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Abstract 

Studies of robust reading comprehension models have included both learning 
domain specific representations and domain invariant representations. This project 
analyzes the effectiveness of each of these approaches using Mixture-of-Experts 
(MoE) and adversarial models. In the domain specific approach, MoE’s form a 
single expert model for each input domain (Guo et al. [1], Takahashi et al. [2]). 

In contrast, domain invariant models learn a generalized hidden representation 
that cannot distinguish the domain of the input (Ma et al. [3], Lee et al. [4]). 

Additionally, models are assessed to determine their level of understanding of 
natural language against learning simple linguistic bias heuristics. 

1 Introduction 

Reading comprehension is a sufficiently difficult task that can assess the ability of machines to 
understand natural language. Recent progress has focused on using large pretrained models to 
achieve state-of-the-art results on the Machine Reading for Question Answering (MRQA) shared 

task (Takahashi et al., 2019 [2]; Lee et al., 2019 [4]). This task requires models to learn to generalize 

question answering to domains not seen during training. Although progress has been made, challenges 
remain in assessing whether these models can truly understand natural language (Sugawara et al., 
2020) [5]. 

Common approaches explored in recent literature include: mixture-of-experts (MoE) models [2] 
and domain adversarial models [4]. These models differ in theory as MoE attempts to learn domain 
specific expert networks, while adversarial models attempt to learn domain invariant representations 
that can generalize well. 

An additional area of research that motivates this work is simple bias heuristics for QA problems. 
Building debiased models is particularly interesting in assessing how well models truly understand 
natural language, rather than relying on simple linguistic patterns. 

The focus of this project is to first implement an array of mixture-of-expert and adversarial models 
to compare their performance and representation of different domains. The second part of this 
work analyzes the amount of linguistic bias incorporated into these models to assess understanding 
of natural language. In order to do this, simple heuristics are studied to identify what types of 
question answering examples the models perform best on. The results of this work show that the 
models analyzed achieve much higher results on datasets that contain examples of simple heuristics. 
Additionally, it is shown that understanding the types and difficulty of questions from each dataset 
may provide motivation to explore additional work in student-teacher models that attempt to learn 
debiased representation similar to Wu et al., 2020 [6]. 
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2 Related Work 

Mixture-of-Experts. Guo et al., 2018 [1] and Takahashi et al., 2019 [2] have implemented mixture- 

of-experts (MoE) models for NLP tasks in a multi-domain setting. MoE models are composed of 
different neurel networks (experts), where each expert attempts to learn to handle a specific subtask, 
in this case a single domain. In [1], each expert is trained on an individual domain dataset among all 
the training datasets. The approach in [2] differs slightly in that a regularization loss term is used to 
control the amount of weight put on an individual expert. 

Adversarial Models Adversarial models are trained using two components and have been applied 
to the QA setting in Lee et al., 2019 [4]. The idea is to train both a QA model and a discriminator 

model. The discriminator is trained on a specific subtask, while the QA model is trained to attempt to 
confuse the discriminator model. In this setting, the discriminator classifies the input into the domain 
it belongs to. Since the QA model learns to confuse the discriminator, the model is able to learn 
domain invariant features, while still predicting the correct answer. 

Bias Patterns in NLP. Recent literature has studied whether large pretrained language models 
truly understand natural language. McCoy et al., 2019 [7] show that models learn simple syntactic 
structures from training data in natural language inference models. These models fail to generalize to 
more challenging tasks. Debiasing methods have been studied by Utama et al., 2020 [8] and Wu et al., 
2020 [6] to attempt to create models that are adversarial to simple syntactic heuristics. These models 
attempt to learn deep understanding of knowledge that can generalize outside of the training domain. 

3 Approach 

In order to sufficiently analyze different domain representations and biases, several models are trained 
to determine if there are differences amongst architectures. In this section, the details of theses 
models are explained along with the biases that are studied. 

3.1 Baseline Model 

The baseline model is HuggingFace’s DistiIBERT Question Answering implementation. Cross 
entropy is used as the loss function, and will be referred to as Lac. 

3.2 Mixture-of-Experts Models 

MoE models consist 4 neural networks (experts) that learn to handle different in-domain datasets, 

and a gating network, which classifies the input representation to the correct domain expert. For 
out-of-domain generalization, the MoE computes a weighted average of the experts [2]. Here, the 
MoE takes a DistiIBERT hidden representation, H € R?”, as input and outputs Y € R?*”. Then, 
Y is fed into the final output layer. The MoE is defined with individual expert weights W; and bias 
b; as follows: 

K 

Y=) ) G(A)Ei(A) (1) 
w=1 

E,(H) = W;H +b; (2) 

3.2.1 MoE-Base 

The MoE-Base model implements the structure of [2], which uses a bidirectional gated recurrent unit 
and a softmax linear layer as the gating network, with weights Wg and bias bg: 

G(H) = softmax(Welhz, hal + bg) (3) 

hi, = GRU(H); hy = GRU(H) (4) 

The loss function uses the reading comprehension cross-entropy and adds an importance loss term to 
control the variation in probabilities assigned to each expert. For simplicity, the cross task of natural



language inference is dropped from [2], making the loss: 

LMoE-—Base = LrRo + importanceCV (S > G(Z))? (5) 

zEZL 

where Z represents all the samples of a minibatch, CV(-) is the coefficient of variation, and 
Aimportance 18 a hyperparameter. The CV loss term ensures a non-negligible probability is assigned 

to each expert. 

3.2.2 MoE-Domain Classifier 

The next implementation analyzed ensures each expert E; is aligned to dataset D;, for all i € 
{1,..., A}. The loss function adds a domain classification cross task to penalize when the gating 
network classifies the domain incorrectly. Motivated by [4], in this model the GRU gating network is 
replaced by a linear layer and only ho, the hidden representation of the [C'L.S] input token, is used as 
input. The gating network is defined as: 

G(ho) = softmax(Wgh' + bg) (6) 

h! = ReLU(Wiho + bi) (7) 

The loss function with an added cross entropy loss is: 

LMoE—Domain = Lro + CE(G(ho)) (8) 

3.3. Adversarial Models 

3.3.1 Adversarial-Baseline 

The baseline adversarial model reflects the architecture of Lee et al., 2019 [4] !. The model has two 

components, a QA model and a discriminator. The difference here is that the model is trained to learn 

invariant domain representations. 

The discriminator is trained to identify the domain of the input into one of K domains. The gating 
network from Section 3.2.2 is used for this. However, in this model, while training the discriminator 

only the gating network parameters are updated. 

The QA model reflects the architecture of the baseline model in Section 3.1. An additional loss term, 
the Kullback-Leibler (KL) divergence, is added to confuse the discriminator during training. The 
goal is to minimize KL divergence such that the probabilities output by the discriminator do not differ 
from the uniform distribution across K domains. 

The adversarial model is trained in two-steps for each minibatch. A gradient step is taken for the QA 
model, followed by a gradient step on the discriminator model. 

3.3.2 MoE-Adversarial 

The MoE-Adversarial model presents a novel approach to training adversarial and mixture-of-experts. 
Here a gating network from Equation 6 is used instead of a disciminator network. The gating network 
is trained to minimize the Kullback-Leibler (KL) divergence between uniform distribution over K 

classes denoted as U(1) and gating network’s domain prediction. This archictecture is simpler than a 
the baseline adversarial network, as a second gradient step is not needed. In this setting, the MoE 
model is used as an ensemble to learn different features of the hidden state, rather than a domain 

classifier. 

LMoE—Adv = LrRo + XNadv£ Adv + importance E(G(ho)) (9) 

The details of £4q, are provided in Lee et al. (2019) [4]. The importance loss is added here to ensure 

that the gating network assigns uniform probabilities rather than emphasizing one expert. 

3.4 Bias Methods 

Wu et al., 2020 [6] implement a model that incorporates four debiasing methods. In this work, three 
of these biases are analyzed to determine if the above model architectures have learned to exploit 
these biases, rather than truly understand natural language concepts. 
  

'Code adapted from https: //github.com/seanie12/mrqa



Lexical Overlap. Lexical overlap occurs when the answer to a QA example is contained within 
the context sentence most similar to the question. To assess this concept, each context sentence is 
converted to an embedding space using Sentence-BERT 7. Next, the cosine similarity is taken with 
respect to the question. The similarities are ranked and only the most similar sentence is kept and 
used during as the context. 

  
Context Sentence 1: (Similarity: 0.36) 
In the film Knute Rockne, All American, Knute Rockne (played by Pat OBrien) delivers the famous "Win one 

for the Gipper" speech, at which point the background music swells with the "Notre Dame Victory March". 

Context Sentence 2: (Similarity: 0.85) 
George Gipp was played by Ronald Reagan, whose nickname "The Gipper" was derived from this role. 

Context Sentence 3: (Similarity: 0.37) 
This scene was parodied in the movie Airplane! with the same background music, only this time honoring 

George Zipp, one of Ted Strikers former comrades. 
Context Sentence 4: (Similarity: 0.27) 

The song also was prominent in the movie Rudy, with Sean Astin as Daniel "Rudy" Ruettiger, who harbored 
dreams of playing football at the University of Notre Dame despite significant obstacles. 

Question: Ronald Reagan had a nickname, what was it?       

Figure 1: Example of Lexical Context from SQuAD. Cosine similarities are provided for each 
sentence. Context sentence 2 is most similar to the question, and is the only part kept in the bias 
example. 

Interrogative Adverb Questions. Wh-word bias questions were studied by Weissenborn et al., 
2017 [9]. These questions are identified and all words except the interrogative adverb is removed 
from the question. In these examples, the model must now only use this subset of the question to 
determine the answer. 

  
Context: On February 6, 2016, one day before her performance at the Super Bowl, Beyoncé released a new 

single exclusively on music streaming service Tidal called "Formation". 
Question: When did Beyoncé release Formation?       

Figure 2: Example of Interrogative Adverb Question from SQuAD. The model is only needs to use 
the word "When" from the question to predict the only date in the context. 

Empty Question. The answer can be predicted correctly without the presence of the question. This 
bias tests to see if the model selects the most prominent entity of the context. 

  
Context: Chopin’s life was covered in a BBC TV documentary Chopin — The Women Behind The Music 

(2010), and in a amo cSxcnenre ney seals by el azatin and Roberto Enosseda foe Italian television. 
Question: Whata a a ated-adeeu a alia 7   

  

    

Figure 3: Example of Empty Question from SQuAD. 

4 Experiments 

Datasets. Three in-domain datasets are used for training, and both in-domain and three out-of- 
domain datasets are used for validation of all models. Details are provide in Table | and 2. Available 
out-of-domain training data was not used due to experiments with transfer learning resulting in 
performance drops. 

Evaluation Method. All experiments use the Exact-Match (EM) and F1 scores on the Dev datasets 

to evaluate each model in the same approach as the SQuAD paper [10]. 

  

Package details: https: //github.com/UKPLab/sentence-transformers



  

  

              

  

  

      

  

  

Dataset Train Dev _ Test Dataset Train Dev _ Test 

SQuAD [10] 50,000 10,507 - DuoRC [13] 127 126 =1248 
NewsQA [11] 50,000 4,212 - RACE [14] 127 128 419 
NaturalQuestions [12] | 50,000 12,836 - RelationExtraction [15] 127 128 2,693 

Table 1: In-Domain Datasets Table 2: Out-of-Domain Datasets 

Model Gradient #Experts | SQUAD NewsQA_ NaturalQuestions | Average 
Steps EM/F1 EM/F1 EM/F1 EM/F1 

BASELINE 45k - 63.2/77.4 40.0/57.9 53.3/70.0 55.1/71.0 
MoE-BASE 30k 6 62.6/76.8 39.0/57.2 51.0/67.8 53.6/69.6 
MoE-Domain 20k 3 62.5/76.9 38.8/57.3 51.6/68.3 53.8/69.9 
MoE-Adv 25k 3 62.3/76.7 40.1/57.6 52.0/68.3 54.1/69.9 
Adversarial 45k - 62.4/77.0 41.1/56.9 52.4/69.5 54.5/70.7 

Table 3: In-Domain Results on Dev set. Best performance models for each dataset are in bold. 

Model Gradient #Experts | DuoRC RACE _ RelationExtraction | Average 
Steps EM/F1 EM/F1 EM/F1 EM/F1 

BASELINE 45k - 29.4/38.6  28.1/40.0 42.2/66.5 33.3/48.4 
MoE-BASE 30k 6 34.1/42.8  23.4/36.4 41.4/67.1 33.0/48.8 
MoE-Domain 20k 3 34.1/42.6  18.8/32.1 40.6/67.5 31.2/47.4 
MoE-Adv 25k 3 34.9/43.4  20.3/34.6 43 .0/67.5 32.7/48.6 
Adversarial 45k - 31.0/40.5 19.5/33.5 47.7/71.3 32.7/48.5         

Table 4: Out-of-Domain Results on Dev set. Best performance models for each dataset are in bold. 

Experiment Details. AIl models use a learning rate of 3e-5 and batch size of 16. MoE architectures 
have a hidden size of 1024 for all linear layers, The GRU in MoE-Base has 512 hidden units. For 

respective MoE models, Aimportance 1S 0.1 as suggested by Takahashi et al., 2019 [2] and Agay is 

le-2 as suggested by Lee et al., 2019 [4]. The Adversarial model uses a discriminator with 3 linear 
layers with hidden sizes of 768. 

Experiment Results. Table 3 and Table 4 display the results for all models. The best model 
on the out-of-domain dev datasets by average F1 score is the MoE-Base model. The increase in 
performance is a lower percentage than seen in Takahashi et a., 2019 [2]. As the implementation here 
is simpler, one potential cause may be that the natural language inference (NLI) subtask may cause 
the additional increase. This is left for further research. 

MoE-Base is not the best model for any individual dataset. For out-of-domain datasets, DuoRC 

receives the best scores with MoE-Adv, and Relation Extraction is best with the Adversarial baseline. 

All models perform worse than the baseline on the RACE dataset. 

The MoE-Base model is used for submission to assess performance on the test set. The results scores 
are a Fl of 57.382 and EM of 38.784. 

5 Analysis 

In this section, two aspects are analyzed to determine each model’s ability to (1) classify domains 
and (2) reason beyond simple heuristics and language biases. 

5.1 Domain Identification 

Mixture-of-experts and adversarial follow two different theories in order to learn generalized reading 
comprehension. Mixture-of-experts attempts to learn QA on individual domains. The idea is that 
then the out-of-domain data can be predicted using a linear combination of the experts from the 
in-domain data. Conversely, adversarial models attempt to learn domain indistinguishable hidden 
representations. 

In order to visualize how these models represent examples from each domain, t-SNE plots can be used 
to view the representation space in 2D space (Ma et al., 2019 [3]). The output of the last DistiIBERT
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Figure 4: tSNE plots of the [CLS] token representations of the last transformer block of each model. 

transformer is used to view the hidden representation of the [CLS] token. The tsNE embedding 
computations are computed using the sklearn package 3 and use default parameters. The resulting 
plots are included in Figure 4. For in-domain datasets, 5000 random examples from each source 
where used to generate the plots, and all examples from the out-of-domain dev sets were used. 

Additionally, the average expert probabilities output by the gating networks of the gating network can 
be analyzed. The results are shown in Table 5. 

From these results, there is clear distinction between hidden representations from each dataset in 

Figures 4a- 4d. These plots align to the expert probabilities seen in Table 5. An observation can 
be made that Relation Extraction is represented very similarly to SQUAD in all models. The single 

model where representation overlap is observed is the Adversarial model. The most overlap is seen 
in Natural Questions, NewsQA, DuoRC, and RACE. There are far more clusters observed, but these 

are not dataset specific. Future research into these cluster may provide insight into other aspects of 
the data examples. 

5.2 Bias Analysis 

Each dataset contains some level of bias examples that simple heuristics can solve that models may 
exploit. Table 6 shows the number of examples that contain each bias for individual datasets. The 
training set is used for in-domain datasets, and the dev set for out-of-domain. Notable differences 

occur in the proportion of lexical overlap examples within SQuAD, Natural Questions, and Relation 
Extraction. These are also the datasets with the highest performance. An open question is to see if 
this higher performance is due to models exploiting lexical overlap bias. 

Lexical overlap occurs when the answer appears in most similar context sentence to the question. 
Using Figure 1 from Section 3.4 as an example, the context sentence that contains the answer is likely 
the only sentence needed for a human to answer the question. Therefore, lexical overlap might be 
viewed as examples that require a lower level of reasoning to solve, rather than a certain bias. 

Figure 5 compares EM scores for all bias categories. Figures 5a- 5c show the out-of-domain datasets 

across each model implemented. The bias heuristics perform best on the relation extraction dataset, 
while RACE performs the worst. MoE-Base is the worst performing model on average across the 

bias heuristics, meaning it relies on heuristics the least. While the Adversarial model appears to have 
learned to perform best on the bias heuristics. 

  

https: //scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE. html



  

  

  

  

  

  

  

Model Dataset Expert 1 Expert2 Expert3 Expert4 Expert5 Expert 6 

MoE-Base NaturalQuestions 0.158 0.158 0.172 0.186 0.167 0.158 
NewsQA 0.178 0.158 0.184 0.133 0.170 0.176 
SQuAD 0.112 0.288 0.134 0.195 0.120 0.151 
DuoRC 0.164 0.167 0.156 0.105 0.198 0.210 
RACE 0.174 0.179 0.179 0.167 0.161 0.140 
RelationExtraction 0.100 0.346 0.130 0.168 0.110 0.145 

MoE-Domain NaturalQuestions 0 0 >0.999 - - - 
NewsQA 0.003 0.996 0 - - - 
SQuAD 0.998 0.002 0 - - - 
DuoRC 0.239 0.497 0.246 - - - 
RACE 0.165 0.835 0 - - - 
RelationExtraction | >0.999 0 0 - - - 

MoE-Adv NaturalQuestions 0.331 0.381 0.288 - - - 

NewsQA 0.331 0.371 0.298 - - - 
SQuAD 0.340 0.221 0.439 - - - 
DuoRC 0.323 0.308 0.369 - - - 
RACE 0.323 0.321 0.355 - - - 

RelationExtraction 0.350 0.267 0.383 - - -       
Table 5: Expert weights output by mixture-of-expert models. Highest weighted experts are shown in 
bold. 

  

  

  

Dataset Lexical Overlap | Interrogative Adverb | Empty Question 
NaturalQuestions 26,303 46,071 50,000 

NewsQA 8,664 48,703 50,000 
SQuAD 30,978 49,155 50,000 
DuoRC 4] 126 126 
RACE 27 123 128 
RelationExtraction 100 128 128           
Table 6: Summary of number of examples that are candidates for each bias. In-domain datasets uses 
the training data for analysis, while out-of-domain used the dev set. 

For in-domain datasets, further analysis is performed on MoE-Base to determine which datasets bias 
was learned from the most. Figure 5d shows a clear performance difference across all bias heuristics 
for Natural Questions and for lexical overlap on SQUAD. NewsQA, the worst performing dataset 
when using full data, sees the highest drops when using bias heuristics. 

From this analysis, we can reason that certain datasets contain easier examples from a reading 
comprehension perspective. Using Natural Questions as an example, we can see that almost 40-50% 
of the EM score can be achieved by any of the bias types. Conversely, NewsQA receives much lower 
scores and thus requires a much higher level of reasoning. 

Debaising by Data Selection. Utama et al., 2020 [8] concluded that filtering out examples of bias 
from the training set will decrease overall performance of the model. This conclusion was confirmed 
with these models as well. The performance of MoE-Base using only unbiased examples dropped to 
EM and FI scores of 43.78 and 26.18, respectively. These are drops of over 5 points each. 

6 Conclusion 

In this project, several models have been tested to build robust QA systems that can generalize 
to out-of-domain data. Based on the results, a mixture-of-experts model can achieve an F1 score 
0.5 points above the baseline model on the dev datasets. Robust QA systems must be able to use 
in-domain datasets to learn to use a context and question to predict an answer. Two ways of viewing 
this are presented by analyzing domain representations and bias heuristics. Wu et al., 2020 [6] show 
that student-teacher model can utilize types of bias to decrease the influence of bias examples on
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Figure 5: Figures show EM scores performance when only using biased examples as input vs the 
overall model performance. The "None" bias type represents the model scores using all the entire 
dataset. Note that this comparison assumes non-biased examples receive an EM score of 0. 

model training. Future work in this area could look at further bias heuristics to analyze more types of 
questions and levels of difficulty in datasets to improve student-teacher models. 
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