
Reformed QANet - Optimizing the Spatial

Complexity of QANet

Stanford CS224N Default (IID SQuAD Track) Project

Alex Fuster Andrew Hojel
Department of Computer Science Department of Computer Science

Stanford University Stanford University
akfuster@stanford.edu ahojel@stanford.edu

Dina Voevodsky
Department of Mathematics

Stanford University
dinsuhin@stanford.edu

Abstract

The feed-forward QANet architecture replaced the bidirectional LSTMs of tra-
ditional Q&A models’ encoder components with convolution + self-attention to
increase the speed of the model without sacrificing accuracy [1]. We achieved
scores of 64.5 EM/67.9 F1 on the dev set and 61.64 EM/65.30 F1 on the test set.
While the parallel nature of QANet’s CNN architecture allows for a significant
speed boost, it entails GPU memory requirements to reap those benefits. We
preform an ablation study to measure changes to spatial complexity, speed, and per-
formance on the QANet architecture, replacing the self attention and feed-forward
layer with LSH attention, reversible residual networks, and an entire reformer.

We found that implementing LSH attention successfully decreased memory usage
while maintaining reasonable performance. While the other modifications did not
quite maintain the original QANet model’s EM and FI scores, they significantly
improved memory complexity.

1 Key Information to include

External collaborators: None, Mentor: Mandy Lu, Sharing project: False

2 Introduction

Since the release of the SQUAD1.0 dataset [2] in 2016, there has been significant progress in machine
reading comprehension Q&A tasks. With the rise of pre-trained contextual embeddings (PCEs)
in 2018, BERT [3] managed to even surpass human performance on the SQUAD1.0 dataset. That
same year, the SQuAD2.0 dataset [4] introduced a large number of unanswerable questions to
SQuAD1.0 to make the Q&A task even more difficult. Soon enough, PCE methods [5] surpassed

human performance on SQUAD2.0 too. While PCE methods have taken over as state of the art on
the SQuAD datasets, non-PCE methods offer more scope for creativity and opportunities for deep
learning practitioners to explore different techniques and develop intuitions behind them. One of the
more successful non-PCE approaches to machine comprehension is the QANet architecture.

The feed-forward QANéet architecture replaced the bidirectional LSTMs of traditional Q&A models’

encoder components with convolution + self-attention to increase the speed of the model without sac-
rificing accuracy [1]. Although QANet’s parallel CNN architecture speeds up the model significantly,
it also requires an abundance of GPU memory. We preform an ablation study to find optimal spatial

Stanford CS224N Natural Language Processing with Deep Learning

complexity, speed, and performance on the QANéet architecture by adapting the self attention and
feed-forward layers to utilize LSH attention, reversible residual networks, and the entire reformer.

3 Related Work

Our baseline QANet model is based on the architecture outlined in Yu et al. [1], who were the first to

propose a recurrency-free model for the Q&A task that captures the local structure of the text as well
as the global interaction between each pair of words. At a high level, the architecture consists of the
standard 5 layers shared by many neural reading comprehension models: an embedding layer, an
embedding encoder layer, a context-query attention layer, a model encoder layer, and an output layer.
We experiment by making various changes to the structure of the encoder block, taking inspiration
from ideas and techniques introduced in other works.

Specifically, we focused on drawing from aspects introduced in the reformer model outlined in
Kitaev et. al’s [6]. We drew from their implementation of Locally Sensitive Hashing (LSH) in the

attention component, as well as their reversible architecture which we applied to our self-attention
and feed-forward layers. We also experimented with using their entire encoder block and weaving it
into Yu et al.’s [1] QANet model.

Kitaev et. al [6] and Yu et al. [1] were the main sources of inspiration for our work. Although all of

the mathematical and architectural techniques that we implemented drew from those introduced in
their work, to the best of our knowledge, no one has yet combined components from both.

We also attempt to use data augmentation methods inspired by Yu et. al [1]. There has been much
work in the area of data augmentation in natural language processing. For example, Zhang et.
al [7] proposed to enhance the dataset by replacing the words with their synonyms and showed
its effectiveness in text classification. Raiman et. al [8] suggest using type swap to augment the
SQuAD1.0 dataset, which essentially replaces the words in the original paragraph with others with
the same type. Although they show an improvement in accuracy, the augmented data still has the
same syntactic structure as the original data. Zhou et. al [9] improved the diversity of the SQUAD1.0
data by generating more questions. However, as reported by Wang et. al [10], their method did not
help improve the performance. Yu et. al [1] were able to improve performance by paraphrasing
contexts by translating the original text back and forth. This method adds more syntactical diversity
to the enhanced data and seems the most promising path for data augmentation. This inspired the
data augmentation methods used in this paper.

4 Approach

The baseline model we used in this project is the original BiDAF model [11] that was implemented
in the starter code. Our model is built upon the QANet architecture proposed by Yu et al. [1] shown
in Fig. 1. We used the following PyTorch Implementation of QANet on GitHub to get started. We
soon found the implementation was not correctly modified to handle the Squad 2.0 dataset, inspite of
the repository having code and clear documentation stating that Squad 2.0 was properly integrated.
In fact, there was no ability for the model to predict no answer. We therefore made significant
modifications to allow our implementation to handle the SQUAD 2.0 dataset, and train the correct

implementation.

From there, we conducted an ablasion study by experimenting with changes to the QANet encoder
block by adapting techniques from Kitaev et. al [6] to decrease spatial complexity. We created 5
versions of the original QANet model, each with a distinct combination of features from Kitaev et.
al’s [6] reformer model. See the Experiments section for a description of each version.

Here, we describe the techniques used by one or more versions of the modified model.

Locally Sensitive Hashing (LSH): This is a technique based on the LSH scheme in Andoni et. al
[12] and the general idea of hashing attention [6]. It is used on the self-attention layer to improve
memory usage and decrease spacial complexity from O(L?) to O(LlogL) where L is the length of
the sequence. The attention matrix for full attention is typically sparse, but the computation does
not take advantage of this sparsity. In LSH attention, the queries and keys can be sorted according
to their hash bucket. Since similar items fall in the same bucket with high probability, the full
attention pattern can be approximated by only allowing attention within each bucket. We used this

PyTorch Reformer Implementation as a starting point for LSH attention, and embedded it into our
QANet architecture. We decided to use 5 hashes, as this balanced lower computation time and high
performance as demonstrated (with 4 heads) in Kitaev et. al [6]. To the best of our knowledge, we

are the first to integrate LSH attention into the QANet architecture.

Reversibile Residual Network: The main idea of a reversible is to allow the activations at any given
layer to be recovered from the activations at the next layer, using only the model parameters. Instead
of having to checkpoint intermediate values to later use in the backward pass, we can reverse layers
one-by-one as back-propagation proceeds from the output to the input. A normal residual layer
performs a function x > y and has the form y = x + F(a). A reversible layer performs a function:
(21,22) > (yi, Y2), and has the form:

y=a+F(t2) yo =2t2+G(y1)

To reverse this, we simply do:

m=y—F(rz2) 22 =%2— G(y1)

We apply this idea to our attention and feed-forward layers. So, our equations become:

Y, = X, + Attention(X2) Yq = X» + FeedForward(Y;)

Implementing this method eliminates the need to store activations in each layer.

Chunking: This technique, aimed at decreasing spacial complexity, takes advantage of the indepen-
dence of computations in feed-forward layers across positions in a sequence. In other words, the
computation in the feed-forward layer can be split into "chunks" as follows:

Yo = ys”; a ¥g™| = x? + FeedForward(¥?);...; X 2%) + FeedForward(Y,™?)

Chunking is performed on feed forward layers during both forward and backward pass computation.

Model One Encoder

Start Probability End Probability

Block

0 i.
r ~ x

() > (4) Repeat

‘Stacked Embedding ‘Stacked Embedding
Encoder Blocks, Encoder Blocks,

Embedding

\ (Position Encoding)]

Context Question

Figure 1: QANet Architecture [1]

5 Experiments

5.1 Data

We are using the official SQUAD 2.0 dataset, broken up into train (129,941 examples), dev (6078
examples), and test (5915 examples) sets.

5.1.1 Data Augmentation by Back Translation

We combine our model with a simple data augmentation technique to enrich the training data. The
idea is to use the Google Translate API to produce a translation from the source language to the
target language, and then apply another translation from the target language back to the source. This
approach helps automatically increase the amount of training data for any language-based tasks
including the reading comprehension task that we are interested in. With more data, we expect to
better regularize our models.

This approach is similar to the data augmentation done in Yu et. al [1], which was the first attempt
to apply back translation to enrich training data for down-stream tasks (in this case, the question
answering task). It is worth noting that Dong et al [13] use paraphrasing techniques to improve ques-
tion answering; however, they only paraphrase questions and did not focus on the data augmentation
aspect we use in this paper.

We use data augmentation x 3 (3:1:1), which literature [1] shows 1.5/1.1 gain over the base model

on EM/F1 on SQuAD 1.0. Data augmentation “x N" means the data is enhanced to N times as large
as the original size, while the ratio in the bracket indicates the sampling ratio among the original,
English-French-English and English-German-English data during training.

Each training example of SQuAD is a triple of (d,qg,a) in which document d is a multi-sentence
paragraph that has the answer a. When paraphrasing, we keep the question g unchanged (to avoid
accidentally changing its meaning) and generate new triples of (d’, g, a’) such that the new document
d' has the new answer a’ in it. The procedure happens in two steps: (i) document paraphrasing —
paraphrase d into d’ and (b) answer extraction — extract a’ from d’ that closely matches a.

For the document paraphrasing, a new document d’ is formed using back translation via the Google
Translate API. Let d be the original document that contains the original answer a and d’ be its
paraphrase. We identify the newly-paraphrased answer a’ by finding the most similar substring in d’
to a using the SequenceMatcher class from the python module difflib. We then create a list of indices
where a’ occurs in d’ and pick the index closest to the index of the original a to handle the case in
which the substring appears multiple times in the document.

5.2 Evaluation method

5.2.1 Exact Match (EM), F1, Answer v. No Answer (AvNA)

These evaluation metrics are all automatically calculated by comparing the model prediction to the
gold standard answer. All three of these metrics are explained in the project description. Yet, a brief
summary is that EM (Exact Match) measures the percentage of predicted answers that exactly match
the gold standard ansewr. F1 score measures the mean of prediction and recall — how the content
of the prediction compares to the gold standard and how much overlap in terms of exact words.
Finally, AVNA measure the percent of the time that the model correctly predicts whether a question is
answerable or not.

5.2.2 Negative Log-Likelihood (NLL)

Negative Log-Likelihood is used as the loss when training all of our models. The Negative Log-
Likelihood measures loss by comparing the distribution of the probabilities of the start and end
indices with the start and end index of the gold standard answer.

5.2.3 Speed

We are measuring speed with the help of the tqdm package which measures the number of training
examples that were processed in a second and reports the examples / second rate. All of the speed
measurements were performed on an NC6_Promo Amazon Azure VM Instance (details can be found

in Table 1); therefore, the speed metric can be compared across models. We measured speed to
determine how changes to the model affected training speed.

Size vCPU CPU GPU GPU Memory Usable GPU Memory

Standard NC6_Promo 6 Intel Xeon E5-2690 v3.1 x NVIDIA Tesla K80 12 GiB 11441 MiB

Table 1: Relevant details about the NC6_Promo VM Instance that was used for testing speed and
memory performance. More information can be found here.

5.2.4 Memory

Memory, which we are measuring in megabytes (MiB), measures the amount of memory that a model
is using on GPU on the NC6_Promo Amazon Azure VM Instance (detaiils can be found in Table 1).

This metric is being used to measure the affect of the memory optimizations implemented to QANet.
We measure the memory usage by extracting the information returned from calling nvidia-smi.
Whenever the memory is not reported, it means that the GPU ran out of memory when attempting to
run the model.

5.3 Experimental details

— forward pass — forward pass

LSH Self Att.

iS
.
7

O
SS

C)

One LSH One Reformer One Reversible

{ Feedforward

1

Encoder Block Encoder Block —> backward pass One ReformerLM —> forward pase Encoder Block —> backward pass
Encoder Block

—> backward pass

y2 Repeat

OW

2

= = SS

\ @ositon Emp)) \ Coston Em)] \ Coston Emb.)]

yl Clayernorm) Yt

| eae

Xe x

Repeat Repeat CLayernorm) Repeat

(a) QANet-LSH (b) QANet-Reformer (c) QANet-ReformerLM (d) QANet-Reversible

Figure 2: Encoders of various QANet models with different memory optimizations

In order to find the optimal model configuration for memory optimization, we ran the following
configurations of QANet (each with 96 hidden layers and | head). All of the reformer components
were adapted from this PyTorch Reformer Implementation. Modifications were necessary to integrate
components and use individual pieces of the reformer architecture while keeping all other non-
changed components of the QANet architecture constant.

Small-QANet: This is the original model outlined in Yu et al. [1]

Small-QANet-LSH: This model replaced the self-attention layer in the original QANet with LSH
Self Attention scheme proposed in Kitaev et. al’s [6]. The rationale behind this modification is that
the O(L7) spatial complexity of dot product attention significantly limits the maximum sequence
length of QANet; therefore, by replacing dot product attention with LSH attention, we were hoping
to improve spatial complexity for longer sequences. See Figure 2a for a diagram of the new encoder
block used in this model.

Small-QANet-Reformer: This model adapted the LSH Self Attention and feed forward layers from
Small-QANet-LSH into a reversible architecture using the reversible residual network design from
Gomez et. al’s [14]. In addition, this model made use of chunking proposed in Kitaev et. al’s [6]

to futher improve memory performance. To determine the number of repetitions of the reversible
residual network, we used the same number of iterations of the convolutional layer. The rationale
behind this modification was to completely adapt the original self-attention and feed forward layers

in the original QANet architecture with all applicable optimizations proposed in Kitaev et. al’s [6].
See Figure 2b for a diagram of the encoder block used in this model.

Small-QANet-ReformerLM: This model replaced the self-attention and feed forward layers found in
the original QANet using the same method used for Small-QANet-Reformer. In addition to these
changes, this model removed QANet’s convolution layer, replaced the position embedding with Axial
Position Embedding, and added a Layernorm layer at the end of the encoder block. The rationale
behind these changes was to investigate the performance of QANet without the convolutional layer
and to better understand how the convolutional layer affects memory performance. See Figure 2c for
a diagram of the encoder block used in this model.

Small-QANet-Reversible: This model adapted the self-attention (dot product attention) and feed
forward layers from the original QANet into a reversible architecture using the reversible residual
network design. The rational behind this modification was to test the impact of the reversible
architecture on model performance and memory performance. This optimization is appealing because
it is not dependent on sequence length; instead, the improvements in the memory performance come
from the model’s architecture. See Figure 2d for a diagram of the encoder block used in this model.

In addition to testing various model configuration with memory optimization, we ran the following
experiments with different model sizes and data sets created using data augmentation by back
translation to measure the effects on model performance:

Large-QANet: This model used a hidden dimension size of 128 and had 8 attention heads. The goal
was to determine whether a larger model could achieve better performance than Small-QANéet.

Small-QANet-Augmented: This is the same model as Small-QANet, yet it was trained on the
augmented data set, which is three times the size of the original data set. Yu et. al [1] found that
this data augmentation could improve performance on SQUAD 1.0; we wanted to test whether these
improvements hold with SQUAD?2.0.

Large-QANet-Augment: This model is the same model as Large-QANet, yet it was trained on the
augmented data set. The rationale for this model was to determine whether data augmentation had a
different affect on a larger model.

5.4 Results

The performance metrics on SQUAD2.0 and hyperparameters of the models evaluated throughout
this research can be found in Table 2. The speed and spatial performance of the models can be found
in Table 3. Our top performing model was Small-QANet, which achieved 64.48 / 67.93 EM and F1
respectively on development set and 61.64 / 65.30 EM and FI respectively on the test set.

In terms of model performance on SQUAD2.0, we were surprised to see that Large-QANet performed
worse than Small-QANet. In Figure 4, we can see that the NLL for Large-QANet increased signif-
icantly more in later epochs, which is an indicator of overfitting. We were also surprised to find
Small-QANet-Augmented performed worse in spite of having more data. In Figure 5, it is clear that
this model also suffered significant overfitting. The performance of Large-QANet-Augmented was
an improvement over Large-QANet (improvement of +0.25 EM and +0.58 F1), yet its performance
still did not reach Small-QANet’s.

Model Hidden Heads DevEM DevFl DevAvNa DevNLL_ TestEM Test Fl

Small-QANet 96 1 64.48 67.93 74.14 2.74 61.64 65.30

Small-QANet-LSH 96 1 64.16 67.79 74.04 2.70 - -

Small-QANet-Reformer 96 1 62.69 66.40 73.06 3.13 - -
Small-QANet-ReformerLM 96 1 51.85 51.84 52.11 5.21 - -

Small-QANet-Reversible 96 1 62.70 66.41 72.91 2.98 - -

Small-QANet-Augmented 96 1 62.11 65.83 72.37 3.24 - -

Large-QANet 128 8 63.15 66.70 73.32 3.08 - -

Large-QANet-Augmented 128 8 63.40 67.28 73.72 3.33 61.17 65.15

Table 2: Dev and test set results from variations of QANet all trained to 30 epochs with a maximum
context sequence length of 400 words.

Speed (400 seq) 400 seq 1024 seq 2048 seq 4096 seq 8192 seq

Small-QANet 19 ex/sec 1089 MiB 2539 MiB 6891 MiB - -
Small-QANet-LSH 11 ex/sec 1703 MiB 2959 MiB 55355 MiB__10065 MiB -
Small-QANet-Reformer 2 ex/sec 899 MiB 1285 MiB 1979MiB 3368 MiB 7167 MiB
Small-QANet-ReformerLM 5 ex/sec 841 MiB 1115MiB 1609MiB 2529MiB 5449 MiB
Small-QANet-Reversible 17 ex/sec 808 MiB 1355 MiB 2413MiB 4634MiB 10276 MiB
Large-QANet 13 ex/sc 2551 MiB 11041 MiB - - -

Table 3: Memory and speed of all variations of QANet trained with a batch size of 4 on a NC6_Promo
VM instance (details about this VM can be found in Table 1). A '"-" signifies that CUDA ran out of

memory. Please refer to Table 2 for hidden dimension and number of heads of each model. Please
refer to the speed and memory sections for details about the metrics and how they were collected.

5.5 Spatial Complexity Ablation Study

In this ablation study, we will investigate the effect of each memory optimization on the speed, memory
performance, and SQuAD2.0 performance. The performance of all the models on SQUAD2.0 can be
found in Table 2 and the memory / speed performance can be found in Table 3.

Small-QANet: This model was used as our baseline for memory performance, performance on
SQuAD2.0, and speed. It is not surprising that it achieved the best performance on SQUAD2.0
because none of our memory optimizations were targeted at improving this performance. In terms of
speed, we see that this is the fastest model. In terms of memory, at a sequence length of 400 words
this model is middle-of-the-pack, yet as the sequence length scales up it is quickly outperformed
by other models. Specifically, when the sequence length is 4096 words, CUDA ran out of memory
(whereas other models we implemented were able to train on much longer sequences).

Small-QANet-LSH: The results for this model were interesting because it had the lowest difference
in performance from Small-QANet (performing only marginally worse on both EM and F1 scores).
The runtime increases by 40%, which is expected because LSH Attention is a costly operation, yet
this could be addressed by changing the number of hashes used, which would speed up the model
but potentially decrease performance. In terms of memory, Small-QANet-LSH performs worse
than Small-QANet on sequences of 400 or 1024 words, but performs better on 2048 words and is
able to run with a sequence length of 4096 words. Therefore, it is clear that this is a good option
for improving spatial complexity on longer sequences with small affects on performance (yet with
significantly slower speeds).

Small-QANet-Reformer: The results for this model were interesting because it achieved the best
memory performance while achieving acceptable performance on SQUAD2.0 (yet there is a non-
negligible decrease of -1.79 EM and -1.53 FI scores). The downside of this variation is that it is
90% slower than Small-QANet. We believe this is caused by the repetition of LSH Self Attention;
therfore, this could be addressed by decreased the number of reversible residual networks in the
reformer and/or changing to dot product attention. For a longer sequence length, it would not be
possible to use dot product attention because of its spatial complexity. If the user is optimizing for
memory performance with reasonable results, this is the best model.

Small-QANet-ReformerLM: This model achieved unacceptable EM/F1 scores. We wanted to test
whether removing the convolutions had a significant affect on model performance, which we found
was the case. The decreased memory usage of this model in comparison to Small-QANet-Reformer
could be caused either by the removal of the convolutions or by the switching of the absolute position
embedding layer with an axial position embedding layer.

Small-QANet-Reversible: This model achieved performance almost identical to Small-QANet-
Reformer. The primary difference is that it is significantly faster (with only a 10% speed decrease
from Small-QANet). This affirms the point that Small-QANet-Reformer is likely so slow because of

LSH attention. Another significant difference from Small-QANet-Reformer is as the sequence length
increases, it uses more memory than Small-QANet-Reformer (on a sequence length of 8192 words it
uses 40% more memory). Therefore, on shorter-length sequences this model achieves high-speed,
good memory efficiency, and relatively good EM/F1 Scores.

The results of our ablation study demonstrate that if QANet is being run on larger sequences, the
best option for maintaining the best performance on SQuAD and decreasing memory complexity
is Small-QANet-LSH. The most optimal model for memory performance on short sequences is
Small-QANet-Reversible, yet it does suffer a decrease in EM/F1 scores. For long sequences the most
optimal model for memory performance is Small-QANet-Reformer, yet it suffers from a decrease
in EM/F1 scores (almost identical to Small-QANet-Reversible) and a significant decrease in speed,

which could be addressed by decreasing the number of reversible residual layer repetitions.

5.6 Data Augmentation

In a few cases, the answer a was lost in translation. See Table 4 for an example. This occurred for 49
out of 389,823 training examples (~ 0.0125%). Since this is such a rare occurrence, we simply drop
the training examples where this is the case.

Sentence that contains an answer Answer

Original “Developing two versions would mean delaying the previously announced | ‘2005’
2005 release, still disappointing the consumer.’

Paraphrase | ‘Develop two versions would mean delaying the previously announced publi-
cation, still disappointing the consumer.’

©

Table 4: Example of back translation completely losing answer.

The quality and diversity of paraphrases are essential to the data augmentation method. It is still
possible to improve the quality and diversity of this method. The quality can be improved by using
better translation models. For example, we find that the translations often lose proper nouns that
appear in answers like book titles, song titles, names, and more (see Table 5 for an example). It is
often the case that such proper nouns are the answers to some of the questions, and thus by losing
them in translation we lose the ability to correctly answer questions. In addition, we can combine this
method with other data augmentation methods, such as the type swap method (Raiman et. al [8]), to
acquire more diversity in paraphrases.

Sentence that contains a proper noun in the form of song title Song title

Original Following the disbandment of Destiny’s Child in June 2005, she released | "Déja Vu"
her second solo album, B’Day (2006), which contained hits "Déja Vu",

"Irreplaceable", and "Beautiful Liar".

Paraphrase | Following the dissolution of the child of destiny in June 2005, she published | "already seen"
her second solo album, B’Day (2006), which contained hits "already seen",

"irreplaceable" and "beautiful liar".

Table 5: Example of back translation losing correct proper noun.

6 Conclusion

Overall, we were able to decrease memory complexity while maintaining performance comparable
to the Small-QANet with Small-QANet-LSH. Other major changes to the QANet architecture lead
to a slight performance decrease, but they achieved a major decrease in memory usage as we
hoped. Additionally, we find that we are able to achieve slight gains on Large-QANet by utilizing
data augmentation consisting of translating the context to and from another language as a way of
paraphrasing.

We also believe that we can even further improve memory optimization in the QANet model with
successful EM/F1 scores beyond applying optimizations introduced for the reformer model. In the
future, we hope to explore novel optimization techniques specifically derived for the QANet model,
and continue to challenge the lower limit for the model’s necessary memory consumption. For
example, it would be interesting to attempt to decrease the memory usage of the convolution layers.

References

[1] Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Mohammad Norouzi,

and Quoc V Le. Qanet: Combining local convolution with global self-attention for reading
comprehension, 2018.

[2] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text, 2016.

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: pre-training of

deep bidirectional transformers for language understanding, 2018.

[4] Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable
questions for squad, 2018.

[5] Zhuosheng Zhang, Junjie Yang, and Hai Zhao. Retrospective reader for machine reading
comprehension, 2020.

[6] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In

International Conference on Learning Representations (ICLR), 2020.

[7] Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. Character-level convolutional networks for
text classification. Advances in Neural Information Processing Systems 28: Annual Conference
on Neural Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec,

Canada, pages 649-657, 2015.

[8] Jonathan Raiman and John Miller. Globally normalized reader. Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing, EMNLP 2017, Copenhagen,
Denmark, September 9-11, 2017, pages 1070-1080, 2017.

[9] Qingyu Zhou, Nan Yang, Furu Wei, Chuangi Tan, Hangbo Bao, and Ming Zhou. Neural ques-

tion generation from text: A preliminary study., 2017.

[10] Wenhui Wang, Nan Yang, Furu Wei, Baobao Chang, , and Ming Zhou. Gated self-matching
networks for reading comprehension and question answering. Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics, ACL 2017, Vancouver, Canada, July
30 - August 4, Volume 1: Long Papers, page 189-198, 2017.

[11] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional
attention flow for machine comprehension, 2016.

[12] Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya P. Razenshteyn, and Ludwig Schmidt.
Practical and optimal Ish for angular distance, 2015.

[13] Li Dong, Johnathan Mallison, Siva Reddy, and Mirella Lapata. Learning to paraphrase for
question answering. Proceedings of the 2017 Conference on Empirical Methods in Natu-
ral Language Processing, Association for Computational Linguistics:875—886, 2017. URL
http://aclweb.org/anthology/D17-1091.

[14] Aidan N. Gomez, Mengye Ren, Raquel Urtasun, and Roger B. Grosse. The reversible residual
network: Backpropagation without storing activations, 2017.

A Appendix

EM FI AvNA NLL
tag: dev/EM tag: dev/F1 tag: dev/AvNA tag: dev/NLL

: e
e

1M 14M 18M 22M 26M 2

2
¢

g
B@

8
8

B
B

8
8

8
&

B

8 A

2
2
x

x
2
8
a

%
o

o
S
o

&
&

200k 600k 1M 14M 1.8M 22M 26M 1M 14M 18M 2.2M 26M 3 0k 600k IM 14M 1.8M 22M 2.6M

(IM

(a) EM (b) Fl (c) AVNA (d) NLL

Figure 3: Small-QANet Tensorboards

EM AvNA FI tag: dev/EM tag: dev/F1 tag: dev/AVNA oh dev/NLL
76

62 66 72 42 | |
is 68 + |

a
38

64}
58 | 34

5A my
54 5 $ 56 |

50 8 se | 26
100k 300k 500k 700k 900k 1.1M 1.3M 100k 300k 500k 700k 900k 11M 13M 100k 300k 500k 700k 900k 1.1M 13M 100k 300k 500k 700k 900k 1.1M 1.0M

(a) EM (b) Fl (c) AVNA (d) NLL

Figure 4: Large-QANet Tensorboards

eM FI AvNA NLL
tag: dev/EM tag: dev/F1 tag: dev/AVNA tag: dev/NLL

62 66

60

62 58

56 : :
52 54 60 28

200k 600k 1M 14M 1.8M 22M 26M 200k 600k 1M 14M 1.8M 2.2M 26M 200k 600k 1M 14M 18M 22M 26M 200k 600k 1M 14M 1.8M 2.2M 26M

(a) EM (b) Fl (c) AVNA (d) NLL

Figure 5: Small-QANet-Augmented Tensorboards

EM FL AvNA NLL
tag: dev/EM tag: dev/F1 tag: dev/AVNA tag: dev/NLL

745 |
63 |

~ |
@ ee |

“ + |

= oa é 20 |

6 |

00k 1M 1.5M 2M 2.5M 3M 3.5M 4M 4.5M Ok 1M 1.5M 2M 25M SM 35M 4M 4.5M 500k 1M 1.5M 2M 2.6M 3M 3.6M 4M 4.5M 00k 1M 1.5M 2M 26M GM 36M 4M 4.5M

(a) EM (b) Fl (c) AVNA (d) NLL

Figure 6: Large-QANet-Augmented Tensorboards

10

