

was added. Batch normalization ensures that the mean and standard deviation of the layer inputs 
will always remain the same, thus, the amount of change in the distribution of the input of layers 
is reduced. That helps with the learning process. An additional benefit is that batch normalization 
has a regularization effect, which can help overcome overfitting and also help learn better. In our 
experiments that regularization effect was not visible, however it helped to achieve better performance 
in the evaluation metrics. 

The activation function was also changed from ReLU to SELU [10]. ReLU suffers from the dying 
ReLU problem, in which the weight can get trapped in a dead state - the activation function stuck 
at the left side of zero. Scaled Exponential Linear Unit (SELU) is similar to ReLU, but provides 
benefits such as internal normalization, unlike ReLU cannot die and can learn faster and better, as 

mentioned in [10]. The change from ReLU to SELU reduced the training time by about 6 mins (in 
the Google Colab environment) and improved the model performance by about | points for both EM 
and F1 metrics. 

Having as reference the extensive experiments done recently on activation functions by Ramachandran 
et.al in [7], I started to experiment further and applied the Swish activation function. Swish is given by 
f(x) = x-o0(82) where o() is the sigmoid function and £ is either constant or a trainable parameter 
depending on the model. Extensive experiments in [7] show that Swish consistently matches or 
outperforms ReLU and SELU in a variety of challenging domains such as image classification and 
machine translation. Swish, like SELU, also solve the dead ReLU problem because the derivative 

is non-zero for all x. Initially Swish was used in the Embedding layer after the convolutions and it 
achieved better results than SELU. Then all activation function in the BiDAF network were replaced 
by Swish. That proved to be successful given a jump to the performance by 1.74 and 1.6 points for 
EM and F1 respectively. It is important to notice that 6 was set to one (3 = 1) for simplicity. In that 
case, Swish becomes same as the SiLU activation, as mentioned in [11]. 

All the changes to the baseline BiDAF, including Embeddings Attention, Context-to-Context Self- 
Attention layers, GRU, as well as the change from ReLU to Swish, increased the model performance 
by a total of 10 points for both EM and Fl when compared to the baseline performance. It is important 
to notice than this performance is reported at half the epochs (15 epochs) to the baseline performance 
values (30 epochs). The hyperparameters used to train the improved BiDAF model were: learning 
rate=0.5, dropout rate=0.2, batch size=64, hidden size=100. These remained the same to be able to 

compare the outcomes of each iteration. See Appendix Figure 4. 

5.3.2 QANet 

For the implementation of the QANet model, an exact reproduction of the parameters described by 
Yu et al. in [5] was initially attempted. Adam optimizer was used with 3;=0.8, G=0.999, e=10~7 

and L2 weight decay=3-10~ "; 200-dimensional pretrained GloVe vectors were used for word-level 
embedding. The hidden size was 128 like the original paper, but I also experimented with hidden size 
96 and found that it decreased both F1 and EM scores by around 1.0 points, while not giving any 
boost in training speed. This was tested with a quick training iteration of only 10 epochs. 

Also, like in the original paper, I used 8 heads in the self-attention layer, 7 encoder blocks in the 
model encoder layer, with 2 convolutions and kernel size of 5. Also for the embeddings encoder used



4 convolutions with kernel size of 7 and one encoder blocks. The dropout rates were set same as the 
original paper, 0.1 for word and between every two layers and 0.5 for characters. 

When developing the QANet model, lots of trial and error iterations were necessary until the model 
train without memory issues. The QANet model seemed to require much more memory for the 
multi-head attention. Initially the model was run on the Azure VM. However, with hidden size = 96, 

multi-head attention = 1, batch size = 32, the model achieved lower performance than the baseline 

BiDAF model, see Model-id 7 in Figure 3. The use of the original paper parameters meant more 
memory requirements and faster GPU. Therefore, Google Colab was used once again in which the 
GPU acceleration (P100) was much better than the one provided by the Azure VM. However, and 
despite the better GPU, the QANet model took much longer to train (almost 90% longer) when 
compared to the improved BiDAF model. The experiment which provided best results was when 
batch size is 24 , 128 for hidden size and 8 for multi-head attention. 

5.4 Results 

The best BiDAF model achieved a EM: 67.03 and F1: 70.1 on the dev set and EM: 65.31 and F1: 
68.78 on the course test set, ranked 4th in the leaderboard at the time of writing. I have named 
Self-Attention BiDAF++ (or SA-BiDAF++), due to the improvements with Self-Attention and other 

modifications in the architecture mentioned above. See Model-id 6, in Figure 3. 
To compare, the re-implemented QANet model achieved EM: 63.85 and F1: 67.19 on the dev set. It 
took almost double the time to train it, averaging about 70 minutes/epoch, while BiDAF with all the 
modifications took on average 30 minutes/epoch in Google Colab with GPU being P100. Therefore, 
the training performance boost that is claimed in [5] was not validated. 
I expected QANet to perform much better in both training performance and EM/F1 score evaluation 
than BiDAF. This is in big contrast with the finding of the original paper, where QANet equals the 
peak F1 score of BiDAF after one-fifth of the training time and trained at least 3x faster. I believe this 
may be due to two reasons: a) my implementation is sub-optimal and/or b) data augmentation which 
was not implemented due to lack of time. 

  

  

  

Model Id Model details DEY Test 
EM (%) F1 (%) AvNA (%) Epochs EM (%) F1 (%) 

1 BiDAF - baseline 56.48 59.75 66.83 30 * * 

2. +Char Emb + Attention 61.89 65.11 71.06 20 * : 

< 3. + with SELU activation 62.91 66.01 71.98 30 * * 

a 4 | +GRU (in RNN Encoder) 62.53 66.12 72.22 15 61.640 64.937 

5 + Modified Conv layer with kernel_size=3 64.07 67.48 73.47 15 * * 

6 + 2x Conv1D layers, +Batch_Norm, + Swish 67.03 70.1 74.83 15 65.309 68.781 

5 7 = QANET - baseline (n_conv=1, n_heads=1, hidden=96, bs=32) 56.16 59.41 66.02 18 = : 

= 8 QANET - (n_heads=8, hidden=128, bs=24) 63.85 67.19 73.21 15 * * 

Figure 3: Model results at each implementation level 

6 Analysis 

Here are some randomly picked questions where the SA-BiDAF++ model did not answer correctly: 

Question: What natives were displaced by British takeover in Florida? 
Context: For many native populations, the elimination of French power in North America meant 
the disappearance of a strong ally and counterweight to British expansion, leading to their ultimate 
dispossession. The Ohio Country was particularly vulnerable to legal and illegal settlement due to the 
construction of military roads to the area by Braddock and Forbes. Although the Spanish takeover of 
the Louisiana territory (which was not completed until 1769) had modest repercussions, the British 
takeover of Spanish Florida resulted in the westward migration of tribes that did not want to do 
business with the British, and a rise in tensions between the Choctaw and the Creek, historic enemies 

whose divisions the British at times exploited. The change of control in Florida also prompted most 
of its Spanish Catholic population to leave. Most went to Cuba, including the entire governmental 
records from St. Augustine, although some Christianized Yamasee were resettled to the coast of 
Mexico. 
Answer: Choctaw and the Creek



Prediction: N/A 
Comment: Maybe the model could not answer this question because the "rise in tensions" does not 
have the direct meaning of being displaced. Moreover, the "westward migration of tribes" which 
means displacement, does not infer to a particular tribe. One could argue that this is a bit hard even 
for humans unless someone reads the question a couple of times. 

Another interesting example is the following: 

Question: What is the largest city in Carpathia? 
Context: Warsaw (Polish: Warszawa [var’ava] ( listen); see also other names) is the capital and largest 

city of Poland. It stands on the Vistula River in east-central Poland, roughly 260 kilometres (160 mi) 
from the Baltic Sea and 300 kilometres (190 mi) from the Carpathian Mountains. Its population is 
estimated at 1.740 million residents within a greater metropolitan area of 2.666 million residents, 
which makes Warsaw the 9th most-populous capital city in the European Union. The city limits cover 
516.9 square kilometres (199.6 sq mi), while the metropolitan area covers 6,100.43 square kilometres 
(2,355.39 sq mi). 

Answer: N/A 
Prediction: Warsaw 
Comment: Here the model makes the inference that Carpathia is a region or are in Poland and 
therefore predicts that Warsaw is the largest city, as indicated in the context. It is clear that the model 
does not have common sense logic to reason that Warsaw is located 300 kilometer from Carpathian 
Mountains and also that Carpathia is a mountain region covering many countries and cities. This is an 
example in which the model should have answered "Non Answer" since the context does not provide 
the answer. Maybe by embedding additional knowledge e.g. via a knowledge base the problem in 
this example could be addressed. 

Another interesting example from the QANet model implementation is the following: 
Question: What are the secondary sources of primary law? 
Context: European Union law is a body of treaties and legislation, such as Regulations and Directives, 
which have direct effect or indirect effect on the laws of European Union member states. The three 
sources of European Union law are primary law, secondary law and supplementary law. The main 
sources of primary law are the Treaties establishing the European Union. Secondary sources include 
regulations and directives which are based on the Treaties. The legislature of the European Union is 
principally composed of the European Parliament and the Council of the European Union, which 
under the Treaties may establish secondary law to pursue the objective set out in the Treaties. 
Answer: regulations and directives 
Prediction: N/A 
Comment: This is an easy case in which the model did not perform well. The answer is in the same 
sentence as part of the question and therefore it should have predicted the answer. Maybe by capturing 
a longer context of the embedding could improve this problem. 

7 Conclusion 

This project explores a variety of methods for Q&A task on SQuAD 2.0. It gave the opportunity to 
gain hands-on experience on implementing advanced deep learning architectures from scratch. 
The first experiment was performed with the baseline BiDAF model and improved its performance 
by adding character-level embedding, Attention on the embedding, context-to-context self-attention, 
GRU and Swish activation function. Second, QANet achieved higher performance than the BiDAF 
baseline. However it has not achieved the training boost and prediction of the original paper, maybe 
due to not implementing data augmentation. 
Overall, the experiments and analysis demonstrated the power of self-attention mechanisms in deep 
learning models for question answering systems. These improved significantly the baseline BiDAF 
model giving the best F1 (70.1%) and EM(67.03%) scores on the dev set and F1 (68.78%) and 

EM(65.31%) scores on the test set, coming 4th at the leaderboard. That is a clear indication that 

architecture finetunings and optimizations on non-PCE models can achieve a great performance, but 
maybe not easy to reach the performance of PCE and/or Ensemble models. Future work can involve 
the implementation of the data augmentation in QANet and ensembling both SA-BiDAF++ with 
QANet to achieve higher EM/F1 scores.



References 

[1] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions 
for machine comprehension of text. arXiv preprint arXiv: 1606.05250, 2016. 

[2] https://rajpurkar.github.io/SQuAD explorer/. The stanford question answering dataset. 

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of 
deep bidirectional transformers for language understanding. arXiv preprint arXiv: 1810.04805, 
2018. 

[4 S
y
 Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional 

attention flow for machine comprehension. arXiv preprint arXiv: 1611.01603, 2016. 

[5 “
4
 Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Mohammad Norouzi, 

and Quoc V Le. Qanet: Combining local convolution with global self-attention for reading 
comprehension. arXiv preprint arXiv: 1804.09541, 2018. 

[6] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, 

Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. arXiv preprint arXiv: 1706.03762, 
2017. 

[7] Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. arXiv 
preprint arXiv:1710.05941, 2017. 

[8 “
4
 Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable 

questions for SQUAD. In Association for Computational Linguistics (ACL), 2018. 

[9 — Christopher Clark and Matt Gardner. Simple and effective multi-paragraph reading comprehen- 
sion. arXiv preprint arXiv:1710.10723, 2017. 

[10] Giinter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing 

neural networks. arXiv preprint arXiv: 1706.02515, 2017. 

[11] Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network 
function approximation in reinforcement learning. Neural Networks, 107:3-11, 2018. 

A Appendix 

A.1 Hyperparameters 

Hyperparameters Model 
SA-BiDAF++ QANet 

Hidden Size 100 128 

Batch Size 64 24 

Optimizer Adadelta Adam 

Learning rate 0.5 1E-03 

L2 Wd 0 3E-07 

EMA decay 0.999 0.9999 

beta1 N/A 0.8 

beta2 N/A 0.999 

Activations Swish (with B=1) ReLU 

Evaluation Steps 50k 20k 

char_dim 64 64 

char_limit 16 16 

Ans_limit 30 30 

Figure 4: Hyperparameters of SA-BiDAF++ and QANet 

Note: QANet model refers to Model-id 8 as per Figure 3. 
SA-BiDAF++ model referes to Model-id 6 as per Figure 3.



A.2 Training Performance 

   
Dev_AvNA Dev_EM Dev_F1 

16 72 © 1-BiDAF baseline 

6 2 0 8 O° 

é 64 O83 a O4 
60 

64 Os 

60 56 
© 6-SABIDAFH 

56 Ba 7- QANET basic 

52 48 © 8-QANet 

0 500k 1M 15M 2M 2.5M 3M 3.5M 0 500k 1M 15M 2M 2.5M 3M 3.5M 0 500k 1M 1.5M 2M 2.5M 3M 3.5M 

train_NLL 

5 

6 | 

4 

  

  

    

0 500k 1M 15M 2M 25M 3M. 35M 

Figure 5: Training performance graphs of all Model-Ids 

10


